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Abstract

In this note, we find all positive integer solutions of the Diophantine equa-
tion Lk − Ll = 2t and Ln − Lm = 2a1 + 2a2 + 2a3 , where (Ln)n≥0 is the
Lucas sequence. The tools used to solve our main theorem are linear forms
in logarithms, properties of continued fractions, and a version of the Baker-
Davenport reduction method in diophantine approximation.

1 Introduction

There is a vast literature on solving Diophantine equations involving the sequence
{Ln}n≥0 of Lucas numbers, the sequence

{
L
(k)
n

}
n≥0

of k-generalized Lucas num-

bers or other recurrence sequences. The Lucas sequence (Lk)k≥0 is a linear recur-
ring sequence given by L0 = 2, L1 = 1 and

Lk+2 = Lk+1 + Lk.
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It follows the same recursive definition as the Fibonacci sequence (Fk)k≥0 given
by F0 = 0, F1 = 1 and

Fk+2 = Fk+1 + Fk, for k ≥ 2,

whose numbers are found everywhere in nature. The Fibonacci numbers are fa-
mous for possessing wonderful and amazing properties.

In 2014, Bravo and Luca [7] studied the Diophantine equation

Lk + Ll = 2t

in positive integers k, l and t. Specifically, they proved the following theorems.

Theorem 1.1. The only solutions (k, l, t) of the Diophantine equation Lk+Ll = 2t

in positive integers k, l, t and with k ≥ l are

(0, 0, 2); (1, 1, 1); (3, 3, 3); (2, 1, 2); (4, 1, 3); (7, 2, 5).

In 2020 [4] and 2021 [5], our work focused on the Diophantine equations Lk+
Ll + Lt = 2d in non-negative integers k, l, t, d; and Lk − 3l = m, where m is a
fixed integer and k, l are positive variable integers. We provided all the solutions
to these equations.

Similar equations involving Fibonacci and Padovan sequences are solved in
[1, 14, 16, 17].

The most general result is due to Chim, Pink and Ziegler [11] who considered
the case, where Un and Vm are the n− th and m− th numbers in linear recurrence
sequences {Un}n≥0 and {Vm}m≥0 respectively and found effective upper bounds
for |c| such that the Diophantine equation

Un − Vm = c.

In this paper, we extend this strategy and study the two Diophantine equations.
We prove the following result.

Theorem 1.2. All solutions (n,m, b1, b2, b3) of the Diophantine equation

Ln − Lm = 2b1 + 2b2 + 2b3 (1.1)

in non negative integers n,m, b1, b2 and b3, are
(4, 1, 1, 1, 1), (5, 1, 1, 2, 2), (5, 2, 1, 1, 2), (6, 0, 2, 2, 3), (6, 3, 1, 2, 3), (7, 1, 2, 3, 4),
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(7, 2, 1, 3, 4), (7, 4, 1, 2, 4), (7, 5, 1, 3, 3), (8, 2, 2, 3, 5), (8, 4, 2, 2, 5), (8, 4, 3, 4, 4),
(8, 5, 1, 1, 5), (8, 5, 2, 4, 4), (8, 7, 1, 3, 3), (9, 0, 1, 3, 6), (9, 3, 2, 2, 6), (9, 3, 3, 5, 5),
(10, 5, 4, 5, 6), (10, 8, 2, 3, 6), (11, 2, 2, 6, 7), (11, 4, 5, 5, 7), (11, 4, 6, 6, 6),
(11, 8, 3, 4, 7), (11, 10, 2, 3, 6), (12, 0, 5, 5, 8), (12, 0, 6, 7, 7), (12, 6, 4, 5, 8),
(13, 1, 2, 2, 9), (13, 1, 3, 8, 8), (13, 2, 1, 2, 9), (13, 4, 1, 8, 8), (13, 11, 1, 6, 8),
(14, 5, 6, 8, 9), (14, 11, 2, 7, 9), (14, 13, 1, 6, 8), (15, 9, 3, 8, 10), (15, 12, 1, 4, 10),
(16, 7, 1, 7, 11), (16, 10, 2, 5, 11).

Theorem 1.3. All solutions (k, l, t) of the Diophantine equation

Lk − Ll = 2t (1.2)

in non negative integers k, l and t, are

(0, 1, 0); (2, 0, 0); (3, 2, 0); (2, 1, 1); (3, 0, 1); (4, 2, 2); (5, 4, 2); (5, 2, 3); (6, 0, 4).

Our method of proof is similiar to the method described in [7].

2 Preliminaries

Before proceeding further, we recall the Binet formula for the Lucas numbers
(Lk)k≥0

Lk = αk + βk, for k ≥ 0,

where

α =
1 +

√
5

2
and β =

1−
√
5

2

are the roots of the characteristic equation x2 − x − 1 = 0. In particular, the
inequality

αk−1 ⩽ Lk ⩽ αk+1 (2.1)

holds for all k ≥ 0.
To prove Theorem 1.3, using a result on linear forms in two logarithms, we

require some notations. Let δ be an algebraic number of degree d with minimal
polynomial
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a0x
d + a1x

d−1 + · · ·+ ad = a0

d∏
i=1

(X − δ(i))

where the ai’s are relatively prime integers with a0 > 0 and the δ(i) denotes the
conjugates of δ. Then

h(δ) =
1

d
(log a0 +

d∑
i=1

log(max{|δ(i)|, 1}))

is called the logarithmic height of δ. In particular, if δ = p/q is a rational number
with gcd(p, q) = 1 and q > 0, then

h(δ) = logmax{|p|, q}.

The following properties of the logarithmic height, will be used in the next
section. Let δ, ν be algebraic numbers and r ∈ Z. Then

• h(δ ± ν) ≤ h(δ) + h(ν) + log 2,

• h(δν±1) ≤ h(δ) + h(ν),

• h(δr) = |r|h(δ).

Using the above notation, we restate Laurent, Mignotte, and Nesterenko’s result
[15, Cor. 1].

Theorem 2.1. Let δ1, δ2 be two non-zero algebraic numbers, and let log δ1 and
log δ2 be any determinations of their logarithms. Set

D = [Q(δ1, δ2) : Q]/[R(δ1, δ2) : R]

and

Γ := b2 log δ2 − b1 log δ1,

where b1 and b2 are positive integers. Further, let A1, A2 > 1 be real numbers
such that

logAi ≥ max{h(δi),
|h(δi)|
D

,
1

D
}, i = 1, 2.
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Then, assuming that δ1 and δ2 are multiplicatively independent, we have

log |Γ| > −30.9 ·D4(max {log b′, 21
D

,
1

2
})2 logA1 logA2,

where
b′ =

b1
D logA2

+
b2

D logA1
.

We also need the following general lower bound for linear forms in logarithms
due to Matveev [18].

Theorem 2.2. Assume that δ1, . . . , δt are positive real algebraic numbers in a real
algebraic number field K of degree D. Let b1, . . . , bn be rational integers, and

Λ := δb11 · · · δbtt − 1

be not zero. Then

|Λ| > exp (−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1 · · ·At),

where
B ⩾ max {|b1|, . . . , |bt|},

and
Ai ⩾ max {Dh(δi), | log δi|, 0.16}, for all i = 1, . . . , t.

Finally, we present a version of the reduction method based on the Baker-
Davenport Lemma [2], from Dujella and Pethő [12]. This will be one of the key
tools used to reduce the upper bounds on the variables of the equation (1.2).

Lemma 2.1. Let N be a positive integer, let p/q be a convergent of the irrational
number γ such that q > 6N , and let A,B, µ be real numbers with A > 0 and
B > 1. Define

ξ := ∥µq∥ −N∥γq∥,

where ∥ · ∥ denotes the distance to the nearest integer. If ξ > 0, then there is no
solution to the inequality

0 < uγ − v + µ < AB−w,

in positive integers u, v, and w, with u ⩽ N and w ⩾ log (Aq/ξ)
logB .



100 Bilizimbéyé Edjeou and Amadou Tall

3 The Proof of Theorem 1.2

Let us now get a relation between n and a1. Combining (1.1) with the right in-
equality of (2.1), one gets that:

2a1 < 2a1 + 2a2 + 2a3 = Ln − Lm < αn+1 − αm−1 < αn+1

which leads to
a1 < (n+ 1)

logα

log 2
.

When n ≤ 400, we have a1 ≤ 278. Then a brute force search with Sagemath
in the range 0 ≤ m < n ≤ 400 and a3 ≤ a2 ≤ a1 ≤ 278 gives the solutions in
(1.1).

Thus, for the rest of our work, we assume that n > 400.

3.1 bounding n

Step 1. Show that

min{(a1 − a2 + 2) log 2, (m− n+ 1) logα} < 239 · (log 2n)2 or

min{(a1 − a2 + 2) log 2, (m− n+ 1) logα} < 2.63 · 104.

Equation (1.1) can be rewritten as

αn + βn − Lm = 2a1 + 2a2 + 2a3 .

In the first step we consider n and a1 to be large and by collecting “large” terms to
the left hand side of the equation, we obtain

|αn − 2a1 | = |2a2 + 2a3 + Lm − βn|
< 2a2 + 2a3 + αm+1 + 1

< max{2a2+2, 4 · αm+1}.

Dividing by 2a1 we get∣∣α−n2a1 − 1
∣∣ < max{2a2−n+2, 22−n · αm+1}
< max{22 · 2a2−n, 2−n+2 · αm+1}.
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Hence we obtain the inequality∣∣α−n2a1 − 1
∣∣ < max{2a2−a1+2, αm−n+2}. (3.1)

In Step 1 we consider the linear form

∧ = a1 log 2− n logα.

Further, we put
Γ = e∧ − 1 = αn2−a1 − 1.

In order to apply Theorem 2.1, we take δ1 := α, δ2 := 2, b1 := n and b2 := a1.
Since n > a1 we have B = n.

Note further that h(δ1) = (logα)/2 and h(δ2) = log 2. Thus, we can choose
logA1 := logα and logA2 := log 2.
Finally, by recalling that a1 ≤ n, we get

b′ =
n

2 log 2
+

a1
2 logα

< 2n.

Since α and 2 are multiplicatively independent, we have, by Theorem 2.1 that,

log Γ ≥ −30.9 · 24 · (max{log (2n), 21/2, 1/2})2 · logα · log 2.

Thus
log Γ ≥ −165 · (max{log (2n), 21/2, 1/2})2 (3.2)

and together with inequality 3.1 we have

min{(a1 − a2 + 2) log 2, (m− n+ 1) logα} < 239 · (log 2n)2 or

min{(a1 − a2 + 2) log 2, (m− n+ 1) logα} < 2.63 · 104.

Thus we have proved so far:

Lemma 3.1. Assume that (n, m, a1, a2, a3) is a solution to equation (1.1)
with n ≥ m ≥ 0 and a1 ≥ a2 ≥ a3 ≥ 0. Then we have

min{(a1 − a2 + 2) log 2, (m− n+ 1) logα} < 239 · (log 2n)2 or

min{(a1 − a2 + 2) log 2, (m− n+ 1) logα} < 2.63 · 104.
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Now we have to distinguish between

Case 1: min{(a1−a2+2) log 2, (m−n+1) logα} = (a1−a2+2) log 2,
and

Case 2: min{(a1−a2+2) log 2, (m−n+1) logα} = (m−n+1) logα.

We will deal with these two cases in the following steps.

Step 2: We consider Case 1 and show that under the assumption that (a1 − a2 +
2) log 2 < 239 · (log 2n)2 or (a1 − a2 + 2) log 2 < 2.63 · 104, we obtain

min{(a1 − a3) log 2, (n−m) logα} < 1.61 · 1015(1 + log n)(log(2n))2.

Since we consider Case 1 we assume that

min{(a1−a2+2) log 2, (m−n+1) logα} = (a1−a2+2) log 2 < 239·(log 2n)2

or min{(a1−a2+2) log 2, (m−n+1) logα} = (a1−a2+2) log 2 < 2.63·104.

By collecting “large” terms, i.e. terms involving n, m, a1 and a2, on the left
hand side, we rewrite equation (1.1) as

|αn − 2a1 − 2a2 | = |2a3 − βn − αm + βm| < 2a3 + αm + 1

and obtain that∣∣an − 2a2(2a1−a2 + 1)
∣∣ < 2.2 ·max{2a3 , αm}. (3.3)

Dividing by an, we get by using inequality 3.3∣∣α−n2a2(2a1−a2 + 1)− 1
∣∣ < 2 ·max{α−n · 2a3 , αm−n}
≤ 2 ·max{2a3−n, αm−n}

and obtain the inequality∣∣α−n2a2(2a1−a2 + 1)− 1
∣∣ < 2 ·max{2a3−a1 , αm−n}. (3.4)

We shall apply Theorem 2.2 to inequality 3.4. Therefore we consider
the following linear form in logarithms:

∧1 = −n logα+ a2 log 2 + log(2a1−a2 + 1).
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Further, we put

Φ1 = e∧1 − 1 = α−n2a2(2a1−a2 + 1)− 1

and aim to apply Theorem 2.2 by taking

α1 = α, α2 = 2, α3 = 2a1−a2 + 1

b1 = −n, b2 = a2, b3 = 1.

Note that since n > a1 > a2 we have B = n. Next, we estimate the height
of α3 by using the properties of heights and Lemma (3.1):

h(α3) ≤ (a1 − a2)h(2) + log 2

≤ (a1 − a2) log 2 + log 2

< 166 · (log(2n))2 or 1.83 · 104

which gives h(α3) < 166 · (log(2n))2 or h(α3) < 1.83 · 104. As before
we have h(α1) =

1
2 and h(α2) = log 2. Now, we are ready to apply Theorem

2.2 and get

log |Φ1| > C(1.2)·log 2·83·(log(2n))2 > −1.61·1014(1+log n)(log(2n))2,
(3.5)

or

log |Φ1| > C(1.2) · log 2 · 1
2
· 1.83 · 104 > −1.14 · 1015(1 + log n), (3.6)

with C(1.2) = −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log(n)).
Combining those inequalities with inequality (3.4), we obtain

min{(a1 − a3) log 2, (n−m) logα} < 1.61 · 1014(1 + log n)(log(2n))2

or

min{(a1 − a3) log 2, (n−m) logα} < 1.14 · 1015(1 + log n).
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Then

min{(a1 − a3) log 2, (n−m) logα} < 1.61 · 1015(1 + log n)(log(2n))2.
(3.7)

At this stage, we have to consider two further subcases.

Case 1A: min{(a1 − a3) log 2, (n−m) logα} = (a1 − a3) log 2 and

Case 1B min{(a1 − a3) log 2, (n−m) logα} = (n−m) logα

Step 3: We consider Case 1A and show that under the assumption that

a1 − a3 < 7.22 · 1015(1 + log n)(log(2n))2,

we obtain that

n−m < 7.1 · 1027(1 + log n)(log(2n))2.

In this step we consider n, a1, a2 and a3 to be large. By collecting “large”
terms on the left hand side we rewrite equation 1.1 as

|αn − 2a1 − 2a2 − 2a3 | = |−βn − αm + βm| < αm + 1

and obtain that ∣∣αn − 2a1(1 + 2a2−a1 + 2a3−a2)
∣∣ < 1.2αm.

Dividing by an yields the inequality∣∣α−n2a1(1 + 2a2−a1 + 2a3−a1)− 1
∣∣ < 1.2αm−n. (3.8)

We want to apply Theorem 2.2 to inequality 3.8 and consider the linear form

∧A = −n logα+ a1 log 2 + log((1 + 2a2−a1 + 2a3−a1)).

Further, we put

ΦA = e∧A − 1 = α−n12a1(1 + 2a2−a1 + 2a3−a1)− 1
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and aim to apply Theorem 2.2 with

α1 = α, α2 = 2, α3 = (1 + 2a2−a1 + 2a3−a1)

b1 = −n, b2 = a2, b3 = 1.

Similarly as before we get that B = n. Next, let us estimate the height of
α3. Using the properties of heights, Lemma 3.1 and inequality 3.7, we get:

h(α3) ≤ (a1 − a2)h(2) + (a1 − a3)h(2) + log 2

≤ (a1 − a2) log 2 + (a1 − a3) log 2 + log 2

< 165.67 · log(2n) + 5.1 · 1015(1 + log n)(log(2n))2

< 1016(1 + log n)(log(2n))2,

which gives h(α3) < 1016(1+log n)(log(2n))2. As before we have h(α1) =
1
2 , h(α2) = log 2 and ϕA ̸= 0. An application of Theorem 2.2 yields

log |ΦA| > ∆A

(
1

2

)
(log 2)1016(1 + log n)(log(2n))2

> −3.37 · 1027(1 + log n)(log(2n))2

where ∆A = −1.4 · 306 · 34.5 · 22 · (1 + log 2).

Combining this inequality with inequality 3.8 we obtain

n−m < 7.1 · 1027(1 + log n)(log(2n))2. (3.9)

Step 4: We consider Case 1B and show that under the assumption that

n−m < 10.4 · 1015(1 + log n)(log(2n))2,

we obtain that

a1 − a3 < 2.71039(1 + log n)2(log(2n))2.

By collecting large terms to the left hand side, where we consider n,m, a1
and a2 to be large, we rewrite equation 1.1 as

|αn − αm − 2a1 − 2a2 | = |2a3 − βn + βm| < 2a3 + 1
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and obtain that∣∣αm(αn−m − 1)− 2a2(2a1−a2 + 1)
∣∣ < 1.45 · 2a3 .

Dividing by 2a2(2a1−a2 + 1) we obtain the inequality∣∣∣∣αm2−a2

(
αn−m − 1

2a1−a2 + 1

)
− 1

∣∣∣∣ < 1.45 · 2a3−a1 . (3.10)

We want to apply Theorem 2.2 to inequality 3.10. Hence we consider the
linear form

∧B = m logα− a2 log 2 + log

(
αn−m − 1

2a1−a2 + 1

)
.

Further, we put

ΦB = e∧B − 1 = αm2−a2

(
αn−m − 1

2a1−a2 + 1

)
− 1

and aim to apply Theorem 2.2 by taking

α1 = α, α2 = 2, α3 =
αn−m − 1

2a1−a2 + 1

b1 = m, b2 = −a2, b3 = 1

and get B = n as in the steps before. Let us estimate the height of α3. Using
the properties of heights, Lemma 3.1 and inequalities 3.7, we get:

h(α3) ≤ (n−m)h(α) + log 2 + (a1 − a2)h(2) + log 2

=
1

2
(n−m) log(α) + (a1 − a2) log 2 + 2 log 2

< 3.5 · 1027(1 + log n)(log(2n))2 + 239 · (log 2n)2

< 4 · 1027(1 + log n)(log(2n))2,

which gives h(α3) < 4 · 1027(1 + log n)(log(2n))2. A similar deduction as
before yields h(α1) = logα, h(α2) = log 2 and ΦB ̸= 0. Now, we apply
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Theorem 2.2 and get

log |ΦB| > ∆B · logα · log 2 · 4 · 1027(1 + log n)2(log(2n))2

> −1.3 · 1039(1 + log n)2(log(2n))2,

where ∆B = −1.4 · 306 · 34.5 · 22 · (1 + log 2).

Combining this inequality with inequality 3.10, we obtain

a1 − a3 < 2.7 · 1039(1 + log n)2(log(2n))2. (3.11)

Step 5: We consider Case 2 and show that under the assumption that

(n−m+ 1) logα < 239 · (log 2n)2 or (n−m+ 1) logα < 2.63 · 104,

we obtain

(a1 − a2) log 2 < 9.7 · 1038(1 + log n)(log 2n)2.

Since we consider Case 2 we assume that

min{(a1−a2) log 2, (n−m) logα} = (n−m) logα < 3.5 ·102(log 2n)2.

In this step we consider n,m and a1 to be large and by collecting “large”
terms to the left hand side, we rewrite equation 1.1 as

|αn + αn2 − 2a1 | = |2a2 + 2a3 + βn + βn| < 2 · 2a2 + 1

and obtain that ∣∣αm(αn−m + 1)− 2a1
∣∣ < 2 · 2a2 .

Dividing through 2a1 we get the inequality∣∣αm2−a1
(
αn−m + 1

)
− 1

∣∣ < 2, 45 · 2(a2−a1). (3.12)

Similarly as above we shall apply Theorem 2.2 to inequality 3.12. Hence we
consider the linear form

∧3 = m logα− a1 log 2 + log
(
αn−m + 1

)
.
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Further, we put

Φ3 = e∧3 − 1 = αm2−a1
(
αn−m + 1

)
− 1

and
α1 = α, α2 = 2, α3 = αn−m + 1,

b1 = n2, b2 = −a1, b3 = 1.

Once again this choice yields B = n. Next, let us estimate the height of α3.
Using the properties of heights and Lemma 3.1 we find

h(α3) ≤ (n−m)h(α) + log 2

< (n−m) log(α) + log 2

< 7.1 · 1027(1 + log n)(log 2n)2,

which gives h(α3) < 7.1 · 1027(1 + log n)(log 2n)2. A similar deduction as
before gives h(α1) = logα, h(α2) = log 2 and Φ2 ̸= 0. Thus by applying
Theorem 2.2, we get

log |Φ3| > ∆3(log 2) · 7.1 · 1027(1 + log n)(log 2n)2

> −9.7 · 1038(1 + log n)(log 2n)2.

with ∆3 = −1.4 · 306 · 34.5 · 22 · (1 + log 2). Combining this inequality
together with inequality 3.12, we obtain

(a1 − a2) log 2 < 9.7 · 1038(1 + log n)(log 2n)2. (3.13)

Step 6: We continue to consider Case 2 and show that under the assumption that

(n−m) logα < 2.61 · 1013 log n

and
(a1 − a2) log 2 < 4.26 · 1026(log n)2,

we obtain

(a1 − a3) log 2 < 6.73 · 1050(1 + log n)(log 2n)2.

We shall apply once more Theorem 2.2 to obtain an upper bound for (a1 −
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a3) log 2. The derivation is very similar to Case 1B. By collecting “large”
terms on the left hand side, we rewrite equation 1.1 as

|αn + αm − 2a1 − 2a2 | = |2a3 + βn + βm| < 2a3 + 1.

By the same derivation as in Step 4 we obtain inequality (14), i.e.∣∣∣∣αm2−a2

(
αn−m + 1

2a1−a2 + 1

)
− 1

∣∣∣∣ < 1.3 · 2a3−a1 . (3.14)

We have the same setting as in Case 1B, except that the estimate for the
height of α3 becomes

h(α3) ≤ (n−m)h(α) + log 2 + (a1 − a2)h(2) + log 2

= (n−m) log(α) + (a1 − a2) log 2 + 2 log 2

< 7.1 · 1027(1 + log n)(log(2n))2 + 9.7 · 1038(1 + log n)(log 2n)2

< 1039(1 + log n)(log 2n)2,

which gives h(α3) < 1039(1+ log n)(log 2n)2. Therefore by applying The-
orem 2.2 similarly as before we obtain

(a1 − a3) log 2 < 6.73 · 1050(1 + log n)(log 2n)2. (3.15)

Lemma 3.2. Assume that (n, m, a1, a2, a3) is a solution to equation (1.1)
with n ≥ m ≥ 0 and a1 ≥ a2 ≥ a3 ≥ 0. Then we have

n − m < 7.1 · 1027(1 + log n)(log(2n))2, a1 − a2 < 9.7 · 1038(1 +

log n)(log 2n)2 and a1 − a3 < 6.73 · 1050(1 + log n)(log 2n)2.

Step 7: We assume the bounds given in Lemma 3.2 and show that

n < 9.43 · 1062(1 + log n)(log 2n)2,

hence n < 4 · 1069.

We have to apply Theorem (2.2) once more. This time we rewrite equation
1.1 as∣∣αn(1 + αm−n)− 2a1(1 + 2a2−a1 + 2a3−a1)

∣∣ = |βn + βm| < 1.
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Dividing by αn(1 + αm−n) we obtain the inequality∣∣∣∣α−n2a1
(
1 + 2a2−a1 + 2a3−a1

1 + αm−n

)
− 1

∣∣∣∣ < α−n. (3.16)

In this final step we consider the linear form

∧4 = −n logα+ a1 log 2 + log

(
1 + 2a2−a1 + 2a3−a1

1 + αm−n

)
.

Further, we put

Φ4 = e∧4 − 1 = α−n2a1
(
1 + 2a2−a1 + 2a3−a1

1 + αm−n

)
− 1.

We take

α1 = α, α2 = 2, α3 = α−n2a1
(
1 + 2a2−a1 + 2a3−a1

1 + αm−n

)
,

b1 = −n, b2 = −a1, b3 = 1.

Thus we have B = n. By the results in Lemma 3.2 and similar computations
done before we obtain

h(α3) ≤ (a1 − a2)h(2) + (a1 − a3)h(2) + (n−m)h(α) + 2 log 2

≤ (a1 − a2) log 2 + (a1 − a3) log 2 + (n−m) log(α) + 2 log 2

< 6.74 · 1050(1 + log n)(log 2n)2,

which gives h(α3) < 6.74 · 1050(1 + log n)(log 2n)2. As before we have
h(α1) = logα, h(α2) = log 2, and Φ4 ̸= 0. Now an application of Theorem
(2.2) yields

log |Φ4| > ∆4(log 2)
(
6.74 · 1050(1 + log n)(log 2n)2

)
,

with ∆4 = −1.4 · 306 · 34.5 · 22 · (1+ log 2). Combining this inequality with
inequality 3.16 we get

n < 9.43 · 1062(1 + log n)(log 2n)2,
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which yields
n < 4 · 1069.

Lemma 3.3. If (n, m, a1, a2, a3) is a solution to equation (1.1) with n ≥
m ≥ 0 and a1 ≥ a2 ≥ a3 ≥ 0, then we have

a1 < n < 4 · 1069.

3.2 Reduction of the bound

In this section, we will reduce the upper bound on n. Firstly, we determine a
suitable upper bound on n−m, a1 − a2, a1 − a3, and later we use Lemma 2.1 to
conclude that n must be smaller than 400.

Proof of Theorem 1.

Turning back to inequality (3.1), we obtain

0 < a1 log 2− n logα < max{2a2−a1+2, αm−n+2}.

Dividing across by logα, we get

0 < a1γ − n < max{8.32 · 2a2−a1 , 5.45 · αm−n}, (3.17)

where
γ :=

log 2

logα
.

Let [a0, a1, a2, a3, a4, a5, a6, a7, . . .] = [1, 2, 3, 1, 2, 3, 2, 4 . . .] be the contin-
ued fraction expansion of γ, and let denote pn/qn its nth convergent. Recall also
that a1 < 4 · 1069. A quick inspection using Sagemath reveals that

q140 < 4 · 1069 < q141.
Furthermore, aN := max{ai : i = 0, 1, . . . , 44} = a60 = 134. So, from the

known properties of continued fractions, we obtain that

|a1γ − n| > 1

(aN + 2)a1
. (3.18)
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Comparing estimates (3.18) and (3.17), we get right away that

αn−m < 5.45 ·136 ·a1 < 7.42 ·1071 or 2a1−a2 < 8.32 ·136 ·a1 < 11.32 ·1071
(3.19)

leading to n−m ⩽ 344 or a1 − a2 ⩽ 247.

Step 1: We show that a1 − a3 ≤ 247 or n−m ≤ 356.
Let us start by considering inequality 3.4. Then we have the inequality

0 <

∣∣∣∣a2 · log 2logα
− n+

log(2a1−a2 + 1)

logα

∣∣∣∣ < 4.16 ·max{2a3−a1 , αm−n}

and we apply the algorithm described in Remark 2 with

γ =
log 2

logα
, µ =

log(2a1−a2 + 1)

logα
, (A,B) = (4.16, 2) or (4.16, α).

Let us be a bit more precise. We note that γ is irrational since 2 and α are
multiplicatively independent, hence Lemma 2.1 is applicable. With q =
q142 > 6M . This yields ϵ > 0.00073 and therefore either a1 − a3 ≤
log(4.16q/0.00073)

log 2 < 248 or n−m ≤ log(4.16q/0.00073)
logα < 357.

Thus, we have either a1 − a3 ≤ 247 or n−m ≤ 356.

From this result we distinguish between

Case 1: a1 − a3 ≤ 247 and

Case 2: n−m ≤ 356.

Step 2: We consider Case 1 and show that under the assumption that a1−a2 ≤ 247
or a1 − a3 ≤ 247, we have that n−m ≤ 344.
In this step we consider inequality 3.8. Recall that

∧A = −n logα+ a1 log 2 + log((1 + 2a2−a1 + 2a3−a1)).

Then we get

0 <

∣∣∣∣a1 · log 2logα
− n+

log((1 + 2a2−a1 + 2a3−a1))

logα

∣∣∣∣ < 2.5αm−n.
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We apply the algorithm explained in Remark 2 again with the same γ and M
as in Step 1, but now we choose (A,B) = (2.5, α) and

µ =
log((1 + 2a2−a1 + 2a3−a1))

logα

for each possible value of a1−a2 = 0, 1, . . . , 247 and a1−a3 = 0, 1, . . . , 247.
In particular

q = q142

is the largest denominator that appeared in applying our algorithm. Overall,
we obtain n−m ≤ 355. Within Case 1 we have to distinguish between two
further sub-cases:

Case 1: a1 − a2 ≤ 247 and

Case 2: n−m ≤ 355.

Step 3: We consider Case 1A and show that under the assumption that a1 − a2 ≤
247 and a1 − a3 ≤ 247, we have that n−m ≤ 356.
In this step we consider inequality 3.10 and assume that n1 − n2 ≥ 20.
Recall that

∧B = m logα− a2 log 2 + log

(
αn−m − 1

2a1−a2 + 1

)
.

Then we get

0 <

∣∣∣∣∣∣m · logα
log 2

− a2 +
log

(
αn−m−1
2a1−a2+1

)
log 2

∣∣∣∣∣∣ < 3.02 · 2a3−a1 .

We proceed as in Remark 2 with the same γ and M as in Step 1, but we
use (A,B) = (3.02, 2) nstead. Moreover we consider

µ =
log

(
αn−m−1
2a1−a2+1

)
log 2

for each possible value of a1 − a2 = 0, 1, . . . , 247 and n − m = l =
0, 1, . . . , 356. As in the previous step we apply the algorithm Lemme 2.1
and start with the 142nd convergent of γ as before and continue with the
algorithm until a positive ϵ. Thus we can compute a new upper bound for
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a1 − a3 by the formula a1 − a3 <
log(3.02q/ϵ)

log 2 for the respective choices of q
and ϵ. Overall we obtain that

a1 − a3 ≤ 357.

Step 4: We consider Case 1B and show that under the assumption that n −m ≤
355, we have that a1 − a2 ≤ 233.

Turning back to inequality 3.12

∧C = m logα− a1 log 2 + log
(
αn−m + 1

)
.

Then we get

0 <

∣∣∣∣m · logα
log 2

− a1 +
log (αn−m + 1)

log 2

∣∣∣∣ < 22 · 2(a2−a1).

We apply our algorithm with the same γ and M as in the previous steps, but
we use (A,B) = (22, 2) and

µ =
log (αn−m + 1)

log 2

for each possible value of a1 − a2 = k = 0, 1, . . . , 224 and n1 − n2 = r =
0, 1, . . . , 324. We run our algorithm starting with q = q144 and compute the
upper bound for a1 − a3 by the formula a1 − a2 < log(22q/ϵ)

log 2 for respective
choices of q and ϵ, provided the algorithm terminates. For those pairs (k, r)
for which the algorithm terminates we obtain

a1 − a2 ≤ 258.

Step 5: We consider Case 2 and show that under the assumption that n−m ≤ 355
we have that a1 − a2 ≤ 224. In this step we consider inequality 3.14 and
assume that a1 − a2, a1 − a3 ≤ 20. Recall that

∧2 = ∧B = m logα− a2 log 2 + log

(
αn−m + 1

2a1−a2 + 1

)
.
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Then we get

0 <

∣∣∣∣∣∣m · logα
log 2

− a2 +
log

(
αn−m+1
2a1−a2+1

)
log 2

∣∣∣∣∣∣ < 1.9 · 2a3−a1 .

We apply our algorithm with the same γ and M, but we use (A,B) = (1.9, 2)
and

µ =
log

(
αn−m+1
2a1−a2+1

)
log 2

,

for each possible value of n −m = r = 0, 1, . . . , 315. Similar as in Step 4
we obtain a1 − a3 ≤ 249.

Step 6: Under the assumption that n−m ≤ 356, a1−a2 ≤ 247 and a1−a3 ≤ 249,
we show that n ≤ 400.
For the last step we consider inequality (22). Recall that

∧3 = −n logα+ a1 log 2 + log

(
1 + 2a2−a1 + 2a3−a1

1 + αm−n

)
and inequality (22) yields that |∧3| < 2.02α−n1 . Then we get

0 <

∣∣∣∣∣∣a1 · log 2logα
− n1 +

log
(
1+2a2−a1+2a3−a1

1+αm−n

)
logα

∣∣∣∣∣∣ < 2.1α−n.

We proceed as described in Remark 2 with the same γ and M as in the
previous steps, but we use (A,B) = (2.1, α) and

µ =
log

(
1+2a2−a1+2a3−a1

1+αm−n

)
logα

,

for each possible value of a1 − a2 = k = 0, 1, . . . , 247, a1 − a3 = l =
0, 1, . . . , 249 (with respect to the obvious condition that a1 − a2 ≤ a1 − a3)
and n − m = r = 0, 1, . . . , 355. Starting with q = q142 we compute the
upper bound for n by the formula n < log(2.1q/ϵ)

logα for the respective choices
of q such that ϵ > 0. For all triples (n−m, a1 − a2, a1 − a3) the algorithm
terminates and yields
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n ≤ 359.

This is false because our assumption is that n > 400. Thus, Theorem 1.2 is
proven.

4 The Proof of Theorem 1.3

If k ≤ 200, then a brute force search with Sagemath in the range 0 ≤ l < k ≤ 200
and (k, l) = (0, 1) gives the solutions:

(0, 1, 0), (2, 0, 0); (3, 2, 0); (2, 1, 1); (3, 0, 1); (4, 2, 2); (5, 4, 2); (5, 2, 3); (6, 0, 4).
Thus, for the rest of the paper we assume that k > 200 and k > 0.
Let us now get a relation between k and t. Combining (1.2) with the right

inequality of (2.1), one gets that:

2t ≤ 2αk − αl−1 < 2k+1 − αl−1 = 2k+1(1− 2−(k+1)αl−1) ≤ 2k+1

which leads to t ⩽ k.
This estimate is essential for our purpose. On the other hand, we rewrite equa-

tion 1.2 as
αk − 2t = −βk + Ll. (4.1)

We now take absolute values in the above relation obtaining

|αk − 2t| ≤ |β|k + Ll <
1

2
+ 2αl. (4.2)

Dividing both sides of the above expression by αk and taking into account that
k > l, we get

|1− 2tα−k| < 1

2
α−k + 2α−k+l < 3α−k+l.

Thus

|1− 2tα−k| < 3

αk−l
. (4.3)

In order to apply Theorem 2.1, we take δ1 := α, δ2 := 2, b1 := k and b2 := t.
So, Γ := b2 log δ2 − b1 log δ1 , and therefore estimation (4.3) can be rewritten

as
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|1− eΓ| < 3

αk−l
. (4.4)

The algebraic number field containing δ1, δ2 is Q(
√
5), so we can take D := 2.

By using equation (1.2) and the Binet formula for the Lucas sequence, we have

αk = Lk − βk < Lk + 1 ≤ Lk + Ll = 2t. (4.5)

Consequently, 1 < 2tα−k and so Γ > 0. This, together with (4.4), gives

0 < Γ <
3

αk−l
(4.6)

where we have also used the fact that log(1 + x) ⩽ x for all x ∈ R+.
Hence,

log Γ < log 3− (k − l) logα. (4.7)

Note further that h(δ1) = (logα)/2 and h(δ2) = log 2. Thus, we can choose
logA1 := logα and logA2 := log 2.
Finally, by recalling that t ≤ k, we get

b′ =
k

2 log 2
+

t

2 logα
< 2k.

Since α and 2 are multiplicatively independent, we have, by Theorem 2.2 that,

log Γ ≥ −30.9 · 24 · (max{log (2k), 21/2, 1/2})2 · logα · log 2.

Thus
log Γ > −174 · (max{log (2k), 21/2, 1/2})2. (4.8)

We now combine (4.7) and (4.8) to obtain

(k − l) logα < 180 · (max{log(2k), 21/2})2. (4.9)

Let us now get a second linear form in logarithms. To this end, we now rewrite
equation (1.2) as follows:

αk(1− α(l−k))− 2t = βl(1− β(k−l)). (4.10)

Taking absolute values in the above relation and using the fact that β = (1−
√
5)/2
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we get
|αk(1− α(l−k))− 2t| = |βl(1− β(k−l))| < 2|β|l < 2 (4.11)

for all k > 200 and l ≥ 0. Dividing both sides of the above inequality by the
first term of the left-hand side, we obtain

|1− 2tα−k(1− α(l−k))−1| < 2

αk(1− α(l−k))
<

10

αk
. (4.12)

We are now ready to apply Matveev’s result in Theorem 2.2. To do this, we
take the parameters n := 3 and

δ1 := 2, δ2 := α, δ3 := (1− α(l−k)).
We take b1 := t, b2 := −k and b3 := −1. As before, K := Q(

√
5) contains

δ1, δ2, δ3 and has D := [K : Q] = 2. To see why the left-hand side of (4.12) is not
zero, note that otherwise, we would get the relation

αk − αl = 2t. (4.13)

From 1.2, we get
βk − βl = 0. (4.14)

Further, we obtain
βk = βl.

This is impossible because k ̸= l. Thus,

1− 2tα−k(1− α(l−k))−1

is not zero. In this application of Matveev’s theorem we take A1 := 2 log 2 and
A2 := logα. Since t ≤ k; it follows that we can take B := k. Let us now estimate
h(δ3). We begin by observing that

δ3 = (1− α(l−k)) and δ−1
3 < 3.

So that
| log δ3| < 1. (4.15)

Next, notice that
h(δ3) ≤ (k − l) logα+ log 2. (4.16)

Hence, we can take

A3 := 2 + (k − l) logα > max{2h(δ3), | log δ3|, 0.16}.
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Now Matveev’s theorem implies that a lower bound on the left-hand side of
(4.12) is

log |Λ| > −1.4·306·34.5·22(1+log 2)(1+log(k))·2 log 2·2 logα·(2+(k−l) logα).

So, inequality (4.12) yields

k < 2.8 · 1012 log(k) · (2 + (k − l) logα) (4.17)

where we used the inequality 1+log(k) < 2 log(k), which holds because k > 200.
Using now (4.9) in the right-most term of the above inequality (4.17) and per-

forming the respective calculations, we arrive at

k < 5.1 · 1014 log(k)(max{log(2k), 21/2})2. (4.18)

If max{log(2k), 21/2} = 21/2, then it follows from (4.18) that

k < 5.7 · 1016 log(k)

giving

k < 2.5 · 1018.

If max{log(2k), 21/2} = log(2k), then we see from (4.18) that

k < 5.1 · 1014 log(k)(log(2k))2,

and so
k < 5 · 1019.

In any case, we have that

k < 5 · 1019.

We summarize what we have proved so far in the following lemma.

Lemma 4.1. If (k, l, t) is a solution in positive integers of equation (1.2) with k > l

and k > 200, then inequalities

t ≤ k < 5.1019
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hold.

4.1 The final computations

In this section, we will reduce the upper bound on k. Firstly, we determine a
suitable upper bound on k− l, and later we use Lemma 2.1 to conclude that k must
be smaller than 200. Turning back to inequality (4.6), we obtain

0 < t log 2− k logα <
3

αk−l
.

Dividing across by logα, we get

0 < tγ − k <
7

αk−l
, (4.19)

where
γ :=

log 2

logα
.

Let [a0, a1, a2, a3, a4, a5, a6, a7, . . .] = [1, 2, 3, 1, 2, 3, 2, 4 . . .] be the contin-
ued fraction expansion of γ, and let denote pn/qn its nth convergent. Recall also
that t < 5 · 1019 by Lemma 4.1. A quick inspection using Sagemath reveals that

12744458107726027589 = q43 < 5 · 1019 < q44 = 54475119544877440894.

Furthermore, aN := max{ai : i = 0, 1, . . . , 44} = a17 = 134. So, from the
known properties of continued fractions, we obtain that

|tγ − k| > 1

(aN + 2)t
. (4.20)

Comparing estimates (4.19)and (4.20), we get right away that

αk−l < 7 · 136 · t < 5 · 1022, (4.21)

leading to k − l ⩽ 106.
Let us now go back to (4.12) to determine an improved upper bound on k.
Put

ω := t log 2− k logα− log(1− α−(k−l)). (4.22)
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Therefore, (4.12) implies that

|1− eω| < 10

αk
. (4.23)

Note that ω ̸= 0 ; thus, we distinguish the following cases. If ω > 0 then, from
(4.22), we obtain

0 < ω ⩽ eω − 1 <
10

αk
.

Replacing ω in the above inequality by its formula (4.22) and dividing both
sides of the resulting inequality by logα, we get

0 < t(
log 2

logα
)− k − log(1− α−(k−l))

logα
<

21

αk
. (4.24)

We now put

γ := log 2
logα , µ := − log(1−α−(k−l))

logα , A := 21 and B := α.
Clearly γ is an irrational number. We also put N := 5 · 1019, which is an upper

bound on t by Lemma 2.1. We therefore apply Lemma 2.1 to inequality (4.24) for
all choices k − l ∈ {1, ..., 106} except when k − l = 1, 2, 3, 6 and get that

k <
log(Aq/ξ)

logB
,

where q > 6N is a denominator of a convergent of the continued fraction of γ
such that ξ = ∥µq∥ −N∥γq∥ > 0. Indeed, using Sagemath, we compute

q = q47 = 323353430155291314826.

We find that if (k, l, t) is a possible solution of equation (1.2) with ω > 0 and
k − l ̸= 1, 2, 3, 6, then k < 115, which is a contradiction with k > 200.

When k − l = 1, 2, 3, 6, the parameter µ becomes

µ =


2 if k − l = 1;
1 if k − l = 2;
2− γ if k − l = 3;
3− 2γ if k − l = 6.

In that case, the corresponding value of ξ from Lemma 2.1 is always negative
and therefore the reduction method is not useful for reducing the bound on k in
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these instances. For this reason we need to use the properties of continued fractions
to treat these cases.

For all that, one can see that if k − l = 1, 2, 3, 6. Then the resulting inequality
from (4.24) has the shape

0 < |aγ − b| < 21

αk
,

with γ being an irrational number and a, b ∈ Z. So, one can appeal to the
known properties of the convergents of the continued fractions to obtain a nontrivial
lower bound for

|aγ − b|.

This clearly gives us an upper bound for k. Let us see. When k − l = 1, from
(4.24), we get that

0 < tγ − (k − 2) <
21

αk
. (4.25)

Let [a0, a1, a2, a3, a4, a5, a6, a7, . . .] = [1, 2, 3, 1, 2, 3, 2, 4 . . .] be the continued
fraction expansion of γ, and let denote pn/qn its nth convergent. Recall also that
t < 5 · 1019 by Lemma 4.1.

Furthermore, aN := max{ai : i = 0, 1, . . . , 44} = a17 = 134. So, from the
known properties of continued fractions, we obtain that

|tγ − (k − 2)| > 1

(aN + 2)t
. (4.26)

Comparing estimates (4.25) and (4.26), we get right away that

αk < 21 · 136 · t < 2 · 1023, (4.27)

leading to k < 112.
By the same argument as the one we did before ensures that k − l < 106 in

the case when k − l = 2, 3, 6. We omit the details in order to avoid unneces-
sary repetitions. This completes the analysis of the cases when k − l = 1, 2, 3, 6.
Consequently, k < 119 always holds.

Suppose now that ω < 0. First, note that 10
αk < 1

2 since k > 200. Then, from
(4.22), we have that

|1− eω| < 1

2
,
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thus

1

2
< eω <

3

2

and therefore
e|ω| < 2.

Since ω < 0, we have

0 < |ω| ⩽ e|ω| − 1 = e|ω||e−|ω| − 1| = e|ω||eω − 1| < 20

αk
.

Then we obtain

0 < −t log 2 + k logα+ log(1− α−(k−l)) <
20

αk
.

By the same arguments used for proving (4.22), we obtain

0 < k(
logα

log 2
)− t+

log(1− α−(k−l))

log 2
<

29

αk
. (4.28)

We now put
γ := logα

log 2 , µ := log(1−α−(k−l))
log 2 , A := 29 and B := α.

Indeed, with the help of Sagemath, suppose that

q = q47 = 368940346979638033217.

We find that if (k, l, t) is a possible solution of the equation (1.2) with ω < 0 and
k − l ̸= 1, 2, 3, 6, then k < 119, which is a contradiction with our assumption.

When k − l = 1, 2, 3, 6; we have

µ =


−2γ if k − l = 1;
−γ if k − l = 2;
1− 2γ if k − l = 3;
2− 3γ if k − l = 6.

In these cases, the resolution is done with the properties of continuous fractions as
previously, and we will see that k < 119 in each case. Thus Theorem 1.3 is proven.
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