On Diophantine equations involving difference of Lucas Numbers and powers of 2

Bilizimbéyé Edjeou ${ }^{1}$ and Amadou Tall ${ }^{2}$
${ }^{1}$ Ecole Supérieure d'Informatique et de Gestion
Lomé Togo
${ }^{2}$ Faculté des Sciences et Technique
Université Cheikh Anta Diop
Dakar Sénégal
Email: edjeou.bilizimbeye@ugb.edu.sn, amadou7.tall@ucad.edu.sn

(Received: December 27, 2023 Accepted: January 2, 2024)

Abstract

In this note, we find all positive integer solutions of the Diophantine equation $L_{k}-L_{l}=2^{t}$ and $L_{n}-L_{m}=2^{a_{1}}+2^{a_{2}}+2^{a_{3}}$, where $\left(L_{n}\right)_{n \geq 0}$ is the Lucas sequence. The tools used to solve our main theorem are linear forms in logarithms, properties of continued fractions, and a version of the BakerDavenport reduction method in diophantine approximation.

1 Introduction

There is a vast literature on solving Diophantine equations involving the sequence $\left\{L_{n}\right\}_{n \geq 0}$ of Lucas numbers, the sequence $\left\{L_{n}^{(k)}\right\}_{n \geq 0}$ of k-generalized Lucas numbers or other recurrence sequences. The Lucas sequence $\left(L_{k}\right)_{k \geq 0}$ is a linear recurring sequence given by $L_{0}=2, L_{1}=1$ and

$$
L_{k+2}=L_{k+1}+L_{k} .
$$

[^0]It follows the same recursive definition as the Fibonacci sequence $\left(F_{k}\right)_{k \geq 0}$ given by $F_{0}=0, F_{1}=1$ and

$$
F_{k+2}=F_{k+1}+F_{k}, \quad \text { for } k \geq 2,
$$

whose numbers are found everywhere in nature. The Fibonacci numbers are famous for possessing wonderful and amazing properties.

In 2014, Bravo and Luca [7] studied the Diophantine equation

$$
L_{k}+L_{l}=2^{t}
$$

in positive integers k, l and t. Specifically, they proved the following theorems.
Theorem 1.1. The only solutions (k, l, t) of the Diophantine equation $L_{k}+L_{l}=2^{t}$ in positive integers k, l, t and with $k \geq l$ are

$$
(0,0,2) ;(1,1,1) ;(3,3,3) ;(2,1,2) ;(4,1,3) ;(7,2,5) .
$$

In 2020 [4] and 2021 [5], our work focused on the Diophantine equations $L_{k}+$ $L_{l}+L_{t}=2^{d}$ in non-negative integers k, l, t, d; and $L_{k}-3^{l}=m$, where m is a fixed integer and k, l are positive variable integers. We provided all the solutions to these equations.

Similar equations involving Fibonacci and Padovan sequences are solved in [1, 14, 16, 17].

The most general result is due to Chim, Pink and Ziegler [11] who considered the case, where U_{n} and V_{m} are the $n-t h$ and $m-t h$ numbers in linear recurrence sequences $\left\{U_{n}\right\}_{n \geq 0}$ and $\left\{V_{m}\right\}_{m \geq 0}$ respectively and found effective upper bounds for $|c|$ such that the Diophantine equation

$$
U_{n}-V_{m}=c .
$$

In this paper, we extend this strategy and study the two Diophantine equations. We prove the following result.

Theorem 1.2. All solutions ($n, m, b_{1}, b_{2}, b_{3}$) of the Diophantine equation

$$
\begin{equation*}
L_{n}-L_{m}=2^{b_{1}}+2^{b_{2}}+2^{b_{3}} \tag{1.1}
\end{equation*}
$$

in non negative integers n, m, b_{1}, b_{2} and b_{3}, are $(4,1,1,1,1),(5,1,1,2,2),(5,2,1,1,2),(6,0,2,2,3),(6,3,1,2,3),(7,1,2,3,4)$,
$(7,2,1,3,4),(7,4,1,2,4),(7,5,1,3,3),(8,2,2,3,5),(8,4,2,2,5),(8,4,3,4,4)$, $(8,5,1,1,5),(8,5,2,4,4),(8,7,1,3,3),(9,0,1,3,6),(9,3,2,2,6),(9,3,3,5,5)$, $(10,5,4,5,6),(10,8,2,3,6),(11,2,2,6,7),(11,4,5,5,7),(11,4,6,6,6)$, $(11,8,3,4,7),(11,10,2,3,6),(12,0,5,5,8),(12,0,6,7,7),(12,6,4,5,8)$,
$(13,1,2,2,9),(13,1,3,8,8),(13,2,1,2,9),(13,4,1,8,8),(13,11,1,6,8)$,
$(14,5,6,8,9),(14,11,2,7,9),(14,13,1,6,8),(15,9,3,8,10),(15,12,1,4,10)$, $(16,7,1,7,11),(16,10,2,5,11)$.

Theorem 1.3. All solutions (k, l, t) of the Diophantine equation

$$
\begin{equation*}
L_{k}-L_{l}=2^{t} \tag{1.2}
\end{equation*}
$$

in non negative integers k, l and t, are
$(0,1,0) ;(2,0,0) ;(3,2,0) ;(2,1,1) ;(3,0,1) ;(4,2,2) ;(5,4,2) ;(5,2,3) ;(6,0,4)$.
Our method of proof is similiar to the method described in [7].

2 Preliminaries

Before proceeding further, we recall the Binet formula for the Lucas numbers $\left(L_{k}\right)_{k \geq 0}$

$$
L_{k}=\alpha^{k}+\beta^{k}, \quad \text { for } \quad k \geq 0
$$

where

$$
\alpha=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad \beta=\frac{1-\sqrt{5}}{2}
$$

are the roots of the characteristic equation $x^{2}-x-1=0$. In particular, the inequality

$$
\begin{equation*}
\alpha^{k-1} \leqslant L_{k} \leqslant \alpha^{k+1} \tag{2.1}
\end{equation*}
$$

holds for all $k \geq 0$.
To prove Theorem 1.3, using a result on linear forms in two logarithms, we require some notations. Let δ be an algebraic number of degree d with minimal polynomial

$$
a_{0} x^{d}+a_{1} x^{d-1}+\cdots+a_{d}=a_{0} \prod_{i=1}^{d}\left(X-\delta^{(i)}\right)
$$

where the a_{i} 's are relatively prime integers with $a_{0}>0$ and the $\delta^{(i)}$ denotes the conjugates of δ. Then

$$
h(\delta)=\frac{1}{d}\left(\log a_{0}+\sum_{i=1}^{d} \log \left(\max \left\{\left|\delta^{(i)}\right|, 1\right\}\right)\right)
$$

is called the logarithmic height of δ. In particular, if $\delta=p / q$ is a rational number with $\operatorname{gcd}(p, q)=1$ and $q>0$, then

$$
h(\delta)=\log \max \{|p|, q\} .
$$

The following properties of the logarithmic height, will be used in the next section. Let δ, ν be algebraic numbers and $r \in \mathbb{Z}$. Then

- $h(\delta \pm \nu) \leq h(\delta)+h(\nu)+\log 2$,
- $h\left(\delta \nu^{ \pm 1}\right) \leq h(\delta)+h(\nu)$,
- $h\left(\delta^{r}\right)=|r| h(\delta)$.

Using the above notation, we restate Laurent, Mignotte, and Nesterenko's result [15, Cor. 1].

Theorem 2.1. Let δ_{1}, δ_{2} be two non-zero algebraic numbers, and let $\log \delta_{1}$ and $\log \delta_{2}$ be any determinations of their logarithms. Set

$$
D=\left[\mathbb{Q}\left(\delta_{1}, \delta_{2}\right): \mathbb{Q}\right] /\left[\mathbb{R}\left(\delta_{1}, \delta_{2}\right): \mathbb{R}\right]
$$

and

$$
\Gamma:=b_{2} \log \delta_{2}-b_{1} \log \delta_{1},
$$

where b_{1} and b_{2} are positive integers. Further, let $A_{1}, A_{2}>1$ be real numbers such that

$$
\log A_{i} \geq \max \left\{h\left(\delta_{i}\right), \frac{\left|h\left(\delta_{i}\right)\right|}{D}, \frac{1}{D}\right\}, \quad i=1,2 .
$$

Then, assuming that δ_{1} and δ_{2} are multiplicatively independent, we have

$$
\log |\Gamma|>-30.9 \cdot D^{4}\left(\max \left\{\log b^{\prime}, \frac{21}{D}, \frac{1}{2}\right\}\right)^{2} \log A_{1} \log A_{2}
$$

where

$$
b^{\prime}=\frac{b_{1}}{D \log A_{2}}+\frac{b_{2}}{D \log A_{1}}
$$

We also need the following general lower bound for linear forms in logarithms due to Matveev [18].

Theorem 2.2. Assume that $\delta_{1}, \ldots, \delta_{t}$ are positive real algebraic numbers in a real algebraic number field \mathbb{K} of degree D. Let b_{1}, \ldots, b_{n} be rational integers, and

$$
\Lambda:=\delta_{1}^{b_{1}} \cdots \delta_{t}^{b_{t}}-1
$$

be not zero. Then

$$
|\Lambda|>\exp \left(-1.4 \cdot 30^{t+3} \cdot t^{4.5} \cdot D^{2}(1+\log D)(1+\log B) A_{1} \cdots A_{t}\right)
$$

where

$$
B \geqslant \max \left\{\left|b_{1}\right|, \ldots,\left|b_{t}\right|\right\}
$$

and

$$
A_{i} \geqslant \max \left\{D h\left(\delta_{i}\right),\left|\log \delta_{i}\right|, 0.16\right\}, \quad \text { for all } \quad i=1, \ldots, t
$$

Finally, we present a version of the reduction method based on the BakerDavenport Lemma [2], from Dujella and Pethő [12]. This will be one of the key tools used to reduce the upper bounds on the variables of the equation (1.2).

Lemma 2.1. Let N be a positive integer, let p / q be a convergent of the irrational number γ such that $q>6 N$, and let A, B, μ be real numbers with $A>0$ and $B>1$. Define

$$
\xi:=\|\mu q\|-N\|\gamma q\|
$$

where $\|\cdot\|$ denotes the distance to the nearest integer. If $\xi>0$, then there is no solution to the inequality

$$
0<u \gamma-v+\mu<A B^{-w}
$$

in positive integers u, v, and w, with $u \leqslant N$ and $w \geqslant \frac{\log (A q / \xi)}{\log B}$.

3 The Proof of Theorem 1.2

Let us now get a relation between n and a_{1}. Combining (1.1) with the right inequality of (2.1), one gets that:

$$
2^{a_{1}}<2^{a_{1}}+2^{a_{2}}+2^{a_{3}}=L_{n}-L_{m}<\alpha^{n+1}-\alpha^{m-1}<\alpha^{n+1}
$$

which leads to

$$
a_{1}<(n+1) \frac{\log \alpha}{\log 2} .
$$

When $n \leq 400$, we have $a_{1} \leq 278$. Then a brute force search with Sagemath in the range $0 \leq m<n \leq 400$ and $a_{3} \leq a_{2} \leq a_{1} \leq 278$ gives the solutions in (1.1).

Thus, for the rest of our work, we assume that $n>400$.

3.1 bounding n

Step 1. Show that

$$
\begin{aligned}
& \min \left\{\left(a_{1}-a_{2}+2\right) \log 2,(m-n+1) \log \alpha\right\}<239 \cdot(\log 2 n)^{2} \quad \text { or } \\
& \quad \min \left\{\left(a_{1}-a_{2}+2\right) \log 2,(m-n+1) \log \alpha\right\}<2.63 \cdot 10^{4} .
\end{aligned}
$$

Equation (1.1) can be rewritten as

$$
\alpha^{n}+\beta^{n}-L_{m}=2^{a_{1}}+2^{a_{2}}+2^{a_{3}} .
$$

In the first step we consider n and a_{1} to be large and by collecting "large" terms to the left hand side of the equation, we obtain

$$
\begin{aligned}
\left|\alpha^{n}-2^{a_{1}}\right| & =\left|2^{a_{2}}+2^{a_{3}}+L_{m}-\beta^{n}\right| \\
& <2^{a_{2}}+2^{a_{3}}+\alpha^{m+1}+1 \\
& <\max \left\{2^{a_{2}+2}, 4 \cdot \alpha^{m+1}\right\} .
\end{aligned}
$$

Dividing by $2^{a_{1}}$ we get

$$
\begin{aligned}
\left|\alpha^{-n} 2^{a_{1}}-1\right| & <\max \left\{2^{a_{2}-n+2}, 2^{2-n} \cdot \alpha^{m+1}\right\} \\
& <\max \left\{2^{2} \cdot 2^{a_{2}-n}, 2^{-n+2} \cdot \alpha^{m+1}\right\} .
\end{aligned}
$$

Hence we obtain the inequality

$$
\begin{equation*}
\left|\alpha^{-n} 2^{a_{1}}-1\right|<\max \left\{2^{a_{2}-a_{1}+2}, \alpha^{m-n+2}\right\} . \tag{3.1}
\end{equation*}
$$

In Step 1 we consider the linear form

$$
\wedge=a_{1} \log 2-n \log \alpha
$$

Further, we put

$$
\Gamma=e^{\wedge}-1=\alpha^{n} 2^{-a_{1}}-1 .
$$

In order to apply Theorem 2.1, we take $\delta_{1}:=\alpha, \delta_{2}:=2, b_{1}:=n$ and $b_{2}:=a_{1}$. Since $n>a_{1}$ we have $B=n$.

Note further that $h\left(\delta_{1}\right)=(\log \alpha) / 2$ and $h\left(\delta_{2}\right)=\log 2$. Thus, we can choose $\log A_{1}:=\log \alpha$ and $\log A_{2}:=\log 2$.
Finally, by recalling that $a_{1} \leq n$, we get

$$
b^{\prime}=\frac{n}{2 \log 2}+\frac{a_{1}}{2 \log \alpha}<2 n .
$$

Since α and 2 are multiplicatively independent, we have, by Theorem 2.1 that,

$$
\log \Gamma \geq-30.9 \cdot 2^{4} \cdot(\max \{\log (2 n), 21 / 2,1 / 2\})^{2} \cdot \log \alpha \cdot \log 2 .
$$

Thus

$$
\begin{equation*}
\log \Gamma \geq-165 \cdot(\max \{\log (2 n), 21 / 2,1 / 2\})^{2} \tag{3.2}
\end{equation*}
$$

and together with inequality 3.1 we have

$$
\begin{gathered}
\min \left\{\left(a_{1}-a_{2}+2\right) \log 2,(m-n+1) \log \alpha\right\}<239 \cdot(\log 2 n)^{2} \quad \text { or } \\
\quad \min \left\{\left(a_{1}-a_{2}+2\right) \log 2,(m-n+1) \log \alpha\right\}<2.63 \cdot 10^{4} .
\end{gathered}
$$

Thus we have proved so far:

Lemma 3.1. Assume that ($n, m, a_{1}, a_{2}, a_{3}$) is a solution to equation (1.1) with $n \geq m \geq 0$ and $a_{1} \geq a_{2} \geq a_{3} \geq 0$. Then we have

$$
\begin{gathered}
\min \left\{\left(a_{1}-a_{2}+2\right) \log 2,(m-n+1) \log \alpha\right\}<239 \cdot(\log 2 n)^{2} \quad \text { or } \\
\quad \min \left\{\left(a_{1}-a_{2}+2\right) \log 2,(m-n+1) \log \alpha\right\}<2.63 \cdot 10^{4} .
\end{gathered}
$$

Now we have to distinguish between
Case 1: $\min \left\{\left(a_{1}-a_{2}+2\right) \log 2,(m-n+1) \log \alpha\right\}=\left(a_{1}-a_{2}+2\right) \log 2$, and
Case 2: $\min \left\{\left(a_{1}-a_{2}+2\right) \log 2,(m-n+1) \log \alpha\right\}=(m-n+1) \log \alpha$.
We will deal with these two cases in the following steps.
Step 2: We consider Case 1 and show that under the assumption that ($a_{1}-a_{2}+$ 2) $\log 2<239 \cdot(\log 2 n)^{2} \quad$ or $\quad\left(a_{1}-a_{2}+2\right) \log 2<2.63 \cdot 10^{4}$, we obtain $\min \left\{\left(a_{1}-a_{3}\right) \log 2,(n-m) \log \alpha\right\}<1.61 \cdot 10^{15}(1+\log n)(\log (2 n))^{2}$.

Since we consider Case 1 we assume that $\min \left\{\left(a_{1}-a_{2}+2\right) \log 2,(m-n+1) \log \alpha\right\}=\left(a_{1}-a_{2}+2\right) \log 2<239 \cdot(\log 2 n)^{2}$ or $\min \left\{\left(a_{1}-a_{2}+2\right) \log 2,(m-n+1) \log \alpha\right\}=\left(a_{1}-a_{2}+2\right) \log 2<2.63 \cdot 10^{4}$.

By collecting "large" terms, i.e. terms involving n, m, a_{1} and a_{2}, on the left hand side, we rewrite equation (1.1) as

$$
\left|\alpha^{n}-2^{a_{1}}-2^{a_{2}}\right|=\left|2^{a_{3}}-\beta^{n}-\alpha^{m}+\beta^{m}\right|<2^{a_{3}}+\alpha^{m}+1
$$

and obtain that

$$
\begin{equation*}
\left|a^{n}-2^{a_{2}}\left(2^{a_{1}-a_{2}}+1\right)\right|<2.2 \cdot \max \left\{2^{a_{3}}, \alpha^{m}\right\} . \tag{3.3}
\end{equation*}
$$

Dividing by a^{n}, we get by using inequality 3.3

$$
\begin{aligned}
\left|\alpha^{-n} 2^{a_{2}}\left(2^{a_{1}-a_{2}}+1\right)-1\right| & <2 \cdot \max \left\{\alpha^{-n} \cdot 2^{a_{3}}, \alpha^{m-n}\right\} \\
& \leq 2 \cdot \max \left\{2^{a_{3}-n}, \alpha^{m-n}\right\}
\end{aligned}
$$

and obtain the inequality

$$
\begin{equation*}
\left|\alpha^{-n} 2^{a_{2}}\left(2^{a_{1}-a_{2}}+1\right)-1\right|<2 \cdot \max \left\{2^{a_{3}-a_{1}}, \alpha^{m-n}\right\} . \tag{3.4}
\end{equation*}
$$

We shall apply Theorem 2.2 to inequality 3.4 Therefore we consider the following linear form in logarithms:

$$
\wedge_{1}=-n \log \alpha+a_{2} \log 2+\log \left(2^{a_{1}-a_{2}}+1\right) .
$$

Further, we put

$$
\Phi_{1}=e^{\wedge}-1=\alpha^{-n} 2^{a_{2}}\left(2^{a_{1}-a_{2}}+1\right)-1
$$

and aim to apply Theorem 2.2 by taking

$$
\begin{gathered}
\alpha_{1}=\alpha, \quad \alpha_{2}=2, \quad \alpha_{3}=2^{a_{1}-a_{2}}+1 \\
b_{1}=-n, \quad b_{2}=a_{2}, \quad b_{3}=1 .
\end{gathered}
$$

Note that since $n>a_{1}>a_{2}$ we have $B=n$. Next, we estimate the height of α_{3} by using the properties of heights and Lemma (3.1):

$$
\begin{aligned}
h\left(\alpha_{3}\right) & \leq\left(a_{1}-a_{2}\right) h(2)+\log 2 \\
& \leq\left(a_{1}-a_{2}\right) \log 2+\log 2 \\
& <166 \cdot(\log (2 n))^{2} \quad \text { or } \quad 1.83 \cdot 10^{4}
\end{aligned}
$$

which gives $h\left(\alpha_{3}\right)<166 \cdot(\log (2 n))^{2} \quad$ or $\quad h\left(\alpha_{3}\right)<1.83 \cdot 10^{4}$. As before we have $h\left(\alpha_{1}\right)=\frac{1}{2}$ and $h\left(\alpha_{2}\right)=\log 2$. Now, we are ready to apply Theorem 2.2 and get
$\log \left|\Phi_{1}\right|>C(1.2) \cdot \log 2 \cdot 83 \cdot(\log (2 n))^{2}>-1.61 \cdot 10^{14}(1+\log n)(\log (2 n))^{2}$,
or

$$
\begin{equation*}
\log \left|\Phi_{1}\right|>C(1.2) \cdot \log 2 \cdot \frac{1}{2} \cdot 1.83 \cdot 10^{4}>-1.14 \cdot 10^{15}(1+\log n) \tag{3.6}
\end{equation*}
$$

with $C(1.2)=-1.4 \cdot 30^{6} \cdot 3^{4.5} \cdot 2^{2}(1+\log 2)(1+\log (n))$.
Combining those inequalities with inequality (3.4), we obtain
$\min \left\{\left(a_{1}-a_{3}\right) \log 2,(n-m) \log \alpha\right\}<1.61 \cdot 10^{14}(1+\log n)(\log (2 n))^{2}$
or

$$
\min \left\{\left(a_{1}-a_{3}\right) \log 2,(n-m) \log \alpha\right\}<1.14 \cdot 10^{15}(1+\log n) .
$$

Then

$$
\begin{equation*}
\min \left\{\left(a_{1}-a_{3}\right) \log 2,(n-m) \log \alpha\right\}<1.61 \cdot 10^{15}(1+\log n)(\log (2 n))^{2} \tag{3.7}
\end{equation*}
$$

At this stage, we have to consider two further subcases.

Case 1A: $\min \left\{\left(a_{1}-a_{3}\right) \log 2,(n-m) \log \alpha\right\}=\left(a_{1}-a_{3}\right) \log 2$ and
Case 1B $\min \left\{\left(a_{1}-a_{3}\right) \log 2,(n-m) \log \alpha\right\}=(n-m) \log \alpha$

Step 3: We consider Case 1A and show that under the assumption that

$$
a_{1}-a_{3}<7.22 \cdot 10^{15}(1+\log n)(\log (2 n))^{2},
$$

we obtain that

$$
n-m<7.1 \cdot 10^{27}(1+\log n)(\log (2 n))^{2} .
$$

In this step we consider n, a_{1}, a_{2} and a_{3} to be large. By collecting "large" terms on the left hand side we rewrite equation 1.1 as

$$
\left|\alpha^{n}-2^{a_{1}}-2^{a_{2}}-2^{a_{3}}\right|=\left|-\beta^{n}-\alpha^{m}+\beta^{m}\right|<\alpha^{m}+1
$$

and obtain that

$$
\left|\alpha^{n}-2^{a_{1}}\left(1+2^{a_{2}-a_{1}}+2^{a_{3}-a_{2}}\right)\right|<1.2 \alpha^{m} .
$$

Dividing by a^{n} yields the inequality

$$
\begin{equation*}
\left|\alpha^{-n} 2^{a_{1}}\left(1+2^{a_{2}-a_{1}}+2^{a_{3}-a_{1}}\right)-1\right|<1.2 \alpha^{m-n} . \tag{3.8}
\end{equation*}
$$

We want to apply Theorem 2.2 to inequality 3.8 and consider the linear form

$$
\wedge_{A}=-n \log \alpha+a_{1} \log 2+\log \left(\left(1+2^{a_{2}-a_{1}}+2^{a_{3}-a_{1}}\right)\right) .
$$

Further, we put

$$
\Phi_{A}=e^{\wedge_{A}}-1=\alpha^{-n_{1}} 2^{a_{1}}\left(1+2^{a_{2}-a_{1}}+2^{a_{3}-a_{1}}\right)-1
$$

and aim to apply Theorem 2.2 with

$$
\begin{gathered}
\alpha_{1}=\alpha, \quad \alpha_{2}=2, \quad \alpha_{3}=\left(1+2^{a_{2}-a_{1}}+2^{a_{3}-a_{1}}\right) \\
b_{1}=-n, \quad b_{2}=a_{2}, \quad b_{3}=1 .
\end{gathered}
$$

Similarly as before we get that $B=n$. Next, let us estimate the height of α_{3}. Using the properties of heights, Lemma 3.1 and inequality 3.7, we get:

$$
\begin{aligned}
h\left(\alpha_{3}\right) & \leq\left(a_{1}-a_{2}\right) h(2)+\left(a_{1}-a_{3}\right) h(2)+\log 2 \\
& \leq\left(a_{1}-a_{2}\right) \log 2+\left(a_{1}-a_{3}\right) \log 2+\log 2 \\
& <165.67 \cdot \log (2 n)+5.1 \cdot 10^{15}(1+\log n)(\log (2 n))^{2} \\
& <10^{16}(1+\log n)(\log (2 n))^{2},
\end{aligned}
$$

which gives $h\left(\alpha_{3}\right)<10^{16}(1+\log n)(\log (2 n))^{2}$. As before we have $h\left(\alpha_{1}\right)=$ $\frac{1}{2}, h\left(\alpha_{2}\right)=\log 2$ and $\phi_{A} \neq 0$. An application of Theorem 2.2 yields

$$
\begin{aligned}
\log \left|\Phi_{A}\right| & >\Delta_{A}\left(\frac{1}{2}\right)(\log 2) 10^{16}(1+\log n)(\log (2 n))^{2} \\
& >-3.37 \cdot 10^{27}(1+\log n)(\log (2 n))^{2}
\end{aligned}
$$

where $\Delta_{A}=-1.4 \cdot 30^{6} \cdot 3^{4.5} \cdot 2^{2} \cdot(1+\log 2)$.
Combining this inequality with inequality 3.8 we obtain

$$
\begin{equation*}
n-m<7.1 \cdot 10^{27}(1+\log n)(\log (2 n))^{2} . \tag{3.9}
\end{equation*}
$$

Step 4: We consider Case 1B and show that under the assumption that

$$
n-m<10.4 \cdot 10^{15}(1+\log n)(\log (2 n))^{2}
$$

we obtain that

$$
a_{1}-a_{3}<2.710^{39}(1+\log n)^{2}(\log (2 n))^{2} .
$$

By collecting large terms to the left hand side, where we consider n, m, a_{1} and a_{2} to be large, we rewrite equation 1.1 as

$$
\left|\alpha^{n}-\alpha^{m}-2^{a_{1}}-2^{a_{2}}\right|=\left|2^{a_{3}}-\beta^{n}+\beta^{m}\right|<2^{a_{3}}+1
$$

and obtain that

$$
\left|\alpha^{m}\left(\alpha^{n-m}-1\right)-2^{a_{2}}\left(2^{a_{1}-a_{2}}+1\right)\right|<1.45 \cdot 2^{a_{3}}
$$

Dividing by $2^{a_{2}}\left(2^{a_{1}-a_{2}}+1\right)$ we obtain the inequality

$$
\begin{equation*}
\left|\alpha^{m} 2^{-a_{2}}\left(\frac{\alpha^{n-m}-1}{2^{a_{1}-a_{2}}+1}\right)-1\right|<1.45 \cdot 2^{a_{3}-a_{1}} . \tag{3.10}
\end{equation*}
$$

We want to apply Theorem 2.2 to inequality 3.10. Hence we consider the linear form

$$
\wedge_{B}=m \log \alpha-a_{2} \log 2+\log \left(\frac{\alpha^{n-m}-1}{2^{a_{1}-a_{2}}+1}\right) .
$$

Further, we put

$$
\Phi_{B}=e^{\wedge_{B}}-1=\alpha^{m} 2^{-a_{2}}\left(\frac{\alpha^{n-m}-1}{2^{a_{1}-a_{2}}+1}\right)-1
$$

and aim to apply Theorem 2.2 by taking

$$
\begin{gathered}
\alpha_{1}=\alpha, \quad \alpha_{2}=2, \quad \alpha_{3}=\frac{\alpha^{n-m}-1}{2^{a_{1}-a_{2}}+1} \\
b_{1}=m, \quad b_{2}=-a_{2}, \quad b_{3}=1
\end{gathered}
$$

and get $B=n$ as in the steps before. Let us estimate the height of α_{3}. Using the properties of heights, Lemma 3.1 and inequalities 3.7 , we get:

$$
\begin{aligned}
h\left(\alpha_{3}\right) & \leq(n-m) h(\alpha)+\log 2+\left(a_{1}-a_{2}\right) h(2)+\log 2 \\
& =\frac{1}{2}(n-m) \log (\alpha)+\left(a_{1}-a_{2}\right) \log 2+2 \log 2 \\
& <3.5 \cdot 10^{27}(1+\log n)(\log (2 n))^{2}+239 \cdot(\log 2 n)^{2} \\
& <4 \cdot 10^{27}(1+\log n)(\log (2 n))^{2},
\end{aligned}
$$

which gives $h\left(\alpha_{3}\right)<4 \cdot 10^{27}(1+\log n)(\log (2 n))^{2}$. A similar deduction as before yields $h\left(\alpha_{1}\right)=\log \alpha, h\left(\alpha_{2}\right)=\log 2$ and $\Phi_{B} \neq 0$. Now, we apply

Theorem 2.2 and get

$$
\begin{aligned}
\log \left|\Phi_{B}\right| & >\Delta_{B} \cdot \log \alpha \cdot \log 2 \cdot 4 \cdot 10^{27}(1+\log n)^{2}(\log (2 n))^{2} \\
& >-1.3 \cdot 10^{39}(1+\log n)^{2}(\log (2 n))^{2},
\end{aligned}
$$

where $\Delta_{B}=-1.4 \cdot 30^{6} \cdot 3^{4.5} \cdot 2^{2} \cdot(1+\log 2)$.
Combining this inequality with inequality 3.10, we obtain

$$
\begin{equation*}
a_{1}-a_{3}<2.7 \cdot 10^{39}(1+\log n)^{2}(\log (2 n))^{2} . \tag{3.11}
\end{equation*}
$$

Step 5: We consider Case 2 and show that under the assumption that

$$
(n-m+1) \log \alpha<239 \cdot(\log 2 n)^{2} \quad \text { or } \quad(n-m+1) \log \alpha<2.63 \cdot 10^{4},
$$

we obtain

$$
\left(a_{1}-a_{2}\right) \log 2<9.7 \cdot 10^{38}(1+\log n)(\log 2 n)^{2} .
$$

Since we consider Case 2 we assume that

$$
\min \left\{\left(a_{1}-a_{2}\right) \log 2,(n-m) \log \alpha\right\}=(n-m) \log \alpha<3.5 \cdot 10^{2}(\log 2 n)^{2} .
$$

In this step we consider n, m and a_{1} to be large and by collecting "large" terms to the left hand side, we rewrite equation 1.1 as

$$
\left|\alpha^{n}+\alpha^{n_{2}}-2^{a_{1}}\right|=\left|2^{a_{2}}+2^{a_{3}}+\beta^{n}+\beta^{n}\right|<2 \cdot 2^{a_{2}}+1
$$

and obtain that

$$
\left|\alpha^{m}\left(\alpha^{n-m}+1\right)-2^{a_{1}}\right|<2 \cdot 2^{a_{2}} .
$$

Dividing through $2^{a_{1}}$ we get the inequality

$$
\begin{equation*}
\left|\alpha^{m} 2^{-a_{1}}\left(\alpha^{n-m}+1\right)-1\right|<2,45 \cdot 2^{\left(a_{2}-a_{1}\right)} . \tag{3.12}
\end{equation*}
$$

Similarly as above we shall apply Theorem [2.2] to inequality 3.12. Hence we consider the linear form

$$
\wedge_{3}=m \log \alpha-a_{1} \log 2+\log \left(\alpha^{n-m}+1\right) .
$$

Further, we put

$$
\Phi_{3}=e^{\wedge_{3}}-1=\alpha^{m} 2^{-a_{1}}\left(\alpha^{n-m}+1\right)-1
$$

and

$$
\begin{gathered}
\alpha_{1}=\alpha, \quad \alpha_{2}=2, \quad \alpha_{3}=\alpha^{n-m}+1, \\
b_{1}=n_{2}, \quad b_{2}=-a_{1}, \quad b_{3}=1 .
\end{gathered}
$$

Once again this choice yields $B=n$. Next, let us estimate the height of α_{3}. Using the properties of heights and Lemma 3.1 we find

$$
\begin{aligned}
h\left(\alpha_{3}\right) & \leq(n-m) h(\alpha)+\log 2 \\
& <(n-m) \log (\alpha)+\log 2 \\
& <7.1 \cdot 10^{27}(1+\log n)(\log 2 n)^{2},
\end{aligned}
$$

which gives $h\left(\alpha_{3}\right)<7.1 \cdot 10^{27}(1+\log n)(\log 2 n)^{2}$. A similar deduction as before gives $h\left(\alpha_{1}\right)=\log \alpha, h\left(\alpha_{2}\right)=\log 2$ and $\Phi_{2} \neq 0$. Thus by applying Theorem 2.2, we get

$$
\begin{aligned}
\log \left|\Phi_{3}\right| & >\Delta_{3}(\log 2) \cdot 7.1 \cdot 10^{27}(1+\log n)(\log 2 n)^{2} \\
& >-9.7 \cdot 10^{38}(1+\log n)(\log 2 n)^{2} .
\end{aligned}
$$

with $\Delta_{3}=-1.4 \cdot 30^{6} \cdot 3^{4.5} \cdot 2^{2} \cdot(1+\log 2)$. Combining this inequality together with inequality 3.12 , we obtain

$$
\begin{equation*}
\left(a_{1}-a_{2}\right) \log 2<9.7 \cdot 10^{38}(1+\log n)(\log 2 n)^{2} . \tag{3.13}
\end{equation*}
$$

Step 6: We continue to consider Case 2 and show that under the assumption that

$$
(n-m) \log \alpha<2.61 \cdot 10^{13} \log n
$$

and

$$
\left(a_{1}-a_{2}\right) \log 2<4.26 \cdot 10^{26}(\log n)^{2},
$$

we obtain

$$
\left(a_{1}-a_{3}\right) \log 2<6.73 \cdot 10^{50}(1+\log n)(\log 2 n)^{2} .
$$

We shall apply once more Theorem 2.2 to obtain an upper bound for $\left(a_{1}-\right.$
$\left.a_{3}\right) \log 2$. The derivation is very similar to Case 1B. By collecting "large" terms on the left hand side, we rewrite equation 1.1 as

$$
\left|\alpha^{n}+\alpha^{m}-2^{a_{1}}-2^{a_{2}}\right|=\left|2^{a_{3}}+\beta^{n}+\beta^{m}\right|<2^{a_{3}}+1 .
$$

By the same derivation as in Step 4 we obtain inequality (14), i.e.

$$
\begin{equation*}
\left|\alpha^{m_{2-a_{2}}}\left(\frac{\alpha^{n-m}+1}{2^{a_{1}-a_{2}}+1}\right)-1\right|<1.3 \cdot 2^{a_{3}-a_{1}} . \tag{3.14}
\end{equation*}
$$

We have the same setting as in Case 1B, except that the estimate for the height of α_{3} becomes

$$
\begin{aligned}
h\left(\alpha_{3}\right) & \leq(n-m) h(\alpha)+\log 2+\left(a_{1}-a_{2}\right) h(2)+\log 2 \\
& =(n-m) \log (\alpha)+\left(a_{1}-a_{2}\right) \log 2+2 \log 2 \\
& <7.1 \cdot 10^{27}(1+\log n)(\log (2 n))^{2}+9.7 \cdot 10^{38}(1+\log n)(\log 2 n)^{2} \\
& <10^{39}(1+\log n)(\log 2 n)^{2},
\end{aligned}
$$

which gives $h\left(\alpha_{3}\right)<10^{39}(1+\log n)(\log 2 n)^{2}$. Therefore by applying Theorem 2.2 similarly as before we obtain

$$
\begin{equation*}
\left(a_{1}-a_{3}\right) \log 2<6.73 \cdot 10^{50}(1+\log n)(\log 2 n)^{2} . \tag{3.15}
\end{equation*}
$$

Lemma 3.2. Assume that (n, m, a_{1}, a_{2}, a_{3}) is a solution to equation (1.1) with $n \geq m \geq 0$ and $a_{1} \geq a_{2} \geq a_{3} \geq 0$. Then we have
$n-m<7.1 \cdot 10^{27}(1+\log n)(\log (2 n))^{2}, a_{1}-a_{2}<9.7 \cdot 10^{38}(1+$ $\log n)(\log 2 n)^{2}$ and $a_{1}-a_{3}<6.73 \cdot 10^{50}(1+\log n)(\log 2 n)^{2}$.

Step 7: We assume the bounds given in Lemma 3.2 and show that

$$
n<9.43 \cdot 10^{62}(1+\log n)(\log 2 n)^{2},
$$

hence $n<4 \cdot 10^{69}$.
We have to apply Theorem (2.2) once more. This time we rewrite equation 1.1 as

$$
\left|\alpha^{n}\left(1+\alpha^{m-n}\right)-2^{a_{1}}\left(1+2^{a_{2}-a_{1}}+2^{a_{3}-a_{1}}\right)\right|=\left|\beta^{n}+\beta^{m}\right|<1 .
$$

Dividing by $\alpha^{n}\left(1+\alpha^{m-n}\right)$ we obtain the inequality

$$
\begin{equation*}
\left|\alpha^{-n} 2^{a_{1}}\left(\frac{1+2^{a_{2}-a_{1}}+2^{a_{3}-a_{1}}}{1+\alpha^{m-n}}\right)-1\right|<\alpha^{-n} . \tag{3.16}
\end{equation*}
$$

In this final step we consider the linear form

$$
\wedge_{4}=-n \log \alpha+a_{1} \log 2+\log \left(\frac{1+2^{a_{2}-a_{1}}+2^{a_{3}-a_{1}}}{1+\alpha^{m-n}}\right) .
$$

Further, we put

$$
\Phi_{4}=e^{\wedge_{4}}-1=\alpha^{-n} 2^{a_{1}}\left(\frac{1+2^{a_{2}-a_{1}}+2^{a_{3}-a_{1}}}{1+\alpha^{m-n}}\right)-1 .
$$

We take

$$
\begin{gathered}
\alpha_{1}=\alpha, \quad \alpha_{2}=2, \quad \alpha_{3}=\alpha^{-n} 2^{a_{1}}\left(\frac{1+2^{a_{2}-a_{1}}+2^{a_{3}-a_{1}}}{1+\alpha^{m-n}}\right), \\
b_{1}=-n, \quad b_{2}=-a_{1}, \quad b_{3}=1 .
\end{gathered}
$$

Thus we have $B=n$. By the results in Lemma 3.2 and similar computations done before we obtain

$$
\begin{aligned}
h\left(\alpha_{3}\right) & \leq\left(a_{1}-a_{2}\right) h(2)+\left(a_{1}-a_{3}\right) h(2)+(n-m) h(\alpha)+2 \log 2 \\
& \leq\left(a_{1}-a_{2}\right) \log 2+\left(a_{1}-a_{3}\right) \log 2+(n-m) \log (\alpha)+2 \log 2 \\
& <6.74 \cdot 10^{50}(1+\log n)(\log 2 n)^{2},
\end{aligned}
$$

which gives $h\left(\alpha_{3}\right)<6.74 \cdot 10^{50}(1+\log n)(\log 2 n)^{2}$. As before we have $h\left(\alpha_{1}\right)=\log \alpha, h\left(\alpha_{2}\right)=\log 2$, and $\Phi_{4} \neq 0$. Now an application of Theorem (2.2) yields

$$
\log \left|\Phi_{4}\right|>\Delta_{4}(\log 2)\left(6.74 \cdot 10^{50}(1+\log n)(\log 2 n)^{2}\right),
$$

with $\Delta_{4}=-1.4 \cdot 30^{6} \cdot 3^{4.5} \cdot 2^{2} \cdot(1+\log 2)$. Combining this inequality with inequality 3.16 we get

$$
n<9.43 \cdot 10^{62}(1+\log n)(\log 2 n)^{2},
$$

which yields

$$
n<4 \cdot 10^{69} .
$$

Lemma 3.3. If ($n, m, a_{1}, a_{2}, a_{3}$) is a solution to equation (1.1) with $n \geq$ $m \geq 0$ and $a_{1} \geq a_{2} \geq a_{3} \geq 0$, then we have

$$
a_{1}<n<4 \cdot 10^{69} .
$$

3.2 Reduction of the bound

In this section, we will reduce the upper bound on n. Firstly, we determine a suitable upper bound on $n-m, a_{1}-a_{2}, a_{1}-a_{3}$, and later we use Lemma 2.1 to conclude that n must be smaller than 400 .

Proof of Theorem 1.

Turning back to inequality (3.1), we obtain

$$
0<a_{1} \log 2-n \log \alpha<\max \left\{2^{a_{2}-a_{1}+2}, \alpha^{m-n+2}\right\} .
$$

Dividing across by $\log \alpha$, we get

$$
\begin{equation*}
0<a_{1} \gamma-n<\max \left\{8.32 \cdot 2^{a_{2}-a_{1}}, 5.45 \cdot \alpha^{m-n}\right\} \tag{3.17}
\end{equation*}
$$

where

$$
\gamma:=\frac{\log 2}{\log \alpha} .
$$

Let $\left[a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, \ldots\right]=[1,2,3,1,2,3,2,4 \ldots]$ be the continued fraction expansion of γ, and let denote p_{n} / q_{n} its nth convergent. Recall also that $a_{1}<4 \cdot 10^{69}$. A quick inspection using Sagemath reveals that
$q_{140}<4 \cdot 10^{69}<q_{141}$.
Furthermore, $a_{N}:=\max \left\{a_{i}: i=0,1, \ldots, 44\right\}=a_{60}=134$. So, from the known properties of continued fractions, we obtain that

$$
\begin{equation*}
\left|a_{1} \gamma-n\right|>\frac{1}{\left(a_{N}+2\right) a_{1}} . \tag{3.18}
\end{equation*}
$$

Comparing estimates (3.18) and (3.17), we get right away that

$$
\begin{equation*}
\alpha^{n-m}<5.45 \cdot 136 \cdot a_{1}<7.42 \cdot 10^{71} \quad \text { or } \quad 2^{a_{1}-a_{2}}<8.32 \cdot 136 \cdot a_{1}<11.32 \cdot 10^{71} \tag{3.19}
\end{equation*}
$$

leading to $n-m \leqslant 344$ or $a_{1}-a_{2} \leqslant 247$.

Step 1: We show that $a_{1}-a_{3} \leq 247$ or $n-m \leq 356$.
Let us start by considering inequality 3.4 . Then we have the inequality

$$
0<\left|a_{2} \cdot \frac{\log 2}{\log \alpha}-n+\frac{\log \left(2^{a_{1}-a_{2}}+1\right)}{\log \alpha}\right|<4.16 \cdot \max \left\{2^{a_{3}-a_{1}}, \alpha^{m-n}\right\}
$$

and we apply the algorithm described in Remark 2 with

$$
\gamma=\frac{\log 2}{\log \alpha}, \quad \mu=\frac{\log \left(2^{a_{1}-a_{2}}+1\right)}{\log \alpha}, \quad(A, B)=(4.16,2) \text { or }(4.16, \alpha) .
$$

Let us be a bit more precise. We note that γ is irrational since 2 and α are multiplicatively independent, hence Lemma 2.1 is applicable. With $q=$ $q_{142}>6 M$. This yields $\epsilon>0.00073$ and therefore either $a_{1}-a_{3} \leq$ $\frac{\log (4.16 q / 0.00073)}{\log 2}<248$ or $n-m \leq \frac{\log (4.16 q / 0.00073)}{\log \alpha}<357$.
Thus, we have either $a_{1}-a_{3} \leq 247$ or $n-m \leq 356$.
From this result we distinguish between
Case 1: $a_{1}-a_{3} \leq 247$ and
Case 2: $n-m \leq 356$.
Step 2: We consider Case 1 and show that under the assumption that $a_{1}-a_{2} \leq 247$
or $a_{1}-a_{3} \leq 247$, we have that $n-m \leq 344$.
In this step we consider inequality 3.8. Recall that

$$
\wedge_{A}=-n \log \alpha+a_{1} \log 2+\log \left(\left(1+2^{a_{2}-a_{1}}+2^{a_{3}-a_{1}}\right)\right) .
$$

Then we get

$$
0<\left|a_{1} \cdot \frac{\log 2}{\log \alpha}-n+\frac{\log \left(\left(1+2^{a_{2}-a_{1}}+2^{a_{3}-a_{1}}\right)\right)}{\log \alpha}\right|<2.5 \alpha^{m-n} .
$$

We apply the algorithm explained in Remark 2 again with the same γ and M as in Step 1, but now we choose $(A, B)=(2.5, \alpha)$ and

$$
\mu=\frac{\log \left(\left(1+2^{a_{2}-a_{1}}+2^{a_{3}-a_{1}}\right)\right)}{\log \alpha}
$$

for each possible value of $a_{1}-a_{2}=0,1, \ldots, 247$ and $a_{1}-a_{3}=0,1, \ldots, 247$. In particular

$$
q=q_{142}
$$

is the largest denominator that appeared in applying our algorithm. Overall, we obtain $n-m \leq 355$. Within Case 1 we have to distinguish between two further sub-cases:

Case 1: $a_{1}-a_{2} \leq 247$ and
Case 2: $n-m \leq 355$.
Step 3: We consider Case 1A and show that under the assumption that $a_{1}-a_{2} \leq$ 247 and $a_{1}-a_{3} \leq 247$, we have that $n-m \leq 356$.
In this step we consider inequality 3.10 and assume that $n_{1}-n_{2} \geq 20$. Recall that

$$
\wedge_{B}=m \log \alpha-a_{2} \log 2+\log \left(\frac{\alpha^{n-m}-1}{2^{a_{1}-a_{2}}+1}\right) .
$$

Then we get

$$
0<\left|m \cdot \frac{\log \alpha}{\log 2}-a_{2}+\frac{\log \left(\frac{\alpha^{n-m}-1}{2^{a_{1}-a_{2}}+1}\right)}{\log 2}\right|<3.02 \cdot 2^{a_{3}-a_{1}}
$$

We proceed as in Remark 2 with the same γ and M as in Step 1, but we use $(A, B)=(3.02,2)$ nstead. Moreover we consider
for each possible value of $a_{1}-a_{2}=0,1, \ldots, 247$ and $n-m=l=$ $0,1, \ldots, 356$. As in the previous step we apply the algorithm Lemme 2.1 and start with the $142^{\text {nd }}$ convergent of γ as before and continue with the algorithm until a positive ϵ. Thus we can compute a new upper bound for
$a_{1}-a_{3}$ by the formula $a_{1}-a_{3}<\frac{\log (3.02 q / \epsilon)}{\log 2}$ for the respective choices of q and ϵ. Overall we obtain that

$$
a_{1}-a_{3} \leq 357 .
$$

Step 4: We consider Case 1B and show that under the assumption that $n-m \leq$ 355 , we have that $a_{1}-a_{2} \leq 233$.

Turning back to inequality 3.12

$$
\wedge_{C}=m \log \alpha-a_{1} \log 2+\log \left(\alpha^{n-m}+1\right) .
$$

Then we get

$$
0<\left|m \cdot \frac{\log \alpha}{\log 2}-a_{1}+\frac{\log \left(\alpha^{n-m}+1\right)}{\log 2}\right|<22 \cdot 2^{\left(a_{2}-a_{1}\right)} .
$$

We apply our algorithm with the same γ and M as in the previous steps, but we use $(A, B)=(22,2)$ and

$$
\mu=\frac{\log \left(\alpha^{n-m}+1\right)}{\log 2}
$$

for each possible value of $a_{1}-a_{2}=k=0,1, \ldots, 224$ and $n_{1}-n_{2}=r=$ $0,1, \ldots, 324$. We run our algorithm starting with $q=q_{144}$ and compute the upper bound for $a_{1}-a_{3}$ by the formula $a_{1}-a_{2}<\frac{\log (22 q / \epsilon)}{\log 2}$ for respective choices of q and ϵ, provided the algorithm terminates. For those pairs (k, r) for which the algorithm terminates we obtain

$$
a_{1}-a_{2} \leq 258
$$

Step 5: We consider Case 2 and show that under the assumption that $n-m \leq 355$ we have that $a_{1}-a_{2} \leq 224$. In this step we consider inequality 3.14 and assume that $a_{1}-a_{2}, a_{1}-a_{3} \leq 20$. Recall that

$$
\wedge_{2}=\wedge_{B}=m \log \alpha-a_{2} \log 2+\log \left(\frac{\alpha^{n-m}+1}{2^{a_{1}-a_{2}}+1}\right) .
$$

Then we get

$$
0<\left|m \cdot \frac{\log \alpha}{\log 2}-a_{2}+\frac{\log \left(\frac{\alpha^{n-m}+1}{2^{a_{1}-a_{2}+1}}\right)}{\log 2}\right|<1.9 \cdot 2^{a_{3}-a_{1}} .
$$

We apply our algorithm with the same γ and M , but we use $(A, B)=(1.9,2)$ and

$$
\mu=\frac{\log \left(\frac{\alpha^{n-m}+1}{2^{a_{1}-a_{2}}+1}\right)}{\log 2},
$$

for each possible value of $n-m=r=0,1, \ldots, 315$. Similar as in Step 4 we obtain $a_{1}-a_{3} \leq 249$.

Step 6: Under the assumption that $n-m \leq 356, a_{1}-a_{2} \leq 247$ and $a_{1}-a_{3} \leq 249$, we show that $n \leq 400$.
For the last step we consider inequality (22). Recall that

$$
\wedge_{3}=-n \log \alpha+a_{1} \log 2+\log \left(\frac{1+2^{a_{2}-a_{1}}+2^{a_{3}-a_{1}}}{1+\alpha^{m-n}}\right)
$$

and inequality (22) yields that $\left|\wedge_{3}\right|<2.02 \alpha^{-n_{1}}$. Then we get

$$
0<\left|a_{1} \cdot \frac{\log 2}{\log \alpha}-n_{1}+\frac{\log \left(\frac{1+2^{a_{2}-a_{1}}+2^{a_{3}-a_{1}}}{1+\alpha^{m-n}}\right)}{\log \alpha}\right|<2.1 \alpha^{-n}
$$

We proceed as described in Remark 2 with the same γ and M as in the previous steps, but we use $(A, B)=(2.1, \alpha)$ and

$$
\mu=\frac{\log \left(\frac{1+2^{a_{2}-a_{1}}+2^{a_{3}-a_{1}}}{1+\alpha^{m-n}}\right)}{\log \alpha},
$$

for each possible value of $a_{1}-a_{2}=k=0,1, \ldots, 247, a_{1}-a_{3}=l=$ $0,1, \ldots, 249$ (with respect to the obvious condition that $a_{1}-a_{2} \leq a_{1}-a_{3}$) and $n-m=r=0,1, \ldots, 355$. Starting with $q=q_{142}$ we compute the upper bound for n by the formula $n<\frac{\log (2.1 q / \epsilon)}{\log \alpha}$ for the respective choices of q such that $\epsilon>0$. For all triples $\left(n-m, a_{1}-a_{2}, a_{1}-a_{3}\right)$ the algorithm terminates and yields

$$
n \leq 359
$$

This is false because our assumption is that $n>400$. Thus, Theorem 1.2 is proven.

4 The Proof of Theorem 1.3

If $k \leq 200$, then a brute force search with Sagemath in the range $0 \leq l<k \leq 200$ and $(k, l)=(0,1)$ gives the solutions:
$(0,1,0),(2,0,0) ;(3,2,0) ;(2,1,1) ;(3,0,1) ;(4,2,2) ;(5,4,2) ;(5,2,3) ;(6,0,4)$.
Thus, for the rest of the paper we assume that $k>200$ and $k>0$.
Let us now get a relation between k and t. Combining (1.2) with the right inequality of (2.1), one gets that:

$$
2^{t} \leq 2 \alpha^{k}-\alpha^{l-1}<2^{k+1}-\alpha^{l-1}=2^{k+1}\left(1-2^{-(k+1)} \alpha^{l-1}\right) \leq 2^{k+1}
$$

which leads to $t \leqslant k$.
This estimate is essential for our purpose. On the other hand, we rewrite equation 1.2 as

$$
\begin{equation*}
\alpha^{k}-2^{t}=-\beta^{k}+L_{l} . \tag{4.1}
\end{equation*}
$$

We now take absolute values in the above relation obtaining

$$
\begin{equation*}
\left|\alpha^{k}-2^{t}\right| \leq|\beta|^{k}+L_{l}<\frac{1}{2}+2 \alpha^{l} . \tag{4.2}
\end{equation*}
$$

Dividing both sides of the above expression by α^{k} and taking into account that $k>l$, we get

$$
\left|1-2^{t} \alpha^{-k}\right|<\frac{1}{2} \alpha^{-k}+2 \alpha^{-k+l}<3 \alpha^{-k+l} .
$$

Thus

$$
\begin{equation*}
\left|1-2^{t} \alpha^{-k}\right|<\frac{3}{\alpha^{k-l}} \tag{4.3}
\end{equation*}
$$

In order to apply Theorem 2.1] we take $\delta_{1}:=\alpha, \delta_{2}:=2, b_{1}:=k$ and $b_{2}:=t$.
So, $\Gamma:=b_{2} \log \delta_{2}-b_{1} \log \delta_{1}$, and therefore estimation (4.3) can be rewritten as

$$
\begin{equation*}
\left|1-e^{\Gamma}\right|<\frac{3}{\alpha^{k-l}} \tag{4.4}
\end{equation*}
$$

The algebraic number field containing δ_{1}, δ_{2} is $\mathbb{Q}(\sqrt{5})$, so we can take $D:=2$. By using equation (1.2) and the Binet formula for the Lucas sequence, we have

$$
\begin{equation*}
\alpha^{k}=L_{k}-\beta^{k}<L_{k}+1 \leq L_{k}+L_{l}=2^{t} . \tag{4.5}
\end{equation*}
$$

Consequently, $1<2^{t} \alpha^{-k}$ and so $\Gamma>0$. This, together with (4.4), gives

$$
\begin{equation*}
0<\Gamma<\frac{3}{\alpha^{k-l}} \tag{4.6}
\end{equation*}
$$

where we have also used the fact that $\log (1+x) \leqslant x$ for all $x \in \mathbb{R}^{+}$.
Hence,

$$
\begin{equation*}
\log \Gamma<\log 3-(k-l) \log \alpha \tag{4.7}
\end{equation*}
$$

Note further that $h\left(\delta_{1}\right)=(\log \alpha) / 2$ and $h\left(\delta_{2}\right)=\log 2$. Thus, we can choose $\log A_{1}:=\log \alpha$ and $\log A_{2}:=\log 2$.
Finally, by recalling that $t \leq k$, we get

$$
b^{\prime}=\frac{k}{2 \log 2}+\frac{t}{2 \log \alpha}<2 k .
$$

Since α and 2 are multiplicatively independent, we have, by Theorem 2.2 that,

$$
\log \Gamma \geq-30.9 \cdot 2^{4} \cdot(\max \{\log (2 k), 21 / 2,1 / 2\})^{2} \cdot \log \alpha \cdot \log 2
$$

Thus

$$
\begin{equation*}
\log \Gamma>-174 \cdot(\max \{\log (2 k), 21 / 2,1 / 2\})^{2} \tag{4.8}
\end{equation*}
$$

We now combine (4.7) and (4.8) to obtain

$$
\begin{equation*}
(k-l) \log \alpha<180 \cdot(\max \{\log (2 k), 21 / 2\})^{2} . \tag{4.9}
\end{equation*}
$$

Let us now get a second linear form in logarithms. To this end, we now rewrite equation (1.2) as follows:

$$
\begin{equation*}
\alpha^{k}\left(1-\alpha^{(l-k)}\right)-2^{t}=\beta^{l}\left(1-\beta^{(k-l)}\right) . \tag{4.10}
\end{equation*}
$$

Taking absolute values in the above relation and using the fact that $\beta=(1-\sqrt{5}) / 2$
we get

$$
\begin{equation*}
\left|\alpha^{k}\left(1-\alpha^{(l-k)}\right)-2^{t}\right|=\left|\beta^{l}\left(1-\beta^{(k-l)}\right)\right|<2|\beta|^{l}<2 \tag{4.11}
\end{equation*}
$$

for all $k>200$ and $l \geq 0$. Dividing both sides of the above inequality by the first term of the left-hand side, we obtain

$$
\begin{equation*}
\left|1-2^{t} \alpha^{-k}\left(1-\alpha^{(l-k)}\right)^{-1}\right|<\frac{2}{\alpha^{k}\left(1-\alpha^{(l-k)}\right)}<\frac{10}{\alpha^{k}} \tag{4.12}
\end{equation*}
$$

We are now ready to apply Matveev's result in Theorem 2.2. To do this, we take the parameters $n:=3$ and
$\delta_{1}:=2, \delta_{2}:=\alpha, \delta_{3}:=\left(1-\alpha^{(l-k)}\right)$.
We take $b_{1}:=t, b_{2}:=-k$ and $b_{3}:=-1$. As before, $\mathbb{K}:=\mathbb{Q}(\sqrt{5})$ contains $\delta_{1}, \delta_{2}, \delta_{3}$ and has $D:=[\mathbb{K}: \mathbb{Q}]=2$. To see why the left-hand side of 4.12 is not zero, note that otherwise, we would get the relation

$$
\begin{equation*}
\alpha^{k}-\alpha^{l}=2^{t} \tag{4.13}
\end{equation*}
$$

From 1.2, we get

$$
\begin{equation*}
\beta^{k}-\beta^{l}=0 \tag{4.14}
\end{equation*}
$$

Further, we obtain

$$
\beta^{k}=\beta^{l}
$$

This is impossible because $k \neq l$. Thus,

$$
1-2^{t} \alpha^{-k}\left(1-\alpha^{(l-k)}\right)^{-1}
$$

is not zero. In this application of Matveev's theorem we take $A_{1}:=2 \log 2$ and $A_{2}:=\log \alpha$. Since $t \leq k$; it follows that we can take $B:=k$. Let us now estimate $h\left(\delta_{3}\right)$. We begin by observing that
$\delta_{3}=\left(1-\alpha^{(l-k)}\right)$ and $\delta_{3}^{-1}<3$.
So that

$$
\begin{equation*}
\left|\log \delta_{3}\right|<1 \tag{4.15}
\end{equation*}
$$

Next, notice that

$$
\begin{equation*}
h\left(\delta_{3}\right) \leq(k-l) \log \alpha+\log 2 \tag{4.16}
\end{equation*}
$$

Hence, we can take

$$
A_{3}:=2+(k-l) \log \alpha>\max \left\{2 h\left(\delta_{3}\right),\left|\log \delta_{3}\right|, 0.16\right\}
$$

Now Matveev's theorem implies that a lower bound on the left-hand side of (4.12) is
$\log |\Lambda|>-1.4 \cdot 30^{6} \cdot 3^{4 \cdot 5} \cdot 2^{2}(1+\log 2)(1+\log (k)) \cdot 2 \log 2 \cdot 2 \log \alpha \cdot(2+(k-l) \log \alpha)$.
So, inequality (4.12) yields

$$
\begin{equation*}
k<2.8 \cdot 10^{12} \log (k) \cdot(2+(k-l) \log \alpha) \tag{4.17}
\end{equation*}
$$

where we used the inequality $1+\log (k)<2 \log (k)$, which holds because $k>200$.
Using now $\sqrt[4.9]{ }$ in the right-most term of the above inequality (4.17) and performing the respective calculations, we arrive at

$$
\begin{equation*}
k<5.1 \cdot 10^{14} \log (k)(\max \{\log (2 k), 21 / 2\})^{2} . \tag{4.18}
\end{equation*}
$$

If $\max \{\log (2 k), 21 / 2\}=21 / 2$, then it follows from (4.18) that

$$
k<5.7 \cdot 10^{16} \log (k)
$$

giving

$$
k<2.5 \cdot 10^{18} .
$$

If $\max \{\log (2 k), 21 / 2\}=\log (2 k)$, then we see from (4.18) that

$$
k<5.1 \cdot 10^{14} \log (k)(\log (2 k))^{2}
$$

and so

$$
k<5 \cdot 10^{19} .
$$

In any case, we have that

$$
k<5 \cdot 10^{19} .
$$

We summarize what we have proved so far in the following lemma.
Lemma 4.1. If (k, l, t) is a solution in positive integers of equation (1.2) with $k>l$ and $k>200$, then inequalities

$$
t \leq k<5.10^{19}
$$

hold.

4.1 The final computations

In this section, we will reduce the upper bound on k. Firstly, we determine a suitable upper bound on $k-l$, and later we use Lemma 2.1 to conclude that k must be smaller than 200 . Turning back to inequality (4.6), we obtain

$$
0<t \log 2-k \log \alpha<\frac{3}{\alpha^{k-l}} .
$$

Dividing across by $\log \alpha$, we get

$$
\begin{equation*}
0<t \gamma-k<\frac{7}{\alpha^{k-l}}, \tag{4.19}
\end{equation*}
$$

where

$$
\gamma:=\frac{\log 2}{\log \alpha} .
$$

Let $\left[a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, \ldots\right]=[1,2,3,1,2,3,2,4 \ldots]$ be the continued fraction expansion of γ, and let denote p_{n} / q_{n} its nth convergent. Recall also that $t<5 \cdot 10^{19}$ by Lemma4.1. A quick inspection using Sagemath reveals that

$$
12744458107726027589=q_{43}<5 \cdot 10^{19}<q_{44}=54475119544877440894 .
$$

Furthermore, $a_{N}:=\max \left\{a_{i}: i=0,1, \ldots, 44\right\}=a_{17}=134$. So, from the known properties of continued fractions, we obtain that

$$
\begin{equation*}
|t \gamma-k|>\frac{1}{\left(a_{N}+2\right) t} . \tag{4.20}
\end{equation*}
$$

Comparing estimates (4.19) and (4.20), we get right away that

$$
\begin{equation*}
\alpha^{k-l}<7 \cdot 136 \cdot t<5 \cdot 10^{22}, \tag{4.21}
\end{equation*}
$$

leading to $k-l \leqslant 106$.
Let us now go back to (4.12) to determine an improved upper bound on k.
Put

$$
\begin{equation*}
\omega:=t \log 2-k \log \alpha-\log \left(1-\alpha^{-(k-l)}\right) . \tag{4.22}
\end{equation*}
$$

Therefore, (4.12) implies that

$$
\begin{equation*}
\left|1-e^{\omega}\right|<\frac{10}{\alpha^{k}} . \tag{4.23}
\end{equation*}
$$

Note that $\omega \neq 0$; thus, we distinguish the following cases. If $\omega>0$ then, from (4.22), we obtain

$$
0<\omega \leqslant e^{\omega}-1<\frac{10}{\alpha^{k}}
$$

Replacing ω in the above inequality by its formula (4.22) and dividing both sides of the resulting inequality by $\log \alpha$, we get

$$
\begin{equation*}
0<t\left(\frac{\log 2}{\log \alpha}\right)-k-\frac{\log \left(1-\alpha^{-(k-l)}\right)}{\log \alpha}<\frac{21}{\alpha^{k}} \tag{4.24}
\end{equation*}
$$

We now put

$$
\gamma:=\frac{\log 2}{\log \alpha}, \mu:=-\frac{\log \left(1-\alpha^{-(k-l)}\right)}{\log \alpha}, A:=21 \text { and } B:=\alpha .
$$

Clearly γ is an irrational number. We also put $N:=5 \cdot 10^{19}$, which is an upper bound on t by Lemma 2.1. We therefore apply Lemma 2.1 to inequality (4.24) for all choices $k-l \in\{1, \ldots, 106\}$ except when $k-l=1,2,3,6$ and get that

$$
k<\frac{\log (A q / \xi)}{\log B}
$$

where $q>6 N$ is a denominator of a convergent of the continued fraction of γ such that $\xi=\|\mu q\|-N\|\gamma q\|>0$. Indeed, using Sagemath, we compute

$$
q=q_{47}=323353430155291314826 .
$$

We find that if (k, l, t) is a possible solution of equation (1.2) with $\omega>0$ and $k-l \neq 1,2,3,6$, then $k<115$, which is a contradiction with $k>200$.

When $k-l=1,2,3,6$, the parameter μ becomes

$$
\mu=\left\{\begin{array}{lll}
2 & \text { if } & k-l=1 \\
1 & \text { if } & k-l=2 \\
2-\gamma & \text { if } & k-l=3 \\
3-2 \gamma & \text { if } & k-l=6
\end{array}\right.
$$

In that case, the corresponding value of ξ from Lemma 2.1 is always negative and therefore the reduction method is not useful for reducing the bound on k in
these instances. For this reason we need to use the properties of continued fractions to treat these cases.

For all that, one can see that if $k-l=1,2,3,6$. Then the resulting inequality from (4.24) has the shape

$$
0<|a \gamma-b|<\frac{21}{\alpha^{k}}
$$

with γ being an irrational number and $a, b \in \mathbb{Z}$. So, one can appeal to the known properties of the convergents of the continued fractions to obtain a nontrivial lower bound for

$$
|a \gamma-b|
$$

This clearly gives us an upper bound for k. Let us see. When $k-l=1$, from (4.24), we get that

$$
\begin{equation*}
0<t \gamma-(k-2)<\frac{21}{\alpha^{k}} . \tag{4.25}
\end{equation*}
$$

Let $\left[a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, \ldots\right]=[1,2,3,1,2,3,2,4 \ldots]$ be the continued fraction expansion of γ, and let denote p_{n} / q_{n} its nth convergent. Recall also that $t<5 \cdot 10^{19}$ by Lemma 4.1 .

Furthermore, $a_{N}:=\max \left\{a_{i}: i=0,1, \ldots, 44\right\}=a_{17}=134$. So, from the known properties of continued fractions, we obtain that

$$
\begin{equation*}
|t \gamma-(k-2)|>\frac{1}{\left(a_{N}+2\right) t} . \tag{4.26}
\end{equation*}
$$

Comparing estimates (4.25) and (4.26), we get right away that

$$
\begin{equation*}
\alpha^{k}<21 \cdot 136 \cdot t<2 \cdot 10^{23}, \tag{4.27}
\end{equation*}
$$

leading to $k<112$.
By the same argument as the one we did before ensures that $k-l<106$ in the case when $k-l=2,3,6$. We omit the details in order to avoid unnecessary repetitions. This completes the analysis of the cases when $k-l=1,2,3,6$. Consequently, $k<119$ always holds.

Suppose now that $\omega<0$. First, note that $\frac{10}{\alpha^{k}}<\frac{1}{2}$ since $k>200$. Then, from (4.22), we have that

$$
\left|1-e^{\omega}\right|<\frac{1}{2}
$$

thus

$$
\frac{1}{2}<e^{\omega}<\frac{3}{2}
$$

and therefore

$$
e^{|\omega|}<2
$$

Since $\omega<0$, we have

$$
0<|\omega| \leqslant e^{|\omega|}-1=e^{|\omega|}\left|e^{-|\omega|}-1\right|=e^{|\omega|}\left|e^{\omega}-1\right|<\frac{20}{\alpha^{k}}
$$

Then we obtain

$$
0<-t \log 2+k \log \alpha+\log \left(1-\alpha^{-(k-l)}\right)<\frac{20}{\alpha^{k}}
$$

By the same arguments used for proving (4.22), we obtain

$$
\begin{equation*}
0<k\left(\frac{\log \alpha}{\log 2}\right)-t+\frac{\log \left(1-\alpha^{-(k-l)}\right)}{\log 2}<\frac{29}{\alpha^{k}} \tag{4.28}
\end{equation*}
$$

We now put
$\gamma:=\frac{\log \alpha}{\log 2}, \mu:=\frac{\log \left(1-\alpha^{-(k-l)}\right)}{\log 2}, A:=29$ and $B:=\alpha$.
Indeed, with the help of Sagemath, suppose that

$$
q=q_{47}=368940346979638033217 .
$$

We find that if (k, l, t) is a possible solution of the equation (1.2) with $\omega<0$ and $k-l \neq 1,2,3,6$, then $k<119$, which is a contradiction with our assumption.

When $k-l=1,2,3,6$; we have

$$
\mu=\left\{\begin{array}{lll}
-2 \gamma & \text { if } & k-l=1 \\
-\gamma & \text { if } & k-l=2 \\
1-2 \gamma & \text { if } & k-l=3 \\
2-3 \gamma & \text { if } & k-l=6
\end{array}\right.
$$

In these cases, the resolution is done with the properties of continuous fractions as previously, and we will see that $k<119$ in each case. Thus Theorem 1.3 is proven.

Acknowledgements

Part of this work was done during a very enjoyable visit of B. Edjeou at AIMS Sénégal. This author thanks AIMS Sénégal for the hospitality and support. We also thank Bernadette Faye for useful discussions.

References

[1] S. Diaz Alvarado and F. Luca, Fibonacci numbers which are sums of two repdigits, Proceedings of the XIVth International Conference on Fibonacci numbers and their applications, (2011), pp. 97-111.
[2] A. Baker and H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. 20 (1969), 129-137.
[3] J. J. Bravo and F. Luca, On the Diophantine equation $L_{n}+L_{m}=2^{a}$, J. of Integer Sequences 17 (2014), Article 14.8.3.
[4] B. Edjeou, A. Tall, and M. B. F. B. Maaouia, Powers of Two as Sums of Three Lucas Numbers, Journal of Integer Sequences 23 (2020), Article 20.8.8.
[5] B. Edjeou, A. Tall, and M. B. F. B. Maaouia, On Pillai's problem whith Lucas numbers and powers of 3, INTEGERS 21 (2021), \#A108.
[6] Yu. Bilu, G. Hanrot, and P. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte), J. Reine Angew. Math. 539 (2001), 75-122.
[7] J. J. Bravo and F. Luca, On the Diophantine equation $L_{n}+L_{m}=2^{a}$, J. of Integer Sequences 17 (2014), Article 14.8.3.
[8] Y. Bugeaud, M. Mignotte, and S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. 163 (2006), 969-1018.
[9] Y. Bugeaud and M. Mignotte, On integers with identical digits, Mathematika 46 (1999), 411-417.
[10] R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^{n} \pm \beta^{n}$, Ann. Math. 15 (1913), 30-70.
[11] K. Chi Chim, and V. Ziegler, On diophantine equations involving sums of Fibonacci nimbers and poers of 2, INTEGERS. 18 (2018), \#A99.
[12] A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. 49 (1998), 291-306.
[13] T. Koshy, Fibonacci and Lucas numbers with Applications, WileyInterscience Publications, (2001).
[14] A. C. G. Lomelí and S. H. Hernández, Powers of two as sums of two Padovan numbers, INTEGERS 18 (2018), \#A84.
[15] M. Laurent, M. Mignotte, and Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321.
[16] F. Luca and S. Siksek, Factorials expressible as sums of two and three Fibonacci numbers, Proc. Edinb. Math. Soc. 53 (2010), 747-763.
[17] F. Luca, Repdigits as sums of three Fibonacci numbers, Math. Commun. 17 (2012),1-11.
[18] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II, Izv. Ran.Ser.Mat. 64 (2000), 125-180; Izv. Math. 64 (2000), 1217-1269.

[^0]: Keywords and phrases: Diophantine equations, linear form in logarithms, Lucas numbers, continued fractions, Baker-Davenport reduction method.

 2020 AMS Subject Classification: 11JXX.

