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Abstract

The purpose of this paper is to study the existence of solutions for the
nonlinear Sobolev type fractional partial differential equations with Dirichlet
boundary condition. Under suitable assumptions the results are established
by using the Leray-Schauder fixed point theorem.

1 Introduction

The existence of solutions for different types of fractional partial differential equa-
tions have been studied by many authors [[1H3}22]]. These equations are found to
be an effective tool to describe certain physical phenomena, such as diffusion pro-
cesses [14] and viscoelasticity theories [15]. In recent years, increasing interest
has been shown by many authors from various fields of science and engineering to
study fractional partial differential equations. Some of these fractional equations
like one-dimensional time-fractional diffusion-wave equation were used for mod-
eling certain physical processes (see [25]]). Regarding fractional partial differential
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equations, Luchko [20]] used the Fourier transform method of the variable sepa-
ration to construct a formal solution and under certain conditions he showed that
the formal solution is the generalized solution of the initial-boundary value prob-
lem. Further he proved the uniqueness [19] by using the maximum principle for
generalized time fractional diffusion equation. By applying the energy inequality,
Oussaeif and Bouziani [23]] proved the existence and uniqueness of solution for
parabolic fractional differential equations in a functional weighted Sobolev space
with integral conditions. Parthiban and Balachandran [24] found the solutions of
system of fractional partial differential equations by using Adomain decomposi-
tion method. Joice Nirmala and Balachandran [|16] obtained the solution of time
fractional telegraph equation by the same method and analysed the efficiency of
the method. Using measure of noncompactness and Monch’s fixed point theorem,
the existence of solutions is studied by Guo and Zhang [13]] for a class of impulsive
hyperbolic partial differential equations.

Brill [11] and Showalter [26] investigated the existence problem for semilin-
ear Sobolev type equations in Banach spaces. The Sobolev type semilinear dif-
ferential equation serves as an abstract formulation of partial differential equa-
tions which arise in various applications such as in the flow of fluid through fis-
sured rocks, thermodynamics and shear in second order fluids. Lightbourne and
Rankin [21]] discussed the Cauchy problem for a partial functional differential
equation of Sobolev type. Balachandran et al. [10] established the existence of
solutions for Sobolev type semilinear integrodifferential equations whereas Bal-
achandran and Uchiyama [8] studied the same problem for nonlinear integrodiffer-
ential equation of Sobolev type in Banach spaces. Several authors have studied the
nonlocal Cauchy problem for Sobolev type equations in Banach spaces [5,/6} 9.
Balachandran and Kiruthika [7]] discussed the existence problem for abstract frac-
tional integrodifferential equations of Sobolev type. Existence of solutions for frac-
tional integrodifferential equations of Sobolev type with deviating arguments are
studied in [[17]]. In this paper, we extend the method of [22]] to discuss the existence
problem for fractional order Sobolev type partial differential equations.

2 Preliminaries

In this section, we introduce some notations and basic facts of fractional calculus.
Let @ C R and C(J,R) is the Banach space of all continuous functions from
J =10,T] into R. Let I'(-) denote the gamma function. For any positive number
0 < a < 1, the Riemann Liouville derivative and Caputo derivative are defined as
follows:
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Definition 2.1. [/8] The Riemann-Liouville partial fractional integral operator of
order o« > 0 with respect to t of a function z(x, t) is defined by

¢
1
I%z( F/ z(x, s) ds.
0

Definition 2.2. [|/8|] The Riemann-Liouville partial fractional derivative of order
a > 0 of a function z(x,t) with respect to t of the form

¢
o 1 0 z(x,s)
— t) = — d
g (T 1) P@—aﬁ%/@—Qas
Definition 2.3. /8] The Caputo partial fracti([)]nal derivative of order o > 0 with

respect to t of a function z(x,t) is defined as

t

o~ 1 82:63)
8taz< 'l —a) / t—s) ds.

0

There has been a significant development in ordinary and partial differential
equations involving both Riemann-Liouville and Caputo fractional derivatives in
the past few years [4}12]. The Riemann Liouville and Caputo fractional derivatives
are linked by the following relationship.

Co o~ z(x,0)
g 0 = @) —

In this paper, we consider the Sobolev type fractional partial differential equation
of the form

Caa

5 [u(z,t) — Au(z, t)] = Au(x,t) + f(t,u(x,t)), t€ J, 2.1)

where 0 < o < 1, Q is a bounded subset of R with smooth boundary 0€2, J =
[0,T] and f : J x R — R is a nonlinear continuous function. The initial and
boundary conditions are given by

u(z,0) = ug(z), T € €, (2.2)
w(z, )= 0,  (z,t) €I J. 2.3)
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where ug(z) € C?(£). In order to establish the main result we assume the follow-
ing conditions:

(Hy) f(t,u) is continuous with respect to u, Lebesgue measurable with respect to
t and satisfies

1
Wﬂ/qﬁ(az)f(t, u) dz Sf(t,/gqﬁ(x)u(a:,t) dx//QQs(x) dz),

where ¢(x) is an eigenfunction.

(H2) There exists an integrable function m(t) : J — [0, c0) and a constant L > 0
such that

IfE Wl < m(E)ull
T
and/(T —5)* lm(s)ds < L for some a > 0.
0

It is easy to show that the initial value problem (2.1)) is equivalent to the following
equation

u(r,t) = uo(w) — uf(z) + Au(z,t)
L — 3 a—1 ulz. s s ule. s s
+F(a)0/(t ) Au(z, s) + f(s,ulz,s))] ds. (2.4

3 Existence Result

Consider the following eigenvalue problem

Au+Iu = 0, (x,t) € QxJ, } G.1)

u = 0, (x,t) €90 xJ,

where A is a constant not depending on the variables x and t. The theory of
eigenvalue problems is well documented in [27]]. Thus, for z € 2 the smallest
eigenvalue A\ of the problem (3.1) is positive and the corresponding eigenfunction
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¢(x) > 0. Now we define the function U(¢) as

Ju(z, t)p(z) dx

Ut) =2 (3.2)
*) J ¢(z) dx
Q
Theorem 3.1. Assume that (HI)-(H2) holds and suppose that
(MT*+ La) < (1 4+ A)D(a+1). 3.3)

Then there exists at least one solution for the initial value problem ([2.1) on J.

Proof. First we have to prove that the initial value problem (2.1)) has a solution if

and only if the equation

I'(a)
U(t)zl_:)\l[ / $)* U (s) ds
0
/t—salfsU( )) ds], (3.4)
0

where U*(0) = U(0) — V/(0) and V(0) = ( ({ug(x)qb(x) dx) / g{ é(z) dx, has a
solution.

Step 1. The proof of sufficiency is similar to that of Lemma 3.1 [22]]. To prove the
necessary part, let u(x,t) be a solution of (2.1). This implies u(x, ) is a solution
of (2.4). Now multiplying both sides of equation (2.4) by ¢(x) and integrating with
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respect to z € 2, we get

/¢(x) u(z,t) dx—/¢> z)ug(x dx—/¢ dx+/¢(x)Au(x,t) dx
Q

Q

/¢ / (t —s)* TAu(z, s) ds dx

+/¢ / (t — 5)°L f(s, u(z, 5)) ds dx.

Using Green’s formula and assumption (H; ), we get

¢
1 a 1
Ut £ U0 - / Ul(s) ds
0
. ¢
_ a 1
e / (t — 5)°"Lf(s,U(s)) ds]. (3.5)
0
[UOMT* + La) _ -
Choose b > AT Mo+ 1) = OuTo & La) andlet K ={U : U € C(J,R),
|| U(t) — U(0) ||< b}. Define the nonlinear operator
F:C(J,R) = C(J,R)
as
. ¢
— a 1
FU®) = 500 - / U(s) ds
0

t
/t—salfsU( )) ds]. (3.6)
0

Clearly U(0) € K. This means that K is nonempty. From our construction of K,
we can say that K is closed and bounded. Now for any U;,Us € K and for any
ai,as > 0 suchthat aq + ag = 1,
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| a1U1(t) + azUs(t) = U(0) < ar [| Ur(t) = U(0) || +az || Ua(t) = U(0) ||

< a1b+ ashb =0b.

Thus a1 Uy + aUs € K. Therefore K is a closed bounded convex set. Next we
have to prove that the operator F' maps K into itself.

t

FU@t) - F =— —s)! s
| PU®) = FUO) = 15| Fy [ (=970 dse
0
t
/t—salfsU())d
0
\ t
1 al
< ——— _
S W (U0 ]—i—b/t $)* " ds
0
t
al
e [ e ) s
0

Then by using (Hz), we get

— # / _Sa—l S
| FU®) = FUO) I < 557y (0O +0) (O/<t ) d)

t
_ al
+ e [ M= 0 ) as
0

A

< W(HU( ) +0)

(T — s)*ds

O\.ﬂ
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T
1 Oc 1
+m ”U H—Fb 0/m — ds
YV A L
S T+ )al(@) ([UO)[| +b) + T+ M) (IU0)[] +b)
— (lU©)]l +b) o
= Tyt +Lal

<b.
Therefore F' maps K into itself. Now define a sequence {Uj(¢)} in K such that
Us(t) = U(0) — V(0) and Uyyq(t) = Uk(t), k=0,1,2,...

Since K is closed, there exists a subsequence {Uy, (t)} of Ug(t) and Ut) € K
such that

lim Uy, (t) = U(t).

ki—o0

Then Lebesgue’s dominated convergence theorem yields that

0(t) = U(0) — V(0) — ?;) / (t — 5)* 1T (s) ds
0

1

—8)* L f(s,U(s))ds.
o -9 T

o

Next we claim that F' is completely continuous.
Step 2. For that first we prove F' : K — K is continuous. Let {U,,(t)} be a
convergent sequence in K such that Uy, (t) — U(t) as m — oo. Then for any
€ >0, let
1+ M) (a+1)

20T«

1Un(t) =U@®)] <

By assumption (H1),
f&Un(t) — f(£,U(2)),
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for each ¢t € J and since

|f(t, Un(t)) — fF(&,U@)| < A+ A)T(a+1)

€,

2T«
we have

|[FUm(t) — FU(®)||

T
S Ty 0= U0l

! t —s)! — S S S
AR [, €9 1 Unle) S V()
< S+ g | T, Un(s) ~ S5, U
=2 1+ A)T(a) Jo s $Ymls s,U(s))l|ds

€.

IN

Thus FU,,(t) — FU(t) as m — oo and so F' is continuous.

Moreover, for U € K,

IEU@) | < [[FU®#) = FUQO) + [FUO)]] < b+
< O+ [IVO)I[ + b.

1+ XM

[T (0) + [V (0)]

Hence F'K is uniformly bounded. Now it remains to show that /' maps K into an

equicontinuous family.

Step 3. Now let U € K and t1,t2 € J. Thenif 0 < t; < to < T, by the

assumptions (H 1) — (H2) we obtain

| FU(t1) = FU(t2) ||

t1

A1

= (14 )T (a) (IOl +5) / (b2 —8)* ' = (t1 —5)* ") ds

0
to

uwmw+w/@—@ams

t1

Ln
(14 A1) ()
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(ta —s)* " — (t1 — 3)0‘_1>f(s, U(s)) ds

1+)\1

—|— g—so‘lfsU())

+)\1

t1

OO +) [ (2= 97 = (0= )7 ) ds
0

<M
~ (14 M) (a)

A1

+MM(’U(O)“+b)/(t2_S)a—1dS
”+UA1 | +b) H / e )as
1H5A1 i H/ — )% 'ds

The right hand side of the above inequality is independent of U € K and goes to
zero as t1 — to. Thus, F' maps K into an equicontinuous family of functions. In
the view of the Ascoli-Arzela theorem, F' is completely continuous. Then by the
Leray-Schauder fixed point theorem, F' has a fixed point in K, which is a solution

of (2.1). O

4 Abstract Fractional Sobolev Equation

The fractional partial differential equation (2.1)) can be discussed in abstract setting
asin [7,[11,21] and it can be written as

C aa
T(;[Bu )] = Au(x,t)+ f(t,u(x,t)), te J, 4.1

u(z,0) = wuo(z)

£}

where B = I — A and A = A. Suppressing the phase variable and considering
in general Banach space X the above equation can be written as abstract fractional
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differential equation of the form

CDYBu(t)] = Au(t)+ f(t,u(t)),t e J, 4.2)
u(0) = wo

where © D is the Caputo fractional derivative with 0 < o < 1. The operators A
and B are linear with domains contained in a Banach space X and ranges contained
in a Banach Space Y and the operators A : D(A) C X — Y and B : D(B) C
X — Y satisfy the following hypotheses:

(C1) A and B are closed linear operators,
(C2) D(B) C D(A) and B is bijective,
(C3) B~!:Y — D(B) is compact,

(C4) B™'A: X — D(B) is continuous.

The nonlinear operator f : J x X — Y is continuous. It is easy to prove that the
equation (4.2)) is equivalent to the integral equation

=u 1 t—sa_l L Au(s)ds 1 t—sa_l “Lf(s,u(s))ds
ut) = o+ [ (=97 B Audse s [ =07 <(>4>c3Z).

The existence problem for the equation (#.3) has been already discussed in [[7,[17].
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