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Abstract

In this work, we consider the sixth-order Parabolic-type equations with
time dependent coefficient. We proved a lower and an upper bound for the
blow-up time is determined by means of a differential inequality argument
when blow up occurs.

1 Introduction
This work, we study the following sixth-order Parabolic-type equations with time
dependent coefficient with initial-boundary value:


zt + zxxxx − zxxxxxx + zxxxxt = α (t) g (zx)x , x ∈ Ω, t > 0,

z (x, 0) = z0 (x) , zt (x, 0) = z1 (x) , x ∈ ∂Ω, t > 0,

z (0, t) = z (1, t) = zxx (0, t) = zxx (1, t) = zxxxx (0, t) = zxxxx (1, t) = 0, x ∈ Ω, t ≥ 0,

(1.1)

here Ω ⊂ Rn (n ≥ 1) is a domain with smooth boundary ∂Ω in Rn. The coefficient
α (t) is assumed a strictly continuously and positive differentiable function in Ω =
(0, 1) . The nonlinear smooth function g (s) satisfies the following hypotheses:
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(H1) g (s) = 0, g (s) is monotone and is convex for s > 0, concave for s < 0,

(H2) |g (s)| ≤ β |s|q , β > 0, 1 < q < +∞, ∀s ∈ R,

(H3) |q + 1|G (s) ≤ sg (s) , for some q > 1, ∀s ∈ R, G (s) =
∫ s
0 f (τ) dτ.

This mathematical model has emerged in the creation of spatially periodic pat-
terns in bistable systems as well as a framework for understanding phase front
behavior in materials that are transitioning among liquid and solid states [3].

Anbu et al. [3] studied the sixth-order partial differential equation (PDE)

zt − zxxxxxx +Azxxxx −Bzxx = f (z) .

They demonstrate the presence of global solutions for the given equation by em-
ploying Dirichlet-Neumann type boundary conditions. Additionally, they deduce
an upper limit for the blow-up time of the solution. Finally, they acquire a lower
limit for the blow-up time of the solution through the application of the first-order
differential inequality technique in the event of blow-up.

Gyulov et al. [6] concerned with the following problem:

z(6) +Az(4) +Bz′′ + Cz = f(t, z).

They proved existence for a semilinear sixth-order ordinary differential equation
(ODE). Later, Zhang and An [17] studied the existence and multiplicity of positive
solutions of the same equation. Also, Li et al. [9] established the existence of
positive solutions of the same equation.

Tersian and Chaparova [15] studied the existence of periodic solutions of the
sixth-order ODE

z(6) +Az(4) +Bz′′ + z − z3 = 0.

Han [7] concerned the blow-up property of solutions to the following fourth-
order parabolic equation with a general nonlinearity

zt +∆2z = k (t) f (z) .

He showed, under certain conditions on the initial data, that the solutions to this
problem blow up in finite time, using differential inequalities. Also, upper and
lower bounds for the blow-up time are derived when blow-up occurs.

Di and Shang [4] considered the metaparabolic equation with time dependent
coefficients

zt − zxx − zxxt + zxxxx = k (t) f (zx)x . (1.2)

They proved an upper and lower bound for blow-up time. If differentiating (1.2)
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with respect to x and integrating by parts and take k (t) = 1, then we have

zxt − zxxxt + zxxxxx = φ (zx)xx .

It is the well-known viscous Chan- Hilliard equation, here φ (zx) = f (zx) + zx.

Pişkin and Fidan [12] considered the variable coefficients wave equation

ztt −∆z −∆zt + µ1 (t) |zt|p−2 zt = µ2 (t) |z|q−2 z.

They proved the blow up of solutions.
Wu [16] considered the Petrovsky equation with variable coefficients

ztt +∆2z −∆z − ω∆zt + α (t) zt = |z|p−2 z,

and obtained the blow-up result with lower and upper bounded.
Pişkin and Fidan [13] concerned with the following problem:

ztt − div
(
|∇z|m−2∇z

)
+∆2z + µ1 (t) |zt|p−2 zt = µ2 (t) |z|q−2 z.

They prove the blow up of solutions for finite time with negative initial energy.
In our research, we employed various types of Dirichlet-Neumann boundary

conditions in conjunction with a general nonlinear term. Additionally, we derived
the primary outcomes of this paper using a methodology distinct from those dis-
cussed in prior works. While some of the literature has addressed blow-up solutions
for higher-order PDE’s and coupled parabolic systems, to the best of our knowl-
edge, there is currently no article available that specifically explores the finite-time
blow-up solutions for a sixth-order PDE with a general nonlinearity term f(z).
Consequently, we endeavored to investigate and present new and noteworthy find-
ings in this regard. For a more in-depth exploration of blow-up phenomena in
higher-order PDEs, readers are encouraged to consult the book by Galaktionov [5].

Blow up phenomena commonly arise in solutions to reaction-diffusion partial
differential equations of various types. A recent comprehensive overview of these
methods can be found in the monograph by Al’shin et al. [2], Hu [8] and Pişkin
[11].

Motivated by above-mentioned papers, in this paper, we investigate to prove
the upper and lower bounds for the blow up time of solutions for problem (1.1),
which was not previously studied, where we study sixth-order parabolic equation
with time dependent coefficient source terms α (t) g (zx)x. Our study is motivated
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by Di and Shang [4].
The rest of the work is as follows: In Part 2, we give some assumptions needed

in this work and under suitable conditions, we obtain an upper bounds for the blow
up time. In Part 3, under suitable conditions, we obtain a lower bounds for the blow
up time.

2 Preliminaries

In this part, we present certain lemmas and assumptions required for the formu-
lation and proof of our results. Let ∥.∥ , ∥.∥p and ∥.∥Wm,p(Ω) indicate the typical
L2 (Ω) , Lp (Ω) and Wm,p (Ω) norms (see [1, 14]).

W =
{
z ∈ H4 (Ω) : z (0, t) = z (1, t) = zxx (0, t) = zxx (1, t) = zxxxx (0, t)

= zxxxx (1, t) = 0} .

We define the following functionals

J (t) =
1

2
∥zxx∥2 +

1

2
∥zxxx∥2 ,

and
I (t) = ∥zxx∥2 + ∥zxxx∥2 .

The functional E of the problem (1.1) is as follows:

E (t) =
1

2
∥zxx∥2 +

1

2
∥zxxx∥2 +

∫ 1

0
k (t)G (zx) dx. (2.1)

Lemma 2.1. Assume that z is a solution to the problem (1.1). Then the energy of
problem (1.1) defined by (2.1) satisfies and

E′ (t) = −∥zt∥2 − ∥zxxt∥2 ≤ 0. (2.2)

Proof. Multiplying the eq. (1.1) by zt integrate it over Ω, apply Green’s formula,
we obtain

E (t)− E (0) = −
∫ t

0
∥zt∥2 dτ −

∫ t

0
∥zxxt∥2 dτ, for t ≥ 0. (2.3)
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Then we define the following auxiliary functions:

K (t) = ∥z∥2 + ∥zxx∥2 , (2.4)

and

M (t) =
1

2
∥zxx∥2 +

1

2
∥zxxx∥2 +

∫ 1

0
α (t)G (zx) dx. (2.5)

3 Upper bound for blow-up time

In this part, we show an upper bound for blow-up time T ∗ of the solution for
problem (1.1).

Theorem 3.1. Let z0 ∈ W 2,q+1 (Ω) ∩W and g satisfy the hypotheses (H1)-(H3).
Let’s assume that the data for the problem (1.1) satisfies the following conditions:

g (t) < 0, g′ (t) ≤ 0, (3.1)

M (0) =
1

2
∥z0xx∥2 +

1

2
∥z0xxx∥2 +

∫ 1

0
α (0)G (z0x) dx < 0. (3.2)

Then, we infer that the solutions z of problem (1.1) can’t exist for all time. There-
fore, blow-up time T ∗ of problem (1.1) is given by

T ∗ ≤ K (0)

(1− q2)M (0)
, (3.3)

here K (0) = ∥z0∥2 − ∥z0xx∥2

Proof. Firstly, by taking the first order derivative of (2.5), we get

M′ (t) =

∫ 1

0

α′ (t)G (zx) dx+

∫ 1

0

α (t) g (zx) zxtdx+

∫ 1

0

zxxzxxtdx+

∫ 1

0

zxxxzxxxtdx,

=

∫ 1

0

α′ (t)G (zx) dx+

∫ 1

0

[−zxxxxxx + zxxxx − α (t) g (zx)x] ztdx, (3.4)

where G (s) is nonnegative for all s ∈ R under the hypothesis (H1) (the Lemma
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2.2 of [10]). Therefore, combining (1.1), (3.1) and (3.4), we get

M′ (t) =

∫ 1

0
α′ (t)G (zx) dx+

∫ 1

0
[−zxxxxxx + zxxxx − α (t) g (zx)x] ztdx,

= −∥zt∥2 − ∥zxxt∥2 < 0. (3.5)

It then follows that M (t) function (2.5) which is a non-increasing function, we
obtain

M (t) ≤ M (0) < 0. (3.6)

For the sake of simplicity, let’s define the function F (t) = −M (t) for all t in the
interval [0,∞) . Referring to equations (3.5) and (3.6), we observe:

F ′ (t) = M′ (t) ≥ ∥zt∥2 + ∥zxxt∥2 > 0, (3.7)

and
F (t) ≥ F (0) > 0. (3.8)

Differentiating K (t) with respect to t, based on the definition of F (t) and hypoth-
esis (H1), we obtain

K′ (t) = 2

∫ 1

0
zztdx+ 2

∫ 1

0
zxxzxxtdx

= 2

∫ 1

0
z [−zxxxx − zxxxxt + zxxxxx + α (t) g (zx)x] dx+ 2

∫ 1

0
zxxzxxtdx

= −2 ∥zxx∥2 − 2 ∥zxxx∥2 − 2

∫ 1

0
α (t) g (zx) zxdx

≥ −2 ∥zxx∥2 − 2 ∥zxxx∥2 − 2 (q + 1)

∫ 1

0
α (t)G (zx) dx

= 2 (q + 1)

[
− 1

q + 1
∥zxx∥2 −

1

q + 1
∥zxxx∥2 −

∫ 1

0
α (t)G (zx) dx

]
≥ 2 (q + 1)

[
−1

2
∥zxx∥2 −

1

2
∥zxxx∥2 −

∫ 1

0
α (t)G (zx) dx

]
= 2 (q + 1)F (t) . (3.9)
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If we multiply K(t) by F ′(t), we obtain

KF ′ ≥
∫ 1

0

[
z2 + z2xx

]
dx

∫ 1

0

[
z2t + z2xxt

]
dx

=

∫ 1

0
z2dx

∫ 1

0
z2t dx+

∫ 1

0
z2dx

∫ 1

0
z2xxtdx

+

∫ 1

0
z2xxdx

∫ 1

0
z2t dx+

∫ 1

0
z2xxdx

∫ 1

0
z2xxtdx. (3.10)

Utilizing the Schwarz’s and Young’s inequalities, we obtain

∫ 1

0
zztdx ≤

(∫ 1

0
z2dx

) 1
2
(∫ 1

0
z2t dx

) 1
2

, (3.11)

∫ 1

0
zxxzxxtdx ≤

(∫ 1

0
zxxdx

) 1
2
(∫ 1

0
zxxtdx

) 1
2

, (3.12)

and∫ 1

0
zztdx

∫ 1

0
zxxzxxtdx ≤ 1

2

∫ 1

0
z2dx

∫ 1

0
z2xxtdx+

1

2

∫ 1

0
z2xxdx

∫ 1

0
z2t dx.

(3.13)
By substituting (3.11)-(3.13) into (3.10), we can deduce from (3.9) that

KF ′ ≥
∫ 1

0

[
z2 + z2xx

]
dx

∫ 1

0

[
z2t + z2xxt

]
dx

≥ 1

4

(
K′ (t)

)2
≥ q + 1

2
K′F. (3.14)

The inequality above can be expressed as follows(
FK− q+1

2

)′
= K− q+3

2

{
KF ′ − q + 1

2
K′F

}
≥ 0. (3.15)

Integrating (3.15) with respect to t, we have

F (t) (K (t))−
q+1
2 ≥ F (0) (K (0))−

q+1
2 = N . (3.16)
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From (3.9) and (3.16), it follows that

1

1− q2

(
K− q+1

2

)′
=

1

2 (q + 1)
K′K− q+1

2 ≥ FK− q+1
2 ≥ N . (3.17)

Integrating (3.17), with respect to t, we get

(K (t))
1−q
2 ≤ (K (0))

1−q
2 −

(
q2 − 1

)
N t, (3.18)

according to (3.18), we obtain

K (t) ≥ 1[
(K (0))

1−q
2 − (q2 − 1)N t

] 2
q−1

. (3.19)

Clearly, the inequality stated above cannot be satisfied for all t > 0. In fact, equa-
tion (3.19) results in the upper bound K(0)

(1−q2)M(0)
for T ∗.

4 Lower bound for blow-up time

In this part, we show a lower bound for blow-up time T ∗ of the solution for problem
(1.1).

Theorem 4.1. Assume that z be a blow-up solution to problem (1.1) and let g
satisfy the hypotheses (H1)-(H3). Additionally, assume that z0 ∈ W 2,q+1 (Ω)∩W
and α (t) < 0 satisfies the condition

α′ (t)

α (t)
≤ η, for all t ≥ 0 (4.1)

for some constant η ≥ 0. Under these conditions, we can conclude that the auxil-
iary function

N (t) = (−α (t))
2

q−1

[
∥zxx∥2 + ∥zxxxx∥2

]
, (4.2)

at a finite time T ∗, t becomes unbounded.
Furthermore, a lower bound for the blow-up time T ∗ can be estimated by

T ∗ ≥


2N (0)1−q

(q−1)β2γ2q , if η = 0,

1
2η ln

(
4ηN (0)1−q

(q−1)β2γ2q

)
, if η > 0,

(4.3)
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here C∗ is the optimal constant that satisfies the inequality ∥zxx∥2q ≤ C∗ ∥zxxxx∥ .

Proof. By taking the first order derivative of (4.2), we get

N ′ (t) =
2

q − 1
(−α (t))

3−q
q−1
(
−α′ (t)

) [∫ 1

0
z2xxdx+

∫ 1

0
z2xxxxdx

]
+(−α (t))

2
q−1

[∫ 1

0
zxxzxxtdx+

∫ 1

0
zxxxxzxxxxtdx

]
≤ 2η

q − 1
N (t) + 2 (−α (t))

2
q−1

∫ 1

0
[zt + zxxxxt] zxxxxdx

=
2η

q − 1
N (t) + 2 (−α (t))

2
q−1

∫ 1

0
[zxxxx + zxxxxx + α (t) g (zx)x] zxxxxdx

=
2η

q − 1
N (t) + 2 (−α (t))

2
q−1

∫ 1

0
z2xxxxdx− 2 (−α (t))

2
q−1

∫ 1

0
z2xxxxxdx

−2 (−α (t))
q+1
q−1

∫ 1

0
g (zx) zxxxxxdx. (4.4)

Therefore, by using Schwarz’s inequality, Young’s inequality and hypothesis (H2),
we get

−2 (−α (t))
q+1
q−1

∫ 1

0
g (zx) zxxxxxdx

≤ 2 (−α (t))
q+1
q−1

∫ 1

0
|g (zx) zxxxxx| dx

≤ 1

2
(−α (t))

2q
q−1

∫ 1

0
|g (zx)|2 dx+ 2 (−α (t))

2q
q−1

∫ 1

0
z2xxxxxdx

≤ β2

2
(−α (t))

2q
q−1

∫ 1

0
|zx|2q dx+ 2 (−α (t))

2q
q−1

∫ 1

0
z2xxxxxdx. (4.5)

Now, we using the Sobolev embedding theorem, we get∫ 1

0
|zxx|2q dx ≤ C2q

∗

(∫ 1

0
|zxx|2 dx+

∫ 1

0
|zxxxx|2 dx

)q

. (4.6)

Here used the inequality

(a+ b)p ≤ 2p−1 (ap + bp) ,
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for a, b ≥ 0 and 1 ≤ p < ∞. Substituting (4.5) and (4.6) into (4.4), we get

N ′ (t) ≤ 2η

q − 1
N (t) +

β2C2q
∗

2
(−α (t))

2q
q−1

(∫ 1

0
|zxx|2 dx+

∫ 1

0
|zxxxx|2 dx

)q

≤ 2η

q − 1
N (t) +

β2C2q
∗

2
N (t)q . (4.7)

Therefore, we obtain to consider inequality (4.7) Case 1 and Case 2.

Case 1: η = 0. Integrate (4.7) over (0, 1) , we get

N (t)1−q ≥ N (0)1−q − (q − 1)β2C2q
∗

2
t. (4.8)

Case 2: η > 0. Hence, integrating (4.8) with respect to t, we have∫ N (t)

N (0)

dτ

2η
q−1τ + β2C2q

∗
2 τ q

≤ t, (4.9)

or through τ = ζ
1
q ,

1

q − 1

∫ N (t)q−1

N (0)q−1

dζ

ζ
(

2η
q−1 + β2C2q

∗
2 ζ

) ≤ t. (4.10)

Furthermore, (4.10) is integrable and leads to

N (t)1−q ≥ e−2ηt

[
N (0)1−q +

(q − 1)β2C2q
∗

4η

]
− (q − 1)β2C2q

∗
4η

.

Finally, utilizing Theorem 3, there exists a T ∗ such that lim
t→T ∗−

N (t) = 0, leads to

the lower bound

T ∗ ≥ 1

2η
ln

(
4ηN (0)1−q

(q − 1)β2C2q
∗

)
,

which complete the proof of Theorem 4.1.
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