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Abstract

In this study, we have employed Elzaki Adomian Decomposition Method
(EADM) to solve Duffing Equation. This method is depends on Elzaki Trans-
form and Adomian decomposition method. Besides, three examples are rep-
resented to illustrate the validity and accuracy of the proposed method, as
shown in the figures.

1 Introduction

Several natural systems are modeled by nonlinear differential equations which can-
not be easily solved. Therefore, the investigation of solving such equations by
other methods is an important topic of the research. Lots of different methods
have been developed to get exact and approximate solutions to these equations
in recent years. Some of these methods are the Adomian decomposition method,
Differential transformation method, Homotopy perturbation method, Tanh method,
Elzaki Transform, and Variational iteration method [2,4–13]. Also, these equations
have been solved by Laplace Decomposition Method, and Fourier decomposition
method [1, 3, 14].
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In this study, approximate solution of Duffing equation has been found by using
Elzaki decomposition method. The Duffing equation is an ordinary differential
equation of second order, that is

y′′ + αy′ + βy + γy3 = h(x) (1.1)

y(0) = A, y′(0) = B, (1.2)

where α, β, γ,A,B are real constants.
In this article, three examples that were previously solved by other methods were
solved using EADM. The results have been seen consistent with the literature.

2 Preliminaries

Definition 2.1. The Elzaki transform of h(x) is given by

E(h(x)) = u

∞∫
0

e−
x
u .h(x)dx, x > 0.

Theorem 2.1. [4, 13] The Elzaki Transformations of some functions :

h(x) E(h(x))

1 u2

xn n!un+2

eax u2

1−au

cosax u2

1+a2u2

sin ax au3

1+a2u2 .

Theorem 2.2. [4, 13]If E(h(x)) = A(u), then

i)E
[
h ′(x)

]
=

A(u)

u
− uh(0)

ii)E
[
h ′′(x)

]
=

A(u)

u2
− h(0)− uh ′(0).
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3 EADM for the Solution of Duffing Equation

Consider the Duffing equation (1.1) with ICs (1.2) and by applying Elzaki trans-
form to Eq (1.1), we get

E(y′′) + αE(y′) + βE(y) + γE(y3) = E (h(x))

T

u2
− y(0)− uy′(0) + α

(
T

u
− uy(0)

)
+ βT + γE(y3) = E (h(x))

T

u2
= E(f(x)) + y(0) + uy′(0)− α

(T
u
− uy(0)

)
− βT − γE(y3)

T = u2y(0)+u3y′(0)−(αu+βu2)T+αu3y(0)−γu2E(y3)+u2E(h(x)) (3.1)

apply the inverse Elzaki transform to Eq (3.1), we obtain :

E−1 (T ) = E−1

[
u2y(0) + u3y′(0)−

(
αu+ βu2

)
T

+ αu3y(0)− γu2E(y3) + u2E (h(x))

]
So we get the following iteration relation.

yn+1 = E−1
[
−
(
αu+ βu2

)
E (yn)

]
− γE−1

[
u2E(An)

]
,

where An’s Adomian polynomials

A0 = y30, A1 = 3y1.(y0)
2, A2 = 3y2.(y0)

2 + 3y0(y1)
2

A3 = 3y3(y0)
2 + 6y0y1.y2 + (y1)

3

and

y0 = E−1
[
u2y(0) + u3y′(0) + αu3y(0) + u2E (h(x))

]
we can use the taylor expansion of the function h at x = 0, is given by

h(x) ≈
K∑
i=0

aix
i
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than we get approximation solution as

y ≈
K∑
i=0

yi.

4 Numerical Examples

Example 4.1. [1, 8, 10, 11]Consider the following Duffing equation :

α = 0, β = 3, γ = −2

y′′ + 3y − 2y3 = cosx. sin 2x (4.1)

with ICs
y(0) = 0, y′(0) = 1

The exact solution is
y(x) = sinx

h(x) = cosx.sin2x ≈ 2x− 7x3

3
+

61x5

60
− 547x7

2520
+

703x9

25920
.

y0 = E−1
[
u3 + u2

(
2u3 − 14u5 + 122u7 − 1094u9

)]
≈ x+

x3

3
− 7

60
x5 +

61x7

2520
− 547

181440
x9

y1 = E−1
[
−3u2E (y0)

]
+ 2E−1

[
u2E(A0)

]
= E−1

[
−3u2

(
u3 + u2

(
2u3 − 14u5 + 122u7

))
+ 2E−1

(
u2E(− 1

60
x7 + x5 + x3)

)]
= E−1

[
−3u2

(
u3 + u2

(
2u3 − 14u5 + 122u7

))
+ 2E−1

(
u2

(
−84u9 + 120u7 + 6u5

))]
= E−1

[
−3u5 + 6u7 + 282u9 − 534u11

]
≈ −x3

2
+

x5

20
+

47

840
x7 − 89

60480
x9
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A1 = 3y1.(y0)
2

= 3

(
−x3

2
+

x5

20
+

47

840
x7 − 89x9

60480

)(
x+

x3

3
− 7

60
x5 +

61x7

2520
− 547x9

181440

)2

≈ −3x5

2
− 17x7

20

y2 = E−1
[
−3u2E (y1)

]
+ 2E−1

[
u2E(A1)

]
= E−1

[
−3u2

(
−3u5 + 6u7 + 282u9 − 534u11

)]
+ 2E−1

[
−180u9 − 4284u11

]
= E−1

[
9u7 − 378u9 − 9414u11

]
=

3x5

40
− 3x7

40
− 523

20160
x9

A2 = 3y2.(y0)
2 + 3y0 (y1)

2 ≈ 39x7

40

y3 = E−1
[
−3u2E (y2)

]
+ 2E−1

[
u2E(A2)

]
= E−1

[
−27u9 + 10962u11

]
= −3x7

560
+

29

960
x9

A3 = 3y3.(y0)
2 + 6y0y1y2 + (y1)

3 ≈ −207x9

560

y4 = E−1
[
−3u2E (y3)

]
+ 2E−1

[
u2E(A3)

]
= E−1

[
81u11

]
= 81

x9

9!
=

x9

4480
.

Thus, the approximate solution with the first five terms is obtained as follows.
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y ≈ y0 + y1 + y2 + y3 + y4

= x+
x3

3
− 7

60
x5 +

61x7

2520
− 547x9

181440

−x3

2
+

x5

20
+

47

840
x7 − 89x9

60480

+
3x5

40
− 3x7

40
− 523x9

20160

−3x7

560
+

29x9

960

+
x9

4480

= x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
= ϕ5(x).

Above equation is first five terms of Maclaurin expansion of sinx which is a
solution to Eq (4.1). by taking elzaki transform of the first five terms, we obtain

E [ϕ5(x)] = u3 − u5 + u7 − u9 + u11.

All of the [L/M ] pade approximation of E [ϕ5(x)] , get [L/M ] = u3

1+u2 .

By applying inverse Elzaki transform to [L/M ], we obtain :

E−1 [L/M ] = E−1
[

u3

1+u2

]
= sinx.

Thus a complete solution is obtained.

Example 4.2. [5, 11] Consider the Duffing’s equation : α = β = γ = 1.

y′′ + y′ + y + y3 = cos3 x− sinx (4.2)

y(0) = 1, y′(0) = 0.

The exact solution is y(x) = cosx.

h(x) = cos3 x− sinx ≈ 1− x− 3x2

2
+

x3

6
+

7x4

8
.
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Figure 1: Solution of Equation (4.1) by EADM.

E [f(x)] ≈ E

[
1− x− 3x2

2
+

x3

6
+

7x4

8

]
≈ u2 − u3 − 3u4 + u5 + 21u6

y0 = E−1
[
u2y(0) + u3y′(0) + αu3y(0) + u2E (f(x))

]
= E−1

[
u2 + u3 + u4 − u5 − 3u6

]
= 1 + x+

x2

2
− x3

6
− x4

8

A0 = (y0)
3 ≈ 7

8
x4 +

7

2
x3 +

9

2
x2 + 3x+ 1

E(A0) = u2 + 3u3 + 9u4 + 21u5 + 21u6
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y1 = E−1
[
−
(
u+ u2

)
E (y0)− u2E(A0)

]
≈ E−1

[
−u3 − 3u4 − 5u5 − 9u6

]
= −x− 3x2

2
− 5

6
x3 − 9

24
x4

y2 = E−1
[
−
(
u+ u2

)
E (y1)− u2E(A1)

]
≈ E−1

[
u4 + 7u5 + 29u6

]
=

x2

2
+

7x3

6
+

29x4

24

y3 = E−1
[
−
(
u+ u2

)
E (y2)− u2E(A2)

]
= E−1

[
−u5 − 17u6 − 147u7 − 1009u8

]
= −x3

6
− 17x4

24

y4 = E−1
[
−
(
u+ u2

)
E (y3)− u2E(A3)

]
≈ E−1

[
u6 + 45u7 + 695u8

]
=

x4

24
.

Thus, the approximate solution with the first five terms is obtained as follows.

y ≈ y0 + y1 + y2 + y3 + y4

= 1 + x+
x2

2
− x3

6
− x4

8

−x− 3x2

2
− 5

6
x3 − 9

24
x4

+
x2

2
+

7x3

6
+

29x4

24

−x3

6
− 17x4

24

+
x4

24

= 1− x2

2!
+

x4

4!
= ϕ5(x).

Above equation is first five terms of Maclaurin expansion of cosx which is a solu-
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tion to Eq (4.2). by taking elzaki transform of the first five terms, we obtain

E [ϕ5(x)] = u2 − u4 + u6.

All of the [L/M ] pade approximation of E [ϕ5(x)] , get [L/M ] = u2

1+u2 .

By applying the inverse Elzaki transform to [L/M ], we obtain

E−1 [L/M ] = E−1
[

u2

1+u2

]
= cosx

Thus a complete solution is obtained.

Figure 2: Solution of Equation (4.2) by EADM.

Example 4.3. [5, 11]Consider the Duffing’s equation : α = 2, β = 1, γ = 8.

y′′ + 2y′ + y + 8y3 = e−3x (4.3)

y(0) =
1

2
, y′(0) = −1

2

The exact solution is y(x) = e−x

2 .

h(x) = e−3x = 1− 3x+
9x2

2
− 27x3

6
.
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y0 = E−1

[
u2y(0) + u3y′(0) + u3 + u2E

(
1− 3x+

9x2

2
− 27x3

6

)]
= E−1

[
u2

2
− u3

2
+ u3 + u2

(
u2 − 3u3 + 9u4 − 27u5

)]
= E−1

[
u2

2
+

u3

2
+ u4 − 3u5

]
=

1

2
+

x

2
+

x2

2
− x3

2

y1 = E−1
[
−
(
2u+ u2

)
E (y0)− 8u2E(A0)

]
= E−1

[
−
(
2u+ u2

)(u2

2
+

u3

2
+ u4 − 3u5

)
− 8u2E

(
1

8
+

3

8
x+

3x2

4
+

x3

2

)]
= E−1

[
−
(
2u+ u2

)(u2

2
+

u3

2
− u4 − 3u5

)
− 8u2

(
−6u5 +

3u3

8
+

u2

8

)]
= E−1

[
−u3 − 5u4

2
− 11u5

2

]
= −x− 5x2

4
− 11x3

12

y2 = E−1
[
−
(
2u+ u2

)
E (y1)− 8u2E(A1)

]
= E−1

[
−
(
2u+ u2

)(
−u3 − 5u4

2

)
− 8u2E

(
− 77

16
x3 − 39

16
x2 − 3

4
x

)]
= E−1

[
−
(
2u+ u2

)(
−u3 − 5u4

2
− 3u5

2

)
− 8u2

(
−231u5

8
− 39u4

8
− 3u3

4

)]
= E−1

[
2u4 + 12u5

]
= x2 + 2x3

y3 = E−1
[
−
(
2u+ u2

) (
2u4 + 12u5

)
− 8u2E(A2)

]
= E−1

[
−4u5

]
= −2x3

3

Thus, the approximate solution with the first four terms is obtained as follows.

y ≈ y0 + y1 + y2 + y3

≈ 1

2
+

x

2
+

x2

2
− x3

2
− x− 5x2

4
− 11x3

12
+ x2 + 2x3 − 2x3

3

≈ 1

2
− x

2
+

x2

4
− x3

12
= ϕ4(x).
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Above equation is first five terms of Maclaurin expansion of e−x

2 which is a solution
to Eq (4.3), by taking elzaki transform of the first four terms, we obtain :

E [ϕ4(x)] =
u2

2
− u3

2
+

u4

2
− u5

2
.

All of the [L/M ] pade approximation of E [ϕ4(x)] , get [L/M ] = u2

2(1+u) .

By applying the inverse Elzaki transform to [L/M ], we obtain :

E−1 [L/M ] = E−1
[

u2

2(1+u)

]
= e−x

2 .

Thus a complete solution is obtained.

Figure 3: Solution of Equation (4.3) by EADM.

5 Conclusion

In this paper, a new technique (Elzaki Adomian Decomposition Method ) was cre-
ated to solve Duffing Equation. In addition, we observed that the results obtained
by EADM were very consistent compared with other methods.
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