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Abstract

In this paper we have established some unique common fixed point the-
orems on bv(s)- metric spaces which are the extensions of theorems given
in [11] and [4]. Some basic definitions, properties and lemmas are given in
the introduction and preliminaries part. Some corollaries are also given on
the basis of the result.

1 Introduction

After the famous Banach Contraction Principle (BCP), fixed point theorems have
been developing and establishing in various metric spaces under different type of
contractive conditions. In 1993, Czerwik [9] introduced the concept of b-metric
space. In 2015, Jleli and Samet [14] gave a generalization on generalized metric
spaces, which covers usual metric space, b-metric space and some other metric
spaces also and then they established some fixed point results on that spaces. In
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2017, Mitrovic and Radenovic [16] gave more generalizations on rectangular b-
metric spaces and introduced bv(s)- metric space is as follows:

Definition 1.1. { [11], [16]}. Let X be a non-empty set, s ≥ 1 be a real number,
v ∈ N and d : X ×X → [0,∞) be a function. Then d is said to be a bv(s)- metric
on X if for all x, y, z ∈ X and for all distinct points y1, y2, ..., yv ∈ X, each of
them different from x and z such that the following conditions hold:

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, z) ≤ s[d(x, y1) + d(y1, y2) + ...+ d(yv, z)].

The pair (X, d) is called bv(s)-metric space.

Example 1.1. [19]. Consider X = {1
p | p ∈ N, p ≥ 2}. Define d : X × X →

[0,∞) by

d(
1

p
,
1

q
) =

{
|p− q|, if |p− q| ≠ 1

1
2 , if |p− q| = 1.

Then (X, d)- is a b3(3)-metric space.

2 Preliminaries

Definition 2.1. [16]. Let (X, d)-be a bv(s)-metric space with {xn} ⊂ X be a
sequence and x ∈ X . Then

1. The sequence {xn} is said to be convergent to x if for each ϵ > 0 there exists
N0 ∈ N such that d(xn, x) < ϵ for all n > N0.

2. The sequence {xn} is said to be Cauchy sequence in (X, d) if for every ϵ > 0

there exists N(ϵ) ∈ N such that d(xm, xn) < ϵ for all n,m > N(ϵ).

3. (X, d) is said to be complete bv(s)-metric space if for every Cauchy se-
quence in X converges to some x ∈ X .

Definition 2.2. [2]. Let f and g be two self maps on a set X (i.e, f, g : X → X).
If w = fx = gx for some x ∈ X, then x is called a coincidence point of f and g;
and w is called a point of coincidence of f and g.
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Definition 2.3. [2]. A pair of self maps {f, g} defined on X is called weakly
compatible if they commute at coincidence points.

Definition 2.4. [2]. Let f and g be mappings from a bv(s) metric space (X, d) into
itself. Then f and g are said to be compatible mappings onX if lim

m,n→∞
d(fgxn, gfxn)

= 0, whenever {xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = t for
some point t ∈ X.

Definition 2.5. [4]. LetX be a non-empty set and T : X → X and α : X×X →
[0,∞) be two mappings. The mapping T is said to be α-admissible if α(x, y) ≥
1 ⇒ α(Tx, Ty) ≥ 1, ∀ x, y ∈ X.

Definition 2.6. [10]. LetX be a non-empty set and T : X → X and α : X×X →
[0,∞) be two mappings.The mapping T is said to be triangular α-admissible if

1. α(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1, ∀ x, y ∈ X.

2. α(x, z) ≥ 1, α(z, y) ≥ 1 ⇒ α(x, y) ≥ 1, ∀ x, y, z ∈ X.

The following classes of functions are given in [11, 14].

Definition 2.7. { [11], [4]}. Γs be the class of functions defined by
Γs := {ξ : [0,∞) → [0, 1s )| (i) lim

n→∞
ξ(tn) =

1
s whenever lim

n→∞
tn = 0, holds for

some s ≥ 1}.
If s = 1, we obtain the well-known class Γ of all Geragthy type contractive map-
pings given in [13].

Definition 2.8. { [11], [4]}. Ψ be the class of functions defined by
Ψ := {ψ : [0,∞) → [0,∞)| (i) continuous, (ii) non-decreasing and (iii) lim

n→∞
ψn(t)

= 0 for all t > 0, where ψn denotes the n-th iteration of ψ}.

Note: If ψ ∈ Ψ, then (i) ψ(t) < t for all t > 0, (ii) ψ(0) = 0.
In 2016, Roshan et al. [20] proved fixed point results in b-metric spaces by

using Geraghty-weak contractions and later in 2021, Asim et al. [6] proved fixed
point results for Geraghty-weak contractions in ordered partial rectangular b-metric
spaces.

Inspiring and motivating the results of Roshan et al. [20], Asim et al. [6],
Dosenovic et al. [11] and Arshad et al. [5] we have established the following the-
orems on bv(s)- metric spaces which are the extensions of theorems given in [11]
and [4].



18 Mithun Paul, Krishnadhan Sarkar and Kalishankar Tiwary

3 Main results

Lemma 3.1. Let (X, d)-be a bv(s)-metric space and dn := d(xn, xn−1). If the
sequence {dn} is monotonic decreasing such that dn < 1

sdn−1 with s > 1 and
lim
n→∞

dn = 0, then {xn} is a Cauchy sequence in X .

Proof: We have to prove that lim
n,m→∞

d(xn, xm) = 0.

Now for any n,m ∈ N with m > n and n0 ∈ N, then we have

d(xn, xm)

≤ s

[
d(xn, xn+1) + d(xn+1, xn+2) + ...+ d(xn+v−3, xn+v−2) + d(xn+v−2, xn+n0)

+ d(xn+n0 , xm+n0) + d(xm+n0 , xm)

]
< s

[(
1

sn
+

1

sn+1
+ ...+

1

sn+v−3

)
d(x0, x1) +

1

sn
d(xv−2, xn0) +

1

sn0
d(xn, xm)

+
1

sm
d(xn0 , x0)

]

or,
[
1− 1

sn0−1

]
d(xn, xm) <

1

sn−1

[
1− 1

sv−2

1− 1
s

]
d(x0, x1) +

1

sn−1
d(xv−2, xn0)

+
1

sm−1
d(x0, xn0)

(3.1)

Taking limit as n,m→ ∞ on both sides of (3.1) we have, lim
n,m→∞

d(xn, xm) =

0.

Therefore, {xn} is a Cauchy sequence in X .

Theorem 3.1. Let (X, d) be a complete bv(s)- metric space with a constant s > 1.
Suppose that f, g, S and T are self maps on (X, d) with f(X) ⊂ T (X), g(X) ⊂
S(X) such that for ξ ∈ Γs, ψ ∈ Ψ, the following conditions hold:

sd(fx, gy) ≤ ξ(M1(x, y))ψ{M(x, y)}+ LM2(x, y), ∀ x, y ∈ X; (3.2)

where,
M1 = max{d(fx, Sx), d(Sx, Ty), d(gy, Ty)}; (3.3)
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M2 = min{d(fx, Sx), d(Sx, Ty), d(gy, Ty)}; (3.4)

M3 = max
{
d(Sx, Ty),

d(fx, Ty)d(Sx, gy)

a+ d(Sx, Ty)

}
,where, a ≥ 1; (3.5)

M = αM1 + βM2 + γM3; (3.6)

with, α+ β + γ + sL < 1, α ≥ 0, β ≥ 0, γ ≥ 0, L ≥ 0;
and either

1. {f, S} is compatible, either f or S is continuous and {g, T} is weakly com-
patible;
or,

2. {g, T} is compatible, either g or T is continuous and {f, S} is weakly com-
patible;
or,

3. The pairs {f, S} and {g, T} are weakly compatible and one of the ranges of
f(X), g(X), S(X) and T (X) is closed.

Then f, g, S and T have a unique common fixed point in X .

Proof: Let x0 be an arbitrary point in X .We choose a point x1 ∈ X such that
y0 = fx0 = Tx1. This can be done, since the range of T contains the range of f .
Similarly, a point x2 ∈ X can be chosen such that y1 = gx1 = Sx2. Continuing
these process, we can obtain a sequence {yn} in X such that

y2n = fx2n = Tx2n+1 and y2n+1 = gx2n+1 = Sx2n+2.

First, we show that {yn} is a Cauchy sequence in X .
We consider two cases:
Case-I: Assume for some n ∈ N, yn = yn+1 implies yn+1 = yn+2. If not then,
d(yn+1, yn+2) > 0.
Now for n is odd i.e., for n = 2m− 1, m ∈ N, we have,

y2m−1 = y2m (3.7)
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Now from (3.3),(3.4),(3.5) and (3.6) we have

M1(x2m, x2m+1)

= max{d(fx2m, Sx2m), d(Sx2m, Tx2m+1), d(gx2m+1, Tx2m+1)}
= max{d(y2m, y2m−1), d(y2m−1, y2m), d(y2m+1, y2m)}
= d(y2m+1, y2m)

(3.8)

M2(x2m, x2m+1)

= min{d(fx2m, Sx2m), d(Sx2m, Tx2m+1), d(gx2m+1, Tx2m+1)}
= min{d(y2m, y2m−1), d(y2m−1, y2m), d(y2m+1, y2m)}
= 0

(3.9)

M3(x2m, x2m+1)

= max
{
d(Sx2m, Tx2m+1),

d(fx2m, Tx2m+1)d(gx2m+1, Sx2m)

a+ d(Tx2m+1, Sx2m)

}
= max

{
d(y2m−1, y2m),

d(y2m, y2m)d(y2m+1, y2m−1)

a+ d(y2m, y2m−1)

}
= 0

(3.10)

Therefore, M(x2m, x2m+1) = αd(y2m+1, y2m) (3.11)

Now from (3.2) we have

sd(y2m, y2m+1) ≤ ξ{M1(x2m, x2m+1)}ψ{M(x2m, x2m+1)}+

LM2(x2m, x2m+1) ≤
1

s
αd(y2m+1, y2m)

or,
(
s2 − α

s

)
d(y2m+1, y2m) ≤ 0, which is a contradiction.

(3.12)

Hence, y2m−1 = y2m implies y2m = y2m+1 (3.13)

Similarly, for n is even i.e., for n = 2m, m ∈ N, we can prove that

y2m = y2m+1 implies y2m+1 = y2m+2 (3.14)

Therefore, from (3.13) and (3.14) we have

yn = yn+1 implies yn+1 = yn+2, ∀n ∈ N. (3.15)
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Continuing in this manner we can show that yn = yn+1 implies yn = yn+k, ∀ k =
1, 2, 3, ...
Therefore {yn} becomes a constant sequence and a Cauchy one.
Case-II: Assume yn ̸= yn+1, ∀ n ∈ N.
For n is odd. Let n = 2m − 1, m ∈ Z+, From (3.3), (3.4), (3.5) and (3.6) we
have

M1(x2m, x2m+1)

= max{d(fx2m, Sx2m), d(Sx2m, Tx2m+1), d(gx2m+1, Tx2m+1)}
= max{d(y2m, y2m−1), d(y2m−1, y2m), d(y2m+1, y2m)}

(3.16)

M2(x2m, x2m+1)

= min{d(fx2m, Sx2m), d(Sx2m, Tx2m+1), d(gx2m+1, Tx2m+1)}
= min{d(y2m, y2m−1), d(y2m−1, y2m), d(y2m+1, y2m)}

(3.17)

M3(x2m, x2m+1)

= max
{
d(Sx2m, Tx2m+1),

d(fx2m, Tx2m+1)d(gx2m+1, Sx2m)

a+ d(Tx2m+1, Sx2m)

}
= max

{
d(y2m−1, y2m),

d(y2m, y2m)d(y2m+1, y2m−1)

a+ d(y2m, y2m−1)

} (3.18)

If d(y2m+1, y2m) ≥ d(y2m, y2m−1), then

M(x2m, x2m+1) ≤ αd(y2m+1, y2m) + βd(y2m, y2m−1) + γd(y2m−1, y2m).

Therefore, from (3.2) we have

sd(y2m, y2m+1) <
1

s
[αd(y2m+1, y2m) + (β + γ)d(y2m, y2m−1)] + Ld(y2m, y2m−1)

or, (s− α

s
)d(y2m, y2m+1) < (

β + γ + sL

s
)d(y2m, y2m−1)

or, d(y2m, y2m+1) < (
β + γ + sL

s2 − α
)d(y2m, y2m−1),

which is a contradiction.

[As
β + γ + sL

s2 − α
< 1].

Hence, d(y2m+1, y2m) < d(y2m, y2m−1).
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Now from (3.6) we have

M(x2m, x2m+1) = (α+ γ)d(y2m, y2m−1) + βd(y2m+1, y2m)

Therefore, from (3.2) we have

sd(y2m, y2m+1) <
1

s
(α+ γ)d(y2m, y2m−1) +

β

s
d(y2m+1, y2m) + Ld(y2m+1, y2m)

or, d(y2m+1, y2m) < (
α+ γ

s2 − β − sL
)d(y2m, y2m−1).

Hence, d(y2m+1, y2m) <
1

s
d(y2m, y2m−1), as (

α+ γ

s2 − β − sL
) <

1

s
. (3.19)

For n is even i.e., n = 2m, m ∈ Z+,

M1(x2m+2, x2m+1)

= max{d(fx2m+2, Sx2m+2), d(Sx2m+2, Tx2m+1),

d(gx2m+1, Tx2m+1)}
= max{d(y2m+2, y2m+1), d(y2m+1, y2m), d(y2m+1, y2m)}

(3.20)

M2(x2m+2, x2m+1)

= min{d(fx2m+2, Sx2m+2), d(Sx2m+2, Tx2m+1),

d(gx2m+1, Tx2m+1)}
= min{d(y2m+2, y2m+1), d(y2m+1, y2m), d(y2m+1, y2m)}

(3.21)

M3(x2m+2, x2m+1)

= max
{
d(Sx2m+2, Tx2m+1),

d(fx2m+2, Tx2m+1)d(gx2m+1, Sx2m+2)

a+ d(Tx2m+1, Sx2m+2)

}
= max

{
d(y2m+1, y2m),

d(y2m+2, y2m)d(y2m+1, y2m+1)

a+ d(y2m+1, y2m)

}
(3.22)

If d(y2m+2, y2m+1) ≥ d(y2m+1, y2m), then from (3.6) we have
M(x2m+2, x2m+1) ≤ αd(y2m+2, y2m+1) + βd(y2m+1, y2m) + γd(y2m+1, y2m)
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Therefore, from (3.2) we have

sd(y2m+2, y2m+1) <
1

s
[αd(y2m+2, y2m+1) + βd(y2m+1, y2m) + γd(y2m+1, y2m)]

+ Ld(y2m+1, y2m)

or, (s− α

s
)d(y2m+2, y2m+1) < (

β + γ

s
)d(y2m+1, y2m) + Ld(y2m+1, y2m)

or, d(y2m+2, y2m+1) <

(
β + γ + sL

s2 − α

)
d(y2m+1, y2m), which is a contradiction.

[as (
β + γ + sL

s2 − α
) < 1].

Hence, d(y2m+2, y2m+1) < d(y2m+1, y2m).
Now from (3.2) we have

sd(y2m+2, y2m+1) <
1

s
[αd(y2m+1, y2m) + βd(y2m+2, y2m+1) + γd(y2m+1, y2m)]

+ Ld(y2m+2, y2m+1)or, (s− β

s
− L)d(y2m+2, y2m+1) < (

α+ γ

s
)d(y2m+1, y2m))

or, d(y2m+2, y2m+1) <
( α+ γ

s2 − β − sL

)
d(y2m+1, y2m)

d(y2m+2, y2m+1) <
1

s
d(y2m+1, y2m), as

( α+ γ

s2 − β − sL

)
<

1

s
. (3.23)

From (3.19) and (3.23) we have

d(yn+1, yn) <
1

s
d(yn, yn−1), ∀ n ∈ N. (3.24)

Claim: lim
n→∞

d(yn, yn−1) = 0.

As {d(yn, yn−1)} is non-negative and monotone decreasing so there exists l ≥ 0
such that

lim
n→∞

d(yn, yn−1) = l.



24 Mithun Paul, Krishnadhan Sarkar and Kalishankar Tiwary

Now using (3.2) we have

l = lim
n→∞

d(y2n+1, y2n+2)

≤ lim
n→∞

sd(y2n+1, y2n+2)

≤ lim
n→∞

{ξ{M(y2n, y2n+1)}ψ{M(y2n, y2n+1)}+ lim
n→∞

LM(y2n, y2n+1)

≤ (α+ β + γ + sL)l

s
< l, which is a contradiction.

Hence, l = 0.

Therefore, lim
n→∞

d(yn, yn−1) = 0. (3.25)

Since the sequence {d(yn, yn−1)} is monotonic decreasing such that dn < 1
sdn−1

with s > 1 and lim
n→∞

d(yn, yn−1) = 0, then by Lemma 3.1 we conclude that {yn}
is Cauchy in X .
Since (X, d) is complete, so there exists z ∈ X such that lim

n→∞
yn = z.

Condition-A: Assume S is continuous.
Since {f, S} is compatible, we have lim

n→∞
fSx2n+2 = lim

n→∞
Sfx2n+2 = Sz.

Claim: Sz = z. If not then, d(Sz, z) > 0.
Now from (3.3),(3.4) and (3.5) we have

M1(Sx2n+2, x2n+1)

= max{d(fSx2n+2, SSx2n+1), d(SSx2n+2, Tx2n+1), d(gx2n+1, Tx2n+1)},
M2(Sx2n+2, x2n+1)

= min{d(fSx2n+2, SSx2n+1), d(SSx2n+2, Tx2n+1), d(gx2n+1, Tx2n+1)},
M3(Sx2n+2, x2n+1)

= max
{
d(SSx2n+2, Tx2n+1),

d(fSx2n+2, Tx2n+1)d(gx2n+1, SSx2n+2)

a+ d(Tx2n+1, SSx2n+2)

}
Therefore,

lim
n→∞

M(Sx2n+2, x2n+1)

= lim
n→∞

{αM1(Sx2n+2, x2n+1) + βM2(Sx2n+2, x2n+1) + γM3(Sx2n+2, x2n+1)}

or, lim
n→∞

M(Sx2n+2, x2n+1) = (α+ γ)d(Sz, z). (3.26)
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Now from (3.2) we have

sd(fSx2n+2, gx2n+1) ≤ ξ{M1(Sx2n+2, x2n+1)}ψ{M(Sx2n+2, x2n+1)}
+ LM2(Sx2n+2, x2n+1).

or, sd(fSx2n+2, gx2n+1) <
1

s
M(Sx2n+2, x2n+1) + LM2(Sx2n+2, x2n+1).

(3.27)
Taking limit as n→ ∞ on both sides of (3.27) we have,

lim
n→∞

sd(fSx2n+2, gx2n+1) ≤ lim
n→∞

1

s
M(Sx2n+2, x2n+1)

+ lim
n→∞

LM2(Sx2n+2, x2n+1)

or, sd(Sz, z) ≤ (
α+ γ

s
)d(Sz, z) + Ld(Sz, z)

or, (s2 − sL− α− γ)d(Sz, z) ≤ 0, which is a contradiction as

(s2 − sL− α− γ) > 0.

Hence, Sz = z.
Claim: fz = z. If not then, d(fz, z) > 0.
Now

M1(z, x2n+1) = max{d(fz, Sz), d(Sz, Tx2n+1), d(gx2n+1, Tx2n+1)}
M2(z, x2n+1) = min{d(fz, Sz), d(Sz, Tx2n+1), d(gx2n+1, Tx2n+1)}

M3(z, x2n+1) = max
{
d(Sz, Tx2n+1),

d(fz, Tx2n+1)d(gx2n+1, Sx2n+1)

a+ d(Tx2n+1, Sz)

}
.

Also from (3.2) we have

M(z, x2n+1) = αM1(z, x2n+1) + βM2(z, x2n+1) + γM3(z, x2n+1). (3.28)

Taking limit as n→ ∞ on both sides of (3.28), we have

lim
n→∞

M(z, x2n+1) = αd(fz, z). (3.29)

Now from (3.2) we have sd(fz, gx2n+1) ≤ ξ{M1(z, x2n+1)}ψ{M(z, x2n+1)} +
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LM2(z, x2n+1)

or, sd(fz, gx2n+1) <
1

s
M(z, x2n+1) + LM2(z, x2n+1) (3.30)

Taking limit as n→ ∞ on both sides of (3.30) we have

lim
n→∞

sd(fz, gx2n+1) ≤ lim
n→∞

1

s
M(z, x2n+1) + lim

n→∞
LM2(z, x2n+1).

or, sd(fz, z) ≤ 1
sαd(fz, z), which is a contradiction.

Hence, fz = z.
Therefore, fz = Sz = z.
Now since f(X) ⊂ T (X), there exists a point w ∈ X such that fz = Tw.
Claim: gw = Tw. If not then, d(gw, Tw) > 0.

M1(z, w) = max{d(fz, Sz), d(Sz, Tw), d(gw, Tw)} = d(gw, Tw);

M2(z, w) = min{d(fz, Sz), d(Sz, Tw), d(gw, Tw)} = 0;

M3(z, w) = max{d(Sz, Tw), d(fz, Tw)d(gw, Sz)
a+ d(Tw, Sz)

} = 0;

and M(z, w) = αM1(z, w) + βM2(z, w) + γM3(z, w)

= αd(gw, Tw).

Now from (3.2), we have

sd(Tw, gw) = sd(fz, gw) ≤ ξ{M1(z, w)}ψ{M(z, w)}+ LM2(z, w)

or, sd(Tw, gw) <
1

s
M(z, w) + LM2(z, w)}

or, sd(Tw, gw) <
1

s
αd(gw, Tw), which is a contradiction.

Hence, d(Tw, gw) = 0.
Since {g, T} is weakly compatible so, gz = gfz = gTw = Tgw = Tfz = Tz.
Hence z is a coincidence point of g and T .
Claim: gz = z. If not then, d(gz, z) > 0.
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Now

M1(z, z) = 0, M2(z, z) = 0, M3(z, z) = 0, and M(z, z) = 0.

Then, sd(fz, gz) ≤ ξ{M1(z, z)}ψ{M(z, z)}+ LM2(z, z)

≤ 0, which is a contradiction.

Hence, gz = z.
Therefore, fz = gz = Sz = Tz = z.
Condition-B: The proof is same as in condition-A.
Condition-C: Assuming T is closed. Then there exists u ∈ X such that z = Tu.
Claim: gu = z. If not then, d(gu, z) > 0.
Now

M1(x2n, u) = max{d(fx2n, Sx2n), d(Sx2n, Tu), d(gu, Tu)};
M2(x2n, u) = min{d(fx2n, Sx2n), d(Sx2n, Tu), d(gu, Tu)};

M3(x2n, u) = max
{
d(Sx2n, Tu),

d(fx2n, Tu), d(gu, Sx2n)

a+ d(Tu, Sx2n)

}
.

M(x2n, u) = αM1(x2n, u) + βM2(x2n, u) + γM3(x2n, u) (3.31)

Taking limit as n→ ∞ on both sides of (3.31) we have

lim
n→∞

M(x2n, u) = αd(gu, z) (3.32)

Now from (3.2) we have

sd(fx2n, gu) ≤ ξ{M1(x2n, u)}ψ{M(x2n, u)}+ LM2(x2n, u)

or, sd(fx2n, gu) <
1

s
M(x2n, u) + LM2(x2n, u) (3.33)

Taking limit as n→ ∞ on both sides of (3.33) we have

lim
n→∞

sd(fx2n, gu) ≤ lim
n→∞

1

s
M(x2n, u) + lim

n→∞
LM2(x2n, u)

or, sd(z, gu) ≤ 1

s
αd(gu, z)

or, (s2 − α)d(z, gu) ≤ 0, which is a contradiction.

(3.34)

Hence, gu = z.
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Therefore, gu = Tu = z.
Since {g, T} is weakly compatible, then we have gz = gTu = Tgu = Tz
Claim: gz = z. If not then, d(gz, z) > 0.

M1(x2n, z) = max{d(fx2n, Sx2n), d(Sx2n, T z), d(gz, Tz)};
M2(x2n, z) = min{d(fx2n, Sx2n), d(Sx2n, T z), d(gz, Tz)};

M3(x2n, z) = max
{
d(Sx2n, T z),

d(fx2n, T z), d(gz, Sx2n)

a+ d(Tz, Sx2n)

}
.

(3.35)

There fore, M(x2n, z) = αM1(x2n, z) + βM2(x2n, z) + γM3(x2n, z).
(3.36)

Taking limit as n→ ∞ on both sides of (3.36) we have

lim
n→∞

M(x2n, z) = αd(z, Tz) + γd(z, Tz). (3.37)

Now from (3.2) we have
sd(fx2n, gz) ≤ ξ{M1(x2n, z)}ψ{M(x2n, z)}+ LM2(x2n, z)

or, sd(fx2n, gz) <
1

s
M(x2n, z) + LM2(x2n, z). (3.38)

Taking limit as n→ ∞ on both sides of (3.38) we have

lim
n→∞

sd(fx2n, gz) ≤ lim
n→∞

1

s
M(x2n, z) + lim

n→∞
LM2(x2n, z)

or, sd(z, gz) ≤ 1

s
(α+ γ)d(z, gz) [As gz = Tz]

or,
(
s2 − α− γ

s

)
d(z, gz) ≤ 0, which is a contradiction.

Hence, gz = z.
Therefore, gz = Tz = z.
Since g(X) ⊂ S(X), there exists v ∈ X such that gz = Sv. Then gz = Sv =
Tz = z.
Claim: fv = Sv. If not then, d(fv, Sv) > 0.
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Now

M1(v, z) = max{d(fv, Sv), d(z, Tz), d(gz, Tz)}
M2(v, z) = min{d(fv, Sv), d(Sv, Tz), d(gz, Tz)}

M3(v, z) = max{d(Sv, Tz), (d(fv, Tz)d(gz, Sv))
(a+ d(Tz, Sv))

}

and M(v, z) = αM1(v, z) +M2(v, z) + γM3(v, z)

= αd(fv, z).

Therefore from (3.2), we have

sd(fv, Sv) = sd(fv, gz) ≤ ξ{M1(v, z)}ψ{M(v, z)}+ LM2(v, z)

or, sd(fv, z) ≤ 1

s
M(v, z)

or, sd(fv, z) ≤ 1

s
αd(fv, z)

or, (
s2 − α

s
)d(fv, z) ≤ 0, which is a contradiction.

Hence, fv = z = Sv.
Since {f, S} is weakly compatible, so fz = fTz = fSv = Sfv = Sz.
Claim: fz = z.

M1(z, z) = max{d(fz, Sz), d(Sz, Tz), d(gz, Tz)} = d(fz, z)

M2(z, z) = min{d(fz, Sz), d(Sz, Tz), d(gz, Tz)} = 0

M3(z, z) = max
{
d(Sz, Tz),

d(fz, Tz)d(gz, Sz)

a+ d(Tz, Sz)

}
= 0

Therefore, M = αM(z, z) = αd(fz, z).
Now

sd(fz, gz) = sd(fz, gz) ≤ ξ{M1(z, z)}ψ{M(z, z)}+ LM2(z, z) ≤
1

s
M(z, z)

or, sd(fz, z) ≤ 1

s
αd(fz, z)

or, (
s2 − α

s
)d(fz, z) ≤ 0, which is a contradiction.

Hence, fz = z.
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Therefore, fz = gz = Sz = Tz = z.
Uniqueness: Now we show that z is the unique common fixed point of f, g, s and
T . If possible let there exists an another u ∈ X such that fu = gu = Su = Tu =
u with u ̸= z.
Now

M1(u, z) = max{d(fu, Su), d(Su, Tz), d(gz, Tz)} = d(u, z);

M2(u, z) = min{d(fu, Su), d(Su, Tz), d(gz, Tz)} = 0;

M3(u, z) = max
{
d(Su, Tz),

d(fu, Tz)d(gz, Su)

a+ d(Tz, Su)

}
= d(u, z);

and M(u, z) = (α+ γ)d(u, z).

Now from (3.2) we have

sd(u, z) = sd(fu, gz) ≤ ξ{M1(u, z)}ψ{M(u, z)}+ LM2(u, z)

or, sd(u, z) ≤ 1

s
M(u, z)

or, sd(u, z) ≤ 1

s
(α+ γ)d(u, z)

or,
(
s2 − α− γ

s

)
d(u, z) ≤ 0, which is a contradiction.

Hence, u = z.
Therefore, z is a unique common fixed point of f, g, S and T .

Corollary 3.1. Let (X, d) be a complete bv(s)- metric space with a constant s > 1.
Suppose that f, g, S and T are self maps on (X, d) with f(X) ⊂ T (X), g(X) ⊂
S(X) such that for ξ ∈ Γs, ψ ∈ Ψ, the following hold:

sd(fx, gy) ≤ ξ(M1(x, y))ψ{M(x, y)}, ∀ x, y ∈ X; (3.39)

where,
M1 = max{d(fx, Sx), d(Sx, Ty), d(gy, Ty)}; (3.40)

M2 = min{d(fx, Sx), d(Sx, Ty), d(gy, Ty)}; (3.41)

M3 = max

{
d(Sx, Ty),

d(fx, Ty)d(Sx, gy)

a+ d(Sx, Ty)

}
,where a ≥ 1; (3.42)

M = αM1 + βM2 + γM3; (3.43)
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with α+ β + γ < 1, α ≥ 0, β ≥ 0, γ ≥ 0;
Also either

1. {f, S} is compatible, either f or S is continuous and {g, T} is weakly com-
patible;
or,

2. {g, T} is compatible, either g or T is continuous and {f, S} is weakly com-
patible;
or,

3. The pairs {f, S} and {g, T} are weakly compatible and one of the ranges of
f(X), g(X), S(X) and T (X) is closed.

Then f, g, S and T have a unique common fixed point in X .

Proof: Taking L = 0 and proceeding same as in Theorem 1.1 we can prove the
result.

Theorem 3.2. (X, d) be a complete bv(s)- metric space with constant s > 1 and
f, g : X → X be two mappings on X such that for ξ ∈ Γs, ψ ∈ Ψ, the following
hold:

sd(fx, gy) ≤ ξ{M(x, y)}ψ{M(x, y)}+ LM1(x, y), ∀ x, y ∈ X; (3.44)

where, M(x, y) = α
d(x, fx) + d(y, gy)

a+ d(x, y)
+ βmax{d(x, y), d(y, gy), d(x, fx)}

+ γmin{d(x, gy), d(y, fx)}, where, a ≥ 1;

(3.45)

M1(x, y) = min{d(x, y), d(y, gy), d(x, fx)}. (3.46)

with 0 ≤ α + β + γ ≤ 1;α ≥ 0, β ≥ 0, γ ≥ 0. Then f, g have a unique common
fixed point in X .

Proof: Let x0 be an arbitrary point in X . We define a sequence {xn} ⊂ X by

x2n+1 = fx2n and x2n+2 = gx2n+1.
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We consider two cases:
Case-I: Assume for some n ∈ N, xn = xn+1 implies xn+1 = xn+2.
If xn = xn+1 , then for n is even i.e., for n = 2m,m ∈ N we have

x2m = x2m+1. (3.47)

If x2m+1 ̸= x2m+1 , then d(x2m+1, x2m+2) > 0,
Now

M(x2m, x2m+1)

= α
d(x2m, fx2m) + d(x2m+1, gx2m+1)

a+ d(x2m, x2m+1)
+ βmax{d(x2m, fx2m+1), d(x2m+1, gx2m+1),

d(x2m, fx2m)}+ γmin {d(x2m, x2m+2), d(x2m+1, x2m+1)}
≤ (α+ β)d(x2m+1, x2m+2)

(3.48)

Therefore, from (3.44) and using (3.48) we have

d(x2m+1, x2m+2) ≤ sd(fx2m, gx2m+1)

≤ ξ{M(x2m, x2m+1)}ψ{M(x2m, x2m+1)}+ LM1(x2m, x2m+1)

<
1

s
M(x2m, x2m+1) + LM1(x2m, x2m+1)

≤ 1

s
(α+ β)d(x2m+1, x2m+2)

or,
(

s−α−β
s

)
d(x2m+1, x2m+2) ≤ 0, which is a contradiction.

Hence, x2m = x2m+1 implies x2m+1 = x2m+2. (3.49)

For n is odd i.e., for n = 2m+ 1,m ∈ N ∪ {0}, we can show that

x2m+1 = x2m+2 implies x2m+2 = x2m+3. (3.50)

Hence from (3.49) and (3.50) we have, xn = xn+1 implies xn+1 = xn+2, ∀ n ∈
N.
Proceeding in this manner we have xn = xn+1 implies xn = xn+k for all k =
1, 2, ...
Therefore, {xn} becomes a constant sequence and hence a Cauchy one in X.
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Case-II: Assume xn ̸= xn+1, ∀ n = 1, 2, 3, ...
Then, for n is even i.e., for n = 2m, where m ∈ N.
Now from (3.45) we have

M(x2m, x2m−1)

= α
d(x2m, fx2m) + d(x2m, gx2m−1)

a+ d(x2m, x2m−1)
+ βmax{d(x2m, x2m−1), d(x2m−1, gx2m−1),

d(x2m, fx2m)} + γ{d(x2m, x2m−1), d(x2m−1, fx2m)}

= α
d(x2m, fx2m+1) + d(x2m−1, x2m)

a+ d(x2m, x2m−1)
+ β{d(x2m, x2m−1), d(x2m−1, x2m),

d(x2m, x2m+1)}+ γmin{d(x2m, x2m), d(x2m−1, x2m+1)}
≤ (α+ β)d(x2m, x2m+1)

(3.51)

Now from (3.44) we have

sd(x2m+1, x2m) = d(fx2m, gx2m−1)

≤ ξ{M(x2m+2, x2m+1)}ψ{M(x2m+2, x2m+1)}

+ LM1(x2m+2, x2m+1) <
1

s
{M(x2m, x2m−1)}+ LM1(x2m, x2m−1)

≤ 1

s
(αd(x2m, x2m+1) + βd(x2m, x2m+1)) + Ld(x2m, x2m+1),

(3.52)

which gives(
s2 − sL− α− β

s

)
d(x2m, x2m+1) ≤ 0, which is a contradiction.

Hence, d(x2m, x2m+1) < d(x2m, x2m−1).
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Then for d(x2m, x2m+1) < d(x2m−1, x2m), from (3.44) we have

sd(x2m+1, x2m) ≤ ξ{M(x2m, x2m−1)}ψ{M(x2m, x2m−1)}+ LM1{x2m, x2m−1}

or, sd(x2m+1, x2m) <
1

s
M(x2m, x2m−1) + LM1M(x2m, x2m−1)

or, sd(x2m+1, x2m) ≤ 1

s
(αd(x2m−1, x2m) + βd(x2m−1, x2m)) + Ld(x2m, x2m+1)

or,
(
s2 − sL

s

)
d(x2m+1, x2m) <

(
α+ β

s

)
d(x2m−1, x2m)

or,
(
s2 − sL

α+ β

)
d(x2m+1, x2m) < d(x2m−1, x2m)

or, d(x2m+1, x2m) <

(
α+ β

s2 − sL

)
d(x2m−1, x2m)

(3.53)

Hence, d(x2m+1, x2m) <
1

s
d(x2m, x2m−1) (3.54)

For n is odd i.e., for n = 2m+ 1,m ∈ N ∪ {0}, we have established that

d(x2m+1, x2m+2) <
1

s
d(x2m, x2m+1) (3.55)

From (3.54) and (3.55) we have

d(xn+1, xn) <
1

s
d(xn, xn−1) (3.56)

Claim: lim
n→∞

d(xn, xn−1) = 0.

As {d(xn, xn−1)} is non-negative and monotone decreasing so there exists l ≥ 0
such that

lim
n→∞

d(xn, xn−1) = l.
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Now using (3.44) we have

l = lim
n→∞

d(x2n+1, x2n+2) ≤ lim
n→∞

sd(f2n, gx2n+1)

≤ lim
n→∞

{ξ{M(x2n, x2n+1)}ψ{M(x2n, x2n+1)}

+ lim
n→∞

LM1(x2n, x2n+1)

≤ (α+ β + sL)l

s
< l, which is a contradiction.

Hence, l = 0. Therefore, lim
n→∞

d(xn, xn−1) = 0.

Since {d(xn, xn−1)} is monotonic decreasing such that dn < 1
sdn−1 with s > 1

and lim
n→∞

d(xn, xn−1) = 0, so, by Lemma 3.1 we conclude that {xn} is a Cauchy
sequence in X .
Since X is complete, so there exists z ∈ X such that lim

n→∞
xn = z.

Claim: fz = z. If not then, d(fz, z) > 0.
Now from (3.45) we have

M(z, x2n+1)

= α
d(x2n+1, x2n+2) + d(z, fz)

a+ d(x2n+1, z)
+ βmax{d(z, x2n+1), d(z, fz), d(x2n+1, x2n+2)}

+ γmin{d(z, x2n+2), d(x2n+1, fz)}
(3.57)

Taking limit as n→ ∞ on both sides of (3.57) we have

lim
n→∞

M(z, x2n+1) = (α+ β)d(fz, z) (3.58)

and lim
n→∞

M1(z, x2n+1) = 0. (3.59)
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Now from (3.44) and using (3.58) and (3.59) we have

sd(fz, gx2n+1) ≤ ξ{M(z, x2n+1)}ψ{M(z, x2n+1)}+ LM1(z, x2n+1)

or, sd(fz, gx2n+1) <
1

s
M(z, x2n+1) + LM1(z, x2n+1)

or, s lim
n→∞

d(fz, gx2n+1) ≤
1

s
lim
n→∞

M(z, x2n+1) + L lim
n→∞

M1(z, x2n+1)

or, sd(fz, z) ≤ 1

s
(α+ β)d(z, fz)

or,
(
s2 − α− β

)
d(fz, z) ≤ 0, which is a contradiction.

(3.60)

Hence, fz = z.
Claim: gz = z. If not then d(gz, z) > 0.

M(x2n, z) =α
d(x2n, x2n+1) + d(z, gz)

a+ d(x2n, z)
+ βmax{d(x2n, z), d(z, gz), d(x2n, x2n+1)}

+ γmin{d(x2n, gz), d(z, fx2n)}
(3.61)

Taking limit as n→ ∞ on both sides of (3.61) we have

lim
n→∞

M(x2n, z) = (α+ β)d(gz, z) (3.62)

and lim
n→∞

M1(z, x2n+1) = 0 (3.63)

Now from (3.44) and using (3.62) and (3.63) we have

s lim
n→∞

d(fz, gx2n+1) ≤
1

s
lim
n→∞

M(z, x2n+1) + L lim
n→∞

M1(z, x2n+1)

or, sd(gz, z) ≤ 1

s
(α+ β)d(z, gz)

or,
(
s2 − α− β

)
d(gz, z) ≤ 0, which is a contradiction.

Hence, gz = z.
Hence, fz = gz = z.
Uniqueness: If possible let u, v be two distinct fixed points of f and g. Then
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fu = gu = u, fv = gv = v such that u ̸= v.
Now

M(u, v) = α
d(u, fu) + d(v, gv)

d(u, v)
+ βmax{d(u, v), d(v, gv) + d(u, fu)}+

γmin{d(u, gu)d(v, fu)}
≤ (β + γ)d(u, v)

(3.64)

M1(u, v) = min{d(u, v), d(v, gv) + d(u, fu)}
= 0

(3.65)

From (3.44) and using (3.64) and (3.65) we have

sd(u, v) <
1

s
[βd(u, v) + γd(u, v)]

or,
(
s2 − β − γ

s

)
d(u, v) < 0, which is a contradiction.

(3.66)

Therefore, u = v. This completes the proof.

The following theorem is on complete partially ordered bv(s)-metric space
which is given below: Let X be a non-empty set and a partial order ⪯ is defined
on X as x ⪯ y if and only if x− y ⪯ 0 and x ≺ y if and only if x− y ≺ 0.

Theorem 3.3. (X,⪯, d) be a complete partially ordered bv(s)- metric space with
constant s > 1. Let {Ti}∞i=1 be the sequence of triangular α -admissible non-
decreasing self maps with respect to the partial order ⪯ on X . Assume that for all
x, y ∈ X with x ⪯ y, the following hold:

α(x, y)d(Tix, Tjy) ≤ ξ{M(x, y)}ψ{M(x, y)}+ LN(x, y), ξ ∈ Γs; (3.67)

where, M(x, y)

= a1d(x, y) + a2max{d(x, y), d(x, Tix), d(y, Tjy)}

+ a3
min{d(x, Tjy), d(y, Tix)}

1 + max{d(x, Tjy), d(y, Tix)}
+ a4{d(x, y) + d(x, Tix) + d(y, Tjy)};

(3.68)
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and

N(x, y) = max
{
d(x, y),

d(x, Tjy)d(y, Tix)d(x, y)

1 + d(Tix, Tjy)d(x, y)
,

d(x, Tix)d(y, Tjy)

1 + d(x, y) + d(x, Tjy)

}
;

(3.69)
with a1 + a2 + a3 + 3a4 + sL < 1; ai ≥ 0, for all i = 1, 2, 3, 4;

and
(i) α(x, x) ≥ 1 for all x ∈ X and there exists x0 ∈ X such that α(x0, Tix0) ≥ 1

and x0 ⪯ Tix0; (ii) Ti, ∀ i ∈ N are continuous mapping. Then {Ti}∞i=1 have
atleast one fixed point u in X .

Also, if v is an another fixed point of {Ti}∞i=1 such that u, v are comparable
and for two fixed points u, v of {Ti}∞i=1 such that α(u, v) ≥ 1, then u = v. i.e.,
{Ti}∞i=1 have a unique common fixed point in X .
Proof: let x0 ∈ X be an arbitrary point such that α(x0, Tx0) ≥ 1 and let us define
a sequence {xn} ⊂ X by xn+1 = Tixn, ∀ i = 1, 2, 3, ... and n ∈ N.
We consider two cases:
Case-I: Assume for some n ∈ N, xn = xn+1 implies xn+1 = xn+2.
As xn = xn+1, then Tixn = Tixn+1, which gives xn+1 = xn+2.
Proceeding in this manner we can show that if xn = xn+1, then xn = xn+p, p =
1, 2, 3, ...
Then {xn} becomes a constant sequence and hence a Cauchy one in X.
Case-II: Assume xn ̸= xn+1, ∀n ∈ N. Since x0 ⪯ Tix0 and Ti are non-
decreasing mapping, then by induction we have

x0 ⪯ Tix0 ⪯ T 2
i x0 ⪯ ... ⪯ Tn

i x0 ⪯ Tn+1
i ⪯ ...

Since Ti are triangular α-admissible, we have

α(x0, x1) = α(x0, Tix0) ≥ 1 ⇒ α(Tix0, Tix1) = α(x1, x2) ≥ 1.

Continuing this process we get,

α(xn, xn+1) ≥ 1, ∀n ∈ N. (3.70)

Claim: lim
n→∞

d(xn, xn+1) = 0.
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Since xn ⪯ xn+1 for all n ∈ N, then by (3.67) and (3.70) we have

d(xn, xn+1) =d(Txn−1, xn)

≤ α(xn−1, xn)d(Txn−1, xn)

≤ ξ{M(xn−1, xn)}ψ{M(xn−1, xn)}+ LN(xn−1, xn)

≤ 1

s
{M(xn−1, xn)}+ LN(xn−1, xn),

(3.71)

where,

M(xn−1, xn)

= a1d(xn−1, xn) + a2max{d(xn−1, xn), d(xn−1, Tixn−1), d(xn, Tjxn)}+

a3
min{d(xn−1, Tjxn), d(xn, Tixn−1)}

1 + max{d(xn−1, Tjxn), d(xn, Tixn−1)}
+ a4{d(xn−1, xn) + d(xn−1, Tixn−1) + d(xn, Tjxn)}.
= a1d(xn−1, xn) + a2max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)}

+ a3
min{d(xn−1, xn+1), d(xn, xn)}

1 + max{d(xn−1, xn+1), d(xn, xn)}
+ a4{d(xn−1, xn)

+ d(xn−1, xn) + d(xn, xn+1)}.
(3.72)

and

N(xn−1, xn)

= max
{
d(xn−1, xn),

d(xn−1, Tjxn)d(xn, Tixn−1)d(xn−1, xn)

1 + d(Tixn−1, Tjxn)d(xn−1, xn)
,

d(xn−1, Tixn−1)d(xn, Tjxn)

1 + d(xn−1, xn) + d(xn−1, Tjxn)

}
= max

{
d(xn−1, xn),

d(xn−1, xn+1)d(xn, xn)d(xn−1, xn)

1 + d(xn, xn+1)d(xn−1, xn)
,

d(xn−1, xn)d(xn, xn+1)

1 + d(xn−1, xn) + d(xn−1, xn+1)

}
(3.73)

If d(xn, xn+1) ≥ d(xn−1, xn), then from (3.68) and (3.69) we have

M(xn−1, xn) ≤ (a1 + a2 + 3a4)d(xn, xn+1) (3.74)
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and
N(xn−1, xn) ≤ d(xn, xn+1) (3.75)

Hence from (3.67) and using (3.74), (3.75) we have,

d(xn, xn+1) <
(a1+a2+3a4+sL)

s d(xn, xn+1), which is a contradiction.
Hence, d(xn, xn+1) < d(xn−1, xn).
Now for d(xn, xn+1) < d(xn−1, xn), then from (3.68) and (3.69) we have

M(xn−1, xn) ≤ (a1 + a2 + 3a4)d(xn−1, xn) (3.76)

and
N(xn−1, xn) ≤ d(xn−1, xn) (3.77)

Hence, from (3.71) and using (3.76) and (3.77) we have

d(xn, xn+1) <
(a1 + a2 + 3a4 + sL)

s
d(xn−1, xn)

or, d(xn, xn+1) <
1

s
d(xn−1, xn). [∵ (a1 + a2 + a3 + 3a4) < 1.]

(3.78)

Therefore, the sequence {d(xn−1, xn)} is non negative and decreasing and hence
convergent.
Let, lim

n→∞
d(xn, xn+1) = l, where l ≥ 0.

Now we have

1

s
l ≤ l = lim

n→∞
d(xn, xn+1)

≤ lim
n→∞

α(xn−1, xn)d(Tixn−1, Tjxn)

= lim
n→∞

ξ{M(xn−1, xn)} lim
n→∞

ψ{M(xn−1, xn)}+ lim
n→∞

LN(xn−1, xn)

≤ (a1 + a2 + 3a4 + sL)

s
l

< l
1

s
, which is a contraction.

(3.79)

Therefore, lim
n→∞

d(xn, xn+1) = 0. (3.80)

Since {d(xn, xn−1)} is monotonic decreasing such that dn < 1
sdn−1 with s > 1

and lim
n→∞

d(xn, xn−1) = 0, so, by Lemma 3.1 we conclude that {xn} is a Cauchy
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sequence in (X,⪯, d).
SinceX is complete, the sequence {xn} converges to some u ∈ X i.e., lim

n→∞
xn =

u.
Since Ti are continuous for all i ∈ N, then we have

lim
n→∞

d(xn+1, Tju) = lim
n→∞

d(Tixn, Tju) = d(Tiu, Tju).

Now we show that u is a fixed point of Ti i.e., d(Tiu, u) = 0, for all i =
1, 2, 3, ...
Now,

d(Tiu, u) ≤ s[d(Tiu, xn+1)+d(xn+1, xn+2)+...+d(xn+v−1, xn+v)+d(xn+v, u)]
(3.81)

Taking limit as n→ ∞ on both sides of (87) we get

1

s
d(Tiu, u) ≤ lim

n→∞
[d(Tiu, xn+1)+d(xn+1, xn+2)+...+d(xn+v−1, xn+v)+d(xn+v, u)]

or,
1

s
d(Tiu, u) ≤ d(Tiu, Tju) (3.82)

and
M(u, u) ≤ (a2 + a3 + 2a4)d(u, Tiu) (3.83)

and
N(u, u) ≤ d(u, Tiu) (3.84)

For 1
sd(Tiu, u) ≤ d(Tiu, Tju), it follows from α(u, u) ≥ 1 that

1

s
d(Tiu, u) ≤ d(Tiu, Tju) ≤ α(u, u)d(Tiu, Tju) ≤ ξ{M(u, u)}ψ{M(u, u)}

+ LN(u, u)

or,
1

s
d(Tiu, u) ≤ ξ{M(u, u)}M(u, u) + LN(u, u)

≤
(
a2 + a3 + 2a4 + sL

s

)
d(u, Tiu)

<
1

s
d(u, Tiu), which is a contradiction.

(3.85)

Hence, Tiu = u, for all i = 1, 2, 3, . . .
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Uniqueness: Assume that u and v be two distinct comparable fixed points of
Ti, for all i = 1, 2, 3, ..., then Tiu = u and Tiv = v, ∀ i = 1, 2, 3, ...
By condition, α(u, v) ≥ 1.Then

M(u, v) ≤ a1d(u, v) + a2d(u, v) + a3d(u, v) + a4d(u, v)

= (a1 + a2 + a3 + a4)d(u, v)
(3.86)

and
N(u, v) ≤ a1d(u, v) (3.87)

d(u, v) ≤ α(u, v)d(Tiu, Tjv) ≤ ξ{M(u, v)}ψ{M(u, v)}+ LN(u, v)

≤
(
a1 + a2 + a3 + a4 + sL

s

)
d(u, v) < d(u, v), which is a contradiction.

Hence, u = v.
Therefore {Ti}∞i=1 have a unique common fixed point in X .
Note: If {Ti}∞i=1 is a sequence of α -admissible non-decreasing self maps with
respect to the partial order ⪯ on X , the result holds also.

4 Conclusion

bv(s)-metric space is the extension of various metric spaces and in this paper we
have established some unique common fixed point theorems on this space. Our
results are extensions of various previous results and give some new ideas in this
literature.

Acknowledgement: The authors are grateful to the learned refree for his careful
reading and useful suggestions on the manuscripts.
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