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Orhan Dişkaya and Hamza Menken

Mersin University
Department of Mathematics, Turkey

Email: orhandiskaya@mersin.edu.tr, hmenken@mersin.edu.tr

(Received: April 15, 2023 Accepted: January 30, 2024)

Abstract

In this paper, we first express with sums of binomial coefficients of the
Narayana sequence. Moreover, we define the incomplete Narayana numbers
and examine their recurrence relations, some properties of these numbers,
and the generating function of the incomplete Narayana numbers.

1 Introduction

Filipponi [3] introduced the incomplete Fibonacci and Lucas numbers. The in-
complete Fibonacci numbers Fn(u) and Lucas numbers Ln(v) are defined, respec-
tively, by

Fn(u) =
u∑

j=0

(
n− 1− j

j

)
,

(
⌊n− 1

2
⌋ ≤ u ≤ n− 1

)
,

and

Ln(v) =
v∑

i=0

n

n− i

(
n− i

i

)
,

(
⌊n
2
⌋ ≤ v ≤ n− 1

)
.
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It is obvious that

Fn(⌊
n− 1

2
⌋) = fn and Ln(⌊

n

2
⌋) = ln,

where fn and ln are the n−th Fibonacci and Lucas numbers, respectively.
The generating functions of the incomplete generalized Fibonacci and generalized
Lucas numbers were examined by Djordjevic [1]. The incomplete generalized
Jacobsthal and Jacobsthal-Lucas numbers were defined by Djordjevic and Srivas-
tava [2]. The generating functions of the incomplete Fibonacci and Lucas numbers
were discovered by Pintér and Srivastava [7]. Ramı́rez [8] presented the bi-periodic
incomplete Fibonacci sequences. The incomplete Tribonacci numbers and polyno-
mials were introduced by Ramirez and Sirvent [10]. The incomplete Fibonacci and
Lucas p−numbers were defined by Tasci and Firengiz [14]. The incomplete bivari-
ate Fibonacci and Lucas p−polynomials were defined by Tasci et al. [15].(For other
investigations see [9, 11]).

In [5], the Narayana sequence {Nr}r≥1 is defined by

Nr+3 = Nr+2 +Nr, N1 = 1, N2 = 1, N3 = 1. (1.1)

The first few terms of the Narayana numbers are 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28,
41, 60, 88, 129, 189. The Narayana sequence has been the subject of numerous
studies, some of which can be observed in references [4–6, 12].

2 The Incomplete Narayana Numbers

In this section, we first give a formula that the Narayana sequence is related to
sums of binomial coefficients, Then, we define the incomplete Narayana numbers
and obtain some identities for them. Let’s begin the study by giving the formula
that the Naryana sequence is related to sums of binomial coefficients.

Theorem 2.1. The Narayana sequence {Nr}r≥1 is related to sums of binomial
coefficients by the following identity:

Nr =

⌊ r−1
3

⌋∑
j=0

(
r − 2j − 1

j

)
.
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Proof. By using the method of mathematical induction on r, we aim to estab-
lish the validity of the proposition for all natural numbers. For the values of
r = 1, 2, 3, 4, 5, 6, it is true. Assuma that r ≥ 6 and the equality holds for r,
we have to prove the equality holds for r + 1.
Case 1: If r = 6n (n ≥ 1), then

N6n+1 =
2n∑
j=0

(
6n− 2j

j

)

=
2n∑
j=0

(
6n− 2j − 1

j

)
+

2n∑
j=0

(
6n− 2j − 1

j − 1

)

= N6n +
2n−1∑
j=−1

(
6n− 2j − 3

j

)

= N6n +

(
6n− 1

−1

)
+

2n−1∑
j=0

(
6n− 2j − 3

j

)
= N6n +N6n−2.

Case 2: If r = 6n+ 1 (n ≥ 1), then

N6n+2 =
2n∑
j=0

(
6n− 2j + 1

j

)

=

2n∑
j=0

(
6n− 2j

j

)
+

2n∑
j=0

(
6n− 2j

j − 1

)

= N6n+1 +

(
6n

−1

)
−
(
2n− 2

2n

)
+

2n∑
j=0

(
6n− 2j − 2

j

)
= N6n+1 +N6n−1.
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Case 3: If r = 6n+ 2 (n ≥ 1), then

N6n+3 =
2n∑
j=0

(
6n− 2j + 2

j

)

=

2n∑
j=0

(
6n− 2j + 1

j

)
+

2n∑
j=0

(
6n− 2j + 1

j − 1

)

= N6n+2 +
2n−1∑
j=−1

(
6n− 2j − 1

j

)

= N6n+2 +

(
6n+ 1

−1

)
−
(
2n− 1

2n

)
+

2n∑
j=0

(
6n− 2j − 1

j

)
= N6n+2 +N6n.

Case 4: If r = 6n+ 3 (n ≥ 1), then

N6n+4 =
2n+1∑
j=0

(
6n− 2j + 3

j

)

=

2n+1∑
j=0

(
6n− 2j + 2

j

)
+

2n+1∑
j=0

(
6n− 2j + 2

j − 1

)

=

(
2n

2n+ 1

)
+

2n∑
j=0

(
6n− 2j + 2

j

)
+

2n∑
j=−1

(
6n− 2j

j

)

= N6n+3 +

(
6n+ 2

−1

)
+

2n∑
j=0

(
6n− 2j

j

)
= N6n+3 +N6n+1.
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Case 5: If r = 6n+ 4 (n ≥ 1), then

N6n+5 =
2n+1∑
j=0

(
6n− 2j + 4

j

)

=

2n+1∑
j=0

(
6n− 2j + 3

j

)
+

2n+1∑
j=0

(
6n− 2j + 3

j − 1

)

= N6n+4 +
2n∑

j=−1

(
6n− 2j + 1

j

)

= N6n+4 +

(
6n+ 3

−1

)
+

2n∑
j=0

(
6n− 2j + 1

j

)
= N6n+4 +N6n+2.

Case 6: If r = 6n+ 5 (n ≥ 1), then

N6n+6 =
2n+1∑
j=0

(
6n− 2j + 5

j

)

=

2n+1∑
j=0

(
6n− 2j + 4

j

)
+

2n+1∑
j=0

(
6n− 2j + 4

j − 1

)

= N6n+5 +
2n∑

j=−1

(
6n− 2j + 2

j

)

= N6n+5 +

(
6n+ 4

−1

)
+

2n∑
j=0

(
6n− 2j + 2

j

)
= N6n+5 +N6n+3.
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Definition 2.1. The incomplete Narayana numbers Nr(y) are defined by

Nr(y) =

y∑
j=0

(
r − 2j − 1

j

)
,

(
r = 1, 2, 3, ...; 0 ≤ y ≤ ⌊r − 1

3
⌋ = r̂

)
. (2.1)

The numbers Nr(y) are displayed in Table 1 for the first few values of r and
the related permissible values of y.

Table 1: The first few values of the incomplete Narayana Numbers
r \ y 0 1 2 3 4

1 1

2 1

3 1

4 1 2

5 1 3

6 1 4

7 1 5 6

8 1 6 9

9 1 7 13

10 1 8 18 19

11 1 9 24 27

12 1 10 31 40

The relation (2.1) has some special cases as following:

• Nr(0) = 1, (r ≥ 1)

• Nr(1) = r − 2, (r ≥ 4)

• Nr(2) =
r2 − 9r + 26

2
, (r ≥ 7)

• Nr(r̂) = Nr, (r ≥ 1).
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2.1 Some Identities of the Incomplete Narayana Numbers Nr(y)

Proposition 2.1. The incomplete Narayana numbers Nr(y) can be given by the
recurrence relation

Nr+3(y + 1) = Nr+2(y + 1) +Nr(y), 0 ≤ y ≤ r̂. (2.2)

Proof. Using the Definition (2.1), we obtain the desired equality as follows:

Nr+2(y + 1) +Nr(y) =

y+1∑
j=0

(
r − 2j + 1

j

)
+

y∑
j=0

(
r − 2j − 1

j

)

=

y+1∑
j=0

(
r − 2j + 1

j

)
+

y+1∑
j=1

(
r − 2j + 1

j − 1

)
+

(
r + 1

−1

)

=

y+1∑
j=0

(
r − 2j + 1

j

)
+

y+1∑
j=0

(
r − 2j + 1

j − 1

)

=

y+1∑
j=0

(
r − 2j + 2

j

)
.

Hence, we obtain

Nr+2(y + 1) +Nr(y) = Nr+3(y + 1).

Proposition 2.2. The following identity holds:

Nr+3(y) = Nr+2(y) +Nr(y)−
(
r − 2y − 1

y

)
(2.3)
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Proof. It is clear that

Nr+3(y) =

y∑
j=0

(
r − 2j + 2

j

)

=

y∑
j=0

[(
r − 2j + 1

j

)
+

(
r − 2j + 1

j − 1

)]

=

y∑
j=0

(
r − 2j + 1

j

)
+

y∑
j=0

(
r − 2j + 1

j − 1

)

= Nr+2(y) +

y−1∑
j=−1

(
r − 2j − 1

j

)

= Nr+2(y) +

(
r + 1

−1

)
+

y∑
j=0

(
r − 2j − 1

j

)
−
(
r − 2y − 1

y

)
.

Thus, we have

Nr+3(y) = Nr+2(y) +Nr(y)−
(
r − 2y − 1

y

)
.

This completes the proof.

Proposition 2.3. The following identity holds:

n∑
a=0

Nr+2a(y + a)

(
n

a

)
= Nr+3n(y + n), 0 ≤ k ≤ n− h− 1

2
. (2.4)

Proof. We proceed by induction on n. The sum (2.4) plainly valid for n = 1.
Suppose it holds for a specific n > 1. For the inductive step n → n+ 1, we have

Nr+3n+3(y + n+ 1) =

n+1∑
a=0

Nr+2a(y + a)

(
n+ 1

a

)

=

n+1∑
a=0

Nr+2a(y + a)

(
n

a

)
+

n+1∑
a=0

Nr+2a(y + a)

(
n

a− 1

)
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=

n∑
a=0

Nr+2a(y + a)

(
n

a

)
+

(
n

n+ 1

)
Nr+2n+2(y + n+ 1)

+
n∑

a=0

Nr+2a+2(y + a+ 1)

(
n

a

)
+

(
n

−1

)
Nr(y).

Thus, we prove

Nr+3n+3(y + n+ 1) = Nr+3n(y + n) +Nr+3n+2(y + n+ 1).

This completes the proof.

Proposition 2.4. For n ≥ 2y + 3, we have

h−1∑
a=0

Nr+a(y) = Nr+h+2(y + 1)−Nr+2(y + 1). (2.5)

Proof. Using equality (2.2) repeatedly,

Nr+3(y + 1) = Nr+2(y + 1) +Nr(y)

Nr+4(y + 1) = Nr+3(y + 1) +Nr+1(y)

. . .

Nr+h+1(y + 1) = Nr+h(y + 1) +Nr+h−2(y)

Nr+h+2(y + 1) = Nr+h+1(y + 1) +Nr+h−1(y).

We get

h−1∑
a=0

Nr+a(y) = Nr+h+2(y + 1)−Nr+2(y + 1).
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3 Generating Functions of the Incomplete Narayana Num-
bers

In this section, we give the generating functions of the incomplete Narayana num-
bers.

Lemma 3.1. Let {Sr}∞r=0 be a complex sequence satisfying the following nonho-
mogeneous recurrence relation:

Sr = Sr−1 + Sr−3 +mr, (r > 3)

where {mr} is given a complex sequence. Then the generating function GS(t) of
the sequence {Sr} is

GS(t) =
S0 −m0 + (S1 − S0 −m1)t+ (S2 − S1 −m2)t

2 +G(t)

1− t− t3

where G(t) denotes the generating function of {mr}.

Proof. Let

GS(t) =

∞∑
r=0

Srt
r = S0 + S1t+ S2t

2 + S3t
3 + · · ·+ Srt

r + . . . .

Multiply the above equation by −t and −t3, respectively.

−tGS(t) = −S0t− S1t
2 − S2t

3 − S3t
4 − · · · − Sr−1t

r + . . .

−t3GS(t) = −S0t
3 − S1t

4 − S2t
5 − S3t

6 − · · · − Sr−3t
r + . . .

and
G(t) = m0 +m1t+m2t

2 +m3t
3 + · · ·+mrt

r + . . .

Therefore, we get

GS(t)(1− t− t3)−G(t) = S0 −m0 + (S1 − S0 −m1)t+ (S2 − S1 −m2)t
2.
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Theorem 3.1. The generating function of the incomplete Narayana numbers Nr(y)
is given by

GNr
(t) =

∞∑
n=0

Nr(y)t
r =

N3y+1 +N3y−2t+N3yt
2 + t+3

(1−t)y+1

1− t− t3
.

Proof. Assume that y is a fixed positive integer. From (2.1) and (2.3), Nr(y) = 0

for 0 ≤ n < 2k, N3y+1(y) = N3y+1, N3y+2(y) = N3y+2 and N3y+3(y) = N3y+3

and that

Nr(y) = Nr−1(y) +Nr−3(y)−
(
r − 2y − 4

r − 3y − 4

)
.

Now let S0 = N3y+1(y), S1 = N3y+2(y), S2 = N3y+3(y) and Sr = N3y+r+1(y).
Also let m0 = m1 = m2 = 0 and

mr =

(
r − 3 + y

r − 3

)
.

Note: (From [13], p. 355, Equation 7.1(5)), it is know that the equality holds

∞∑
r=0

(
α+ (β + 1)r

r

)
tr =

(1 + λ)α+1

1− βλ
,

where α and β are complex numbers independent of r, and λ is a function of t
defined implicitly by

λ = t(1 + λ)β+1, λ(0) = 0.

Then, the generating function of the sequence {mr} is

G(t) =
t3

(1− t)y+1

(see [13]). Thus, from Lemma 3.1, we get the generating function GNr(t) of se-
quence {Sr}.
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