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Abstract

This paper addresses the outcomes that elucidate the characteristics of
symmetric linear n-derivations within the realm of C∗-algebras. Basically,
we show that in a primitive C∗-algebra A, if D,G : An → A are two
nonzero symmetric linear n-derivations such that f(a)a + ag(a) = 0 holds
∀ a ∈ W, a nonzero left ideal of A where f and g are traces of D and G

respectively, then either A is commutative or G acts as a left n-multiplier.
Ultimately, we provide a comprehensive characterization of symmetric n-
derivations by means of left n-multipliers.
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1 Introduction

Derivations on Banach algebras have long been the focus of intensive research due
to their intrinsic connections with both algebraic structures and functional analysis.
The interplay between algebraic properties and topological structures in Banach
algebras creates a fertile ground for investigating various linear and nonlinear op-
erations that preserve algebraic and analytical properties simultaneously. Bideriva-
tions, which provide a parallel perspective on derivations unveiling complex pat-
terns that have a big impact on areas like operator theory, differential equations,
and functional analysis. Throughout the discussion, unless otherwise mentioned,
A will denote C∗-algebra with Z(A) as its centre. However, A may or may not
have unity. The symbols [x, y] and x ◦ y denote the commutator xy − yx and the
anti-commutator xy + yx, respectively, for any x, y ∈ A. An algebra A is said
to be prime if xAy = {0} implies that either x = 0 or y = 0, and semiprime if
xAx = {0} implies that x = 0, where x, y ∈ A.

A Banach algebra is a linear associate algebra which, as a vector space, is
a Banach space with norm ||.|| satisfying the multiplicative inequality; ||xy|| ≤
||x||||y|| for all x and y in A. An involution on an algebra A is a linear map x 7→
x∗ of A into itself such that the following conditions are hold: (i) (xy)∗ = y∗x∗,
(ii) (x∗)∗ = x, and (iii) (x + λy)∗ = x∗ + λ̄y∗ for all x, y ∈ A and λ ∈ C, the
field of complex numbers, where λ̄ is the conjugate of λ. An algebra equipped with
an involution is called a ∗-algebra or algebra with involution. A Banach ∗-algebra
is a Banach algebra A together with an isometric involution ||x∗|| = ||x|| for all
x ∈ A . A C∗-algebra A is a Banach ∗-algebra with the additional norm condi-
tion ||x∗x|| = ||x||2 for all x ∈ A. A C∗-algebra is prime if the intersection of
any two nonzero (closed, two-sided) ideals is nonzero. A C∗-algebra A is prim-
itive if its zero ideal is primitive, that is, if A has a faithful nonzero irreducible
representation. A linear operator D on a C∗-algebra A is called a derivation if
D(ϑℓ) = D(ϑ)ℓ + ϑD(ℓ) holds ∀ ϑ, ℓ ∈ A. Consider the inner derivation δa
implemented by an element a in A, which is defined as δa(x) = xa−ax for every
x in A, as a typical example of a nonzero derivation in a noncommutative algebra.

In order to broaden the scope of derivation, Maksa [14] introduced the concept
of symmetric bi-derivations. A bi-linear map D : A × A → A is said to be a
bi-derivation if

D(ϑϑ′, ℓ) = D(ϑ, ℓ)ϑ′ + ϑD(ϑ′, ℓ)

D(ϑ, ℓℓ′) = D(ϑ, ℓ)ℓ′ + ℓD(ϑ, ℓ′)
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holds for any ϑ, ϑ′, ℓ, ℓ′ ∈ A. The foregoing conditions are identical if D is also a
symmetric map, that is, if D(ϑ, ℓ) = D(ℓ, ϑ) for every ϑ, ℓ ∈ A. In this case, D is
referred to as a symmetric bi-derivation of A.

In this paper we briefly discuss the various extensions of the notion of deriva-
tions on C∗-algebras. The most general and important one among them is the
notion of a symmetric n-derivations on C∗-algebras. The idea of symmetric n-
derivations is given by Park [18].

Definition 1.1. Let n ≥ 2 be a fixed integer and An = A ×A × · · · ×A︸ ︷︷ ︸
n-times

. A

map D : An → A is said to be symmetric (permuting) if

D(ϑ1, ϑ2, . . . , ϑn) = D(ϑπ(1), ϑπ(2), . . . , ϑπ(n))

for all permutations π(t) ∈ Sn and ϑt ∈ A, where t = 1, 2, . . . , n. A n-linear map
D : An → A is said to be a permuting(symmetric) linear n-derivation on D if D
is permuting and D(ϑ1, ϑ2, . . . , ϑiϑ

′
i, . . . , ϑn) = D(ϑ1, ϑ2, . . . , ϑi, . . . , ϑn)ϑ

′
i +

ϑiD(ϑ1, ϑ2, . . . , ϑ
′
i, . . . , ϑn) hold for all ϑi, ϑ

′
i ∈ A, i = 1, 2, . . . , n.

A map d : A → A defined by d(ϑ) = D(ϑ, ϑ, . . . , ϑ) is called the trace of
D. If D : An → A is permuting and n-linear, then the trace d of D satisfies the
relation

d(ϑ+ ℓ) = d(ϑ) + d(ℓ) +
n−1∑
k=1

nCk hk(ϑ; ℓ)

∀ ϑ, ℓ ∈ A, where nCk =
(
n
k

)
and

hk(ϑ; ℓ) = D( ϑ, . . . , ϑ︸ ︷︷ ︸
(n−k)-times

, ℓ, . . . , ℓ︸ ︷︷ ︸
k-times

).

A 1-derivation is obviously a derivation, and a 2-derivation is a symmetric bi-
derivation on C∗-algebras. The idea of a permuting n-multiplier on rings was
initially suggested by Ashraf et al. in [3] where they proved some interesting re-
sults.

Definition 1.2. A permuting n-linear map Λ : An → A is called a permuting left
n-multiplier (resp. permuting right n-multiplier) if

Λ(i1, i2, . . . , iti
′
t, . . . , in) = Λ(i1, i2, . . . , it, . . . , in)i

′
t
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(resp. Λ(i1, i2, . . . , iti′t, . . . , in) = itΛ(i1, i2, . . . , i
′
t, . . . , in)

holds ∀ it, i
′
t ∈ A, t = 1, 2, . . . , n. If Λ is both a permuting left n-multiplier and

a permuting right n-multiplier, it is referred to as a permuting n-multiplier.

There has been considerable interest in the structure of linear derivation and
linear bi-derivation on C∗-algebras and more generic Banach algebras. Deriva-
tions on C∗-algebras were described in various ways by different authors. For
example, in 1966, Kadison [11] proved that each linear derivation of a C∗-algebra
annihilates its centre. In 1989, Mathieu [16] extended the Posner’s first result [19]
on C∗-algebras. Basically, he proved that “if the product of two linear deriva-
tions d and d′ on a C∗-algebra is a linear derivation then dd′ = 0”. The question
“under which conditions all linear derivations are zero on a given ∗-algebra” have
attracted much attention of authors (for instance, see [10] and [12]). Very recently,
Ekrami and Mirzavaziri [7] showed that “if A is a C∗-algebra admitting two linear
derivations d and d′ on A, then there exists a linear derivation D on A such that
dd′ + d′d = D2 if and only if d and d′ are linearly dependent”.

In [2], Ali and Khan proved that if A is a C∗-algebra admitting a symmetric
bilinear generalized ∗-biderivation H : A ×A → A with an associated symmet-
ric bilinear ∗-biderivation B : A × A → A, then H maps A × A into Z(A).
In [6], Dhara and Ali characterized the n-centralizing generalized derivations on
C∗-algebras. Basically, they proved that “if n a fixed positive integer and A be a
C∗-algebra and F a linear generalized derivation with an associated linear deriva-
tion D of A such that F is n-centralizing on A, then either A is commutative or
F(x) = qx +D(x) for all x ∈ A, where q ∈ C, the extended centroid of A and
D(A) ⊆ Z(A). In particular, D is commuting on A” (see also [1, 8, 13, 20] for
recent results).

In the prospect of above motivation, we prove some results based on linear
n-derivations of C∗-algebras. Our main intention is to investigate the structure of
primitive C∗-algebra and the forms of maps (traces of n-derivations) satisfying the
functional identity f(ϑ)ϑ+ϑg(ϑ) = 0 ∀ ϑ ∈ W, a nonzero left ideal of A, where f
and g are traces of linear n-derivations D and G, respectively. Precisely, we prove
that if A is a C∗-algebra admitting two symmetric n-derivations D : An → A

and G : An → A with traces f and g, respectively satisfying f(ϑ)ϑ+ ϑg(ϑ) = 0
∀ ϑ ∈ W, a left ideal of A, then either A is commutative or G acts as a left n-
multiplier on W. Moreover, we also characterize the traces of q-iterations of linear
n-derivations in primitive C∗-algebra and prove that for a fixed integer n ≥ 2, if A
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is a primitive C∗-algebra and q ≥ 1, a fixed integer admitting q-iterations of linear
n-derivations D1,D2, . . . ,Dq : An → A such that the product of the traces of
D1,D2, . . . ,Dq respectively, is zero on a nonzero ideal of A, then either D1 = 0
or the rest of D′

is act as n-multipliers on A.

2 The results

In order to establish the proofs of our main theorems, we first state a result which
we use frequently in the proof of our main results.

Lemma 2.1. [5] Let n be a fixed positive integer and R a n!-torsion free ring.
Suppose that y1, y2, . . . , yn ∈ R satisfy λy1 + λ2y2 + · · · + λnyn = 0 for λ =

1, 2, . . . , n. Then yi = 0 for i = 1, 2, . . . , n.

This section deals with the study of permuting n-multipliers. In the present section,
we look about the action of symmetric linear n-derivations satisfying the functional
identity f(i)i + ig(i) = 0 ∀ i ∈ W, a nonzero left ideal of A where f and g are
the traces of symmetric n-derivations D and G respectively. According to Brešar’s
proof in [4, Theorem 4.1], if R is a prime ring, W a nonzero left ideal of R,
and d and g are nonzero derivations of R satisfying d(ϑ)ϑ − ϑg(ϑ) ∈ Z(R) ∀
ϑ ∈ W, then R is commutative. We expand the previous result by demonstrating
the following theorem for the traces of linear n-derivations of A.

Theorem 2.1. Let A be a primitive C∗-algebra and W a nonzero left ideal of A.
Suppose that A admit two symmetric linear n-derivations D : An → A and G :

An → A with f and g as traces of D and G, respectively. If f(ϑ)ϑ+ ϑg(ϑ) = 0

∀ ϑ ∈ W, then either A is commutative or G acts as a left n-multiplier on W.
Furthermore, in the last case, either D = 0 or W[W,W] = {0}.

Proof. We have given that D, G : An → A be two symmetric linear n-derivations
of a primitive C∗-algebra A such that f(ϑ)ϑ + ϑg(ϑ) = 0 ∀ ϑ ∈ W, a nonzero
left ideal of A. Therefore, A is prime by [17, Theorem 5.4.5] because A is a
primitive C∗-algebra. Now replacing ϑ by ϑ+mℓ in the hypothesis for ℓ ∈ W and
1 ≤ m ≤ n− 1, we get

f(ϑ+mℓ)(ϑ+mℓ) + (ϑ+mℓ)g(ϑ+mℓ) = 0 ∀ ϑ, ℓ ∈ W.
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By the definitions of f and g and using the given condition, we get

f(ϑ)mℓ+ f(mℓ)ϑ+ ϑg(mℓ) +mℓg(ϑ)+( n−1∑
t=1

nCtD( ϑ, . . . , ϑ︸ ︷︷ ︸
(n−t)-times

,mℓ, . . . ,mℓ︸ ︷︷ ︸
t-times

)
)
(ϑ+mℓ)+

(ϑ+mℓ)
( n−1∑
t=1

nCtG( ϑ, . . . , ϑ︸ ︷︷ ︸
(n−t)-times

,mℓ, . . . ,mℓ︸ ︷︷ ︸
t-times

)
)
= 0

∀ ϑ, ℓ ∈ W. On using Lemma 2.1, we get

f(ℓ)ϑ+ nD(ϑ, ℓ, . . . , ℓ)ℓ+ ϑg(ℓ) + nℓG(ϑ, ℓ, . . . , ℓ) = 0 (2.1)

∀ ϑ, ℓ ∈ W. Replace ϑ by ϑk to obtain

f(ℓ)ϑk + nϑD(k, ℓ, . . . , ℓ)ℓ+ nD(ϑ, ℓ, . . . , ℓ)kℓ+ ϑkg(ℓ)+ (2.2)

nℓϑG(k, ℓ, . . . , ℓ) + nℓG(ϑ, ℓ, . . . , ℓ)k = 0 ∀ ϑ, ℓ, k ∈ W.

On comparing (2.1) and (2.2), we get

ϑ[k, g(ℓ)] + nD(ϑ, ℓ, . . . , ℓ)[k, ℓ] + nϑD(k, ℓ, . . . , ℓ)ℓ

+ nℓϑG(k, ℓ, . . . , ℓ) = 0 (2.3)

∀ ϑ, ℓ, k ∈ W. Substitute rϑ for ϑ in (2.3) to get

rϑ[k, g(ℓ)] + nrD(ϑ, ℓ, . . . , ℓ)[k, ℓ] + nD(r, ℓ, . . . , ℓ)ϑ[k, ℓ]+

nrϑD(k, ℓ, . . . , ℓ)ℓ+ nℓrϑG(k, ℓ, . . . , ℓ) = 0 (2.4)

∀ ϑ, ℓ, k ∈ W, r ∈ A. Comparing (2.3) and (2.4), we find that

nD(r, ℓ, . . . , ℓ)ϑ[k, ℓ] + nℓrϑG(k, ℓ, . . . , ℓ)− nrℓϑG(k, ℓ, . . . , ℓ) = 0

∀ ϑ, ℓ, k,∈ W, r ∈ A.
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On simplifying, we obtain

D(r, ℓ, . . . , ℓ)ϑ[k, ℓ] + [ℓ, r]ϑG(k, ℓ, . . . , ℓ) = 0 (2.5)

∀ ϑ, ℓ, k ∈ W, r ∈ A. Replacing ℓ by k in (2.5), we see that

[k, r]ϑg(k) = 0 ∀ ϑ, k ∈ W, r ∈ A.

Substituting rϑ for ϑ, we get

[k, r]Aϑg(k) = 0 ∀ ϑ, k ∈ W.

Since every primitive C∗-algebra is a prime, so the last relation yields that either
[k, r] = 0 or ϑg(k) = 0. If [k, r] = 0 ∀ k ∈ W and r ∈ A, then replacing
k by sk, we get [s, r]k = 0 ∀ k ∈ W, r, s ∈ A. Again, replace k by rk such
that [s, r]Ak = 0 ∀ k ∈ W, r, s ∈ A. Henceforward, we conclude that A is
commutative. Next, if ϑg(k) = 0 ∀ ϑ, k ∈ W, then replacing k by k + mℓ for
1 ≤ m ≤ n− 1, we get

ϑg(k +mℓ) = 0 ∀ ϑ, ℓ, k ∈ W.

That is,

ϑg(k) + ϑg(mℓ) + ϑ
n−1∑
t=1

nCtG( k, . . . , k︸ ︷︷ ︸
(n−t)-times

,mℓ, . . . ,mℓ︸ ︷︷ ︸
t-times

) = 0 ∀ ϑ, ℓ, k ∈ W.

By using Lemma 2.1, we get

ϑG(k, ℓ, . . . , ℓ) = 0 ∀ ϑ, ℓ, k ∈ W.

This implies that
G(ϑk, ℓ, . . . , ℓ) = G(ϑ, ℓ, . . . , ℓ)k.

Hence, G acts as a left n-multiplier. Since ϑG(k, ℓ . . . , ℓ) = 0 ∀ ϑ, ℓ, k ∈ W,

using (2.5), we arrive at

D(r, ℓ, . . . , ℓ)ϑ[k, ℓ] = 0 ∀ ϑ, ℓ, k,∈ W, r ∈ A.
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Replace r by sr to get

D(s, ℓ, . . . , ℓ)Aϑ[k, ℓ] = {0} ∀ ϑ, ℓ, k ∈ W.

Since A is a primitve C∗-algebra, we get that either D(s, ℓ, . . . , ℓ) = 0 or ϑ[k, ℓ] =
0 ∀ ϑ, ℓ, k ∈ W, s ∈ A. If D ̸= 0, the later result is W[W,W] = {0}.

Following the same vein, we can also prove the next result:

Theorem 2.2. Let A be a primitive C∗-algebra and W a nonzero right ideal of
A. Assume that D and G be two symmetric linear n-derivations of A with trace f
and g, respectively. If f(ϑ)ϑ+ ϑg(ϑ) = 0 ∀ ϑ ∈ W, then either A is commutative
or D acts as a left n-multiplier on W. Furthermore, in the last case either, G = 0

or W[W,W] = {0}.

In view of the above result, we obtain the following corollary for bilinear symmet-
ric biderivations:

Corollary 2.1. Let A be a primitive C∗-algebra, W a nonzero left ideal of A and
∆1, ∆2 be bilinear symmetric bi-derivations of A with trace d1 and d2, respec-
tively. If ∆1(ϑ, ϑ)ϑ + ϑ∆2(ϑ, ϑ) = 0 ∀ ϑ ∈ W, then either A is commutative or
∆2 acts as a left bi-multiplier on W. Moreover, in the last case either ∆1 = 0 or
W[W,W] = {0}.

Corollary 2.2. Let A be a primitive C∗-algebra, W a nonzero right ideal of A
and ∆1, ∆2 be symmetric bilinear bi-derivations of A with trace d1 and d2, re-
spectively. If ∆1(ϑ, ϑ)ϑ+ ϑ∆2(ϑ, ϑ) = 0 ∀ ϑ ∈ W, then either A is commutative
or ∆2 acts as a left bi-multiplier on W. Moreover, in the last case either ∆1 = 0

or W[W,W] = {0}.

The next result is a generalization of Vukman’s result [21]. Indeed, Vukman
showed that if R is a prime ring of characteristic different from two and three
and there exist symmetric bi-derivations D1 : R×R → R and D2 : R×R → R,
such that f1(a)f2(a) = 0, ∀ a ∈ R holds, where f1 and f2 are the traces of D1

and D2 respectively, then either D1 = 0 or D2 = 0. We extend this theorem for
q-iterations of linear n-derivations of C∗-algebras.

Theorem 2.3. Let A be a primitive C∗-algebra, W a nonzero ideal of A and
q ≥ 1, a fixed integer. Consider D1,D2, . . . ,Dq : An → A to be linear n-
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derivations on A such that d1(i1)d2(i2) · · · dq(iq) = 0 ∀ i1, i2, . . . , iq ∈ W where
d′is are traces of D′

is respectively. Then one of the following holds:

1. d1(i1) = 0 ∀ i1 ∈ W,

2. All Dp act as left n-multipliers on A for p = 2, 3, . . . , q.

Proof. It is given that A is a primitive C∗-algebra. Therefore, A is prime C∗-
algebra by [17, Theorem 5.4.5]. Now we will use induction to prove the theorem.
If we put q = 1 in our hypothesis, then it is obvious that d1(i1) = 0 ∀ i1 ∈ W.
Now consider q = 2, then by the hypothesis, we have

d1(i1)d2(i2) = 0 ∀ i1, i2 ∈ W. (2.6)

Replacing i2 by i2 +mℓ2 for ℓ2 ∈ W and 1 ≤ m ≤ n− 1, we get

d1(i1)d2(i2 +mℓ2) = 0 ∀ i1, i2, ℓ2 ∈ W.

On simplifying, we get

d1(i1)d2(i2) + d1(i1)d2(mℓ2) + d1(i1)
n−1∑
t=1

nCtD2(i2, . . . , i2︸ ︷︷ ︸
(n−t)-times

,mℓ2, . . . ,mℓ2︸ ︷︷ ︸
t-times

) = 0

(2.7)

∀ i1, i2, ℓ2 ∈ W. Compare (2.6) and (2.7) and use Lemma 2.1 to get

nd1(i1)D2(i2, . . . , i2, ℓ2) = 0 ∀ i1, i2, ℓ2 ∈ W.

This implies that

d1(i1)D2(i2, . . . , i2, ℓ2) = 0 ∀ i1, i2, ℓ2 ∈ W. (2.8)

Replacing ℓ2 by ℓ2r in (2.8), we obtain

d1(i1)ℓ2D2(i2, . . . , i2, r) = 0 ∀ i1, i1, ℓ2 ∈ W, r ∈ A
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i.e.,

d1(i1)ℓ2AD2(i2, . . . , i2, r) = {0} ∀ i1, i2, ℓ2 ∈ W.

Since A is a primitive C∗-algebra, we can find either d1(i1)ℓ2 = 0 or D2(i2, . . . , i2,

r) = 0. Consider the first case d1(i1)ℓ2 = 0. This implies that d1(i1) = 0. Now
consider the later case D2(i2, . . . , i2, r) = 0 ∀ i2 ∈ W, r ∈ A. A straightfor-
ward modification shows that D2(i2, . . . , i2, w1r) = D2(i2, . . . , i2, w1)r ∀ w1 ∈
W, r ∈ A. Hence D2 acts as a left n-multiplier as desired.
If q = 3, then by the hypothesis, we can write

d1(i1)d2(i2)d3(i3) = 0 ∀ i1, i2, i3 ∈ W. (2.9)

Replacing i3 by i3 + mℓ3 for ℓ3 ∈ W and 1 ≤ m ≤ n − 1 in (2.9) and taking
account of Lemma 2.1, we get

d1(i1)d2(i2)D3(i3, . . . , i3, ℓ3) = 0 ∀ i1, i2, i3, ℓ3 ∈ W. (2.10)

Taking ℓ3s in place of ℓ3 in (2.10) and using (2.10), we obtain

d1(i1)d2(i2)ℓ3D3(i3, . . . , i3, s) = 0 ∀ i1, i2, i3, ℓ3 ∈ W, s ∈ A,

which gives

d1(i1)d2(i2)ℓ3AD3(i3, . . . , i3, s) = 0 ∀ i1, i2, i3, ℓ3 ∈ W.

Using primitiveness of A, we have either d1(i1)d2(i2)ℓ3 = 0 or D3(i3, . . . , i3, s) =

0. Consider the first case, d1(i1)d2(i2)ℓ3 = 0. Again using primitiveness of A, we
get d1(i1)d2(i2) = 0. Then we are done by the previous case for q = 2. Now con-
sider D3(i3, . . . , i3, s) = 0 ∀ i3 ∈ W, s ∈ A, we can find D3(i3, . . . , i3, w2s) =

D3(i3, . . . , i3, w2)s = 0 ∀ w2 ∈ W, s ∈ A, that is, D3 acts as a left n-multiplier.
Next suppose that it is true for n = q − 1 and we shall prove it for n = q. Let us
assume the hypothesis,

d1(i1)d2(i2) · · · dq(iq) = 0 ∀ i1, i2, . . . , iq ∈ W. (2.11)



On symmetric n-derivations in C∗-algebras 77

Replacing iq by iq + mℓq for ℓq ∈ W and 1 ≤ m ≤ n − 1 in (2.11) and taking
account of Lemma 2.1, we get

nd1(i1)d2(i2) · · · dq−1(iq−1)Dq(iq, . . . , iq, ℓq) = 0

∀ i1, i2, . . . , iq, ℓq ∈ W. The last relation gives

d1(i1)d2(i2) · · · dq−1(iq−1)Dq(iq, . . . , iq, ℓq) = 0. (2.12)

Substituting ℓqu for ℓq in (2.12) and using (2.12), we arrive at

d1(i1)d2(i2) · · · dq−1(iq−1)ℓqDq(iq, . . . , iq, u) = 0

i.e.,

d1(i1)d2(i2) · · · dq−1(iq−1)ℓqADq(iq, . . . , iq, u) = {0}

∀ i1, i2, . . . , iq, ℓq ∈ W, u ∈ A. Since every primitive C∗-algebra is a prime so the
last relation gives that either d1(i1)d2(i2) · · · dq−1(iq−1) = 0 or Dq(iq, . . . , iq, u) =

0 ∀ i1, i2, . . . , iq ∈ W, u ∈ A. If d1(i1)d2(i2) · · · dq−1(iq−1) = 0, then we
are done by the former case. If Dq(iq, . . . , iq, u) = 0 ∀ iq ∈ W, u ∈ A,
then we can easily compute that Dq(iq, . . . , iq, wq−1u) = Dq(iq, . . . , iq, wq−1)u ∀
iq, wq−1 ∈ W, u ∈ A. Hence Dq acts as a left n-multiplier on A as desired. The
theorem’s proof is completed with this conclusion.
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