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Abstract

In this paper, we introduce a new collocation approach for the numerical
solution of linear Emden Fowler equations. The problems is first written
in the integral form and latter converted to system of linear equations using
standard collocation points. Test problems solved by iterative methods are
used to test the performances of the new method which is found to be accurate
and simple to implement.

1 Introduction

Lane Emden equation was first discovered during a research on thermal be-
havior of spherical cloud of gas acting under the mutual attraction of its molecules
subject to the classical law of thermodynamics [1]]. Since then, it has been applied
to several phenomena in mathematical physics and astrophysics including theory
of stellar structure, isothermal gas spheres, equilibrium density distribution in self
gravitating sphere of isothermal gas and other areas of energy transport [2, 3].
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Many methods developed in literature for the solution of Emden Fowler equa-
tions include: Adomian decomposition method [4}5,16], Variational iterative method
[7, 18,19, [10], Pade approximate method [11]] which are all iterative methods. Other
methods include: Collocation method [12} 13} 14} |15} 16], Fuzzy method [17] and
Neural computing [[18]].

The advantages of this new method over other collocation methods mentioned
above is in it’s simplicity in development and implementation, with better accuracy.
Moreover, this new method is not restricted to a particular method of choosing
collocation points.

In this study, we propose a new method for the solution of the equation

h
W) =g (@) + S () +pB)ult), t€[01] (L.D)
subject to the initial condition

u (0) =70, v (0) =71, (1.2)

where p, g : [0,1] — R are continuous functions, i, 79, 71 € R, u: [0,1] — Ris
the solution to be determined. If P (¢t) = 1, (1.1)) is referred to as Lane Emden’s
equation.

The remaing part of the paper is organised as follows: In the Section 2, we
give basic definitions and results that will be used in this study. In Section 3, we
discuss the derivation of the new method, convergence of method of solution and
implementation. Results are presented in Section 4 and we conclude in Section 5.

2 Preliminary Study

In the course of the development of the new method, we will use the following
definitions and results.

Lemma 2.1. [19] The Riemann Liouville integral operator I™ (.) , where n is the
order, on a usual Lesbgue space is defined as

1

oI () = g [ (=) ) ds @1

Lemma 2.2. [[[9)] Let y (t) be a continuous function, I" (.) and D" (.) are the
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integral and differential operators of order n respectively, then

n—1 p
ol (6Dz (s(x))) = s(z) — %S(k) (0) (22)
k=0
Lemma 2.3. Let o, 3 € R, then
! 16— L(@)T(B) atp-
_pae—18-14 a+p—-1
/0 (x —t)* P dt (ot f) x (2.3)

Definition 2.1. [20] (fixed point) Let (X, d) be a metrix space, a fixed point of a
mapping T : X — X of a set X into itself is an x € X which is mapped onto
itself, that is Tx = x

3 Methodology

3.1 Method of solution

Equation ((1.1)) is first converted into integral equation by multiplying it by ¢I2,

applying and ,we get
t t
u(t) =v(t) +h/ (t—s) iu'(s)ds—i—/ (t—s)p(s)u(s)ds 3.1)
0 0

where v (t) = yo+71t+ fg’ (t — s) g (s) ds. We assume the approximating solution

of (3.1)) in the form

1 N
upn (t) = Z an cos (nt) + Z ant™, N e Z* 3.2)
n=0 n=2

so that the first term of the RHS of (3.2]) will effectively overcome the point of
singularity. Expressing (3.2)) matrix form yield

u(t) =T () A (3.3)
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where T(t) = [1 no(t) t* - " ], A =[a a1 - an ]T are
constants to be determined. 7o (£) = >°7_ M eZT
0 0T+’
o (t) =T (t) A (3.4)
where T/ (t) = [ 0 nj(¢) t --- V1] () = M (=) (2j) 4!
° 0 1) =20 Ty )
Using (82) and (84) in (B.1)
t
1
T (t) A= U(t)+h/ t—s)=[0 ni(s) s -+ sV71]dsA (3.5)
0 S
¢
+/ (t—s)P(s)[ 1 no(s) s* -+ sV ]dsA,
0

we again write P (s) = Zf:o prs” and solving (3.5]) by using (2.2)) and (2.3)) , we

obtain .
<Io () —hL ()= > I (t)> A=v(t), (3.6)
r=0

where I; (t) = [0 Qll(t) o1 (t; 2) 1( N)] 01()
_ (-
= 25=0 @i T )T (2 +3)
- (nil)t”, n=01)N, I (t,r) = [ag (t;0) Oz (t) a2 (£;2) -+ a2 (t; N)],
02 (t) 4

—1YT(2j+r+1)
_ZJ 0 e Or(z(j +)1)p((§j+r+§)t29”+2,a2 (t;n)
r pl(n+r+1)

= 2o L'(n+r+3)
tn+r+2.

12912 oy (t;m)

h—
Collocating ([3.6) using the standard collocation points t; = a + Ta 7,

[a,b] = [0,1],7 = 0,1,--- N and solving for A using matrix inversion method
gives the desired approximate solution

un (1) =To () w (t;) ' v (t5) (3.7)

Wherew(tj) = IO (tj)*hll (tj)*IQ (tj) ,V(tj) = [ U(to) v (tl) s U(tN) ]T,
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L, (t;) = [ I (to) In(t1) - L,(tn) ] ,n=0,1,2

3.2 Convergence of solution

Lemma 3.1. Let (X, d) be a metrix space and T : X — X be a mapping, If uy (t)
and un_1 (t) € X are convergent approximate solutions, then

lim (uy (t) —limun_1(¢)) =0 (3.8)

N—oo

Proof. Letu (t) € X be the exact solution, since uy (t) and uy_1 (t) are conver-

gent, then
lim uy (t) = wu(t)

N—o0
Moreover

lim uy_1 (t) = u(t)

N—o00
hence
lim (un (t) —limuy_; (t)) =0
N—o00

which implies that the solution converges to a unique fixed point in X . O

Theorem 3.1. (convergence) Let (X,d) be a metrix space and T : X — X be
a continuous mapping, If un (t) and uny_1 (t) € X are approximate solutions of

(3.1]) such that
lim (Tun (t) — Tun—1(t)) =0
N—o00

then, the approximate solution converges to the exact solution.

Proof. Using the fixed point theorem on (3.1)) , then

S

TuN(t):v(t)—i—h/O (t—s)lu’N(s)dS—i—/O (t—s)p(s)un(s)ds (3.9)

the approximate solution can be written as

uN:i:iWS?j_i_ia g™ (3.10)
n=0 j=0 (25 +1) n=2 ! '
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~x - an () (207 50§ 1
s 4 na,s" " 3.11
vl ey 2 o
Substituting (3.10]) and (3.11)) into (3.9)) gives

n=0 j=0
N t
+Znans”_1/ (t—s)s"” 2ds
n=2 0
an ] n?* [t 2j
Py o [ e ap s
n=0 j=0
+Zan/ (t—s)p(s)s"ds (3.12)
n=2 0

writing p (s) = Zf:o prs”, hence

1 J 2]
T t—s)s¥2d
upn ( ZZ:: 2j+1 /0( s)s s
+Znan/ (t—s)s" 2ds
1 anpr ( n2 oin
+ = / t—s)p(s)s?™"ds
Sy e = [ op

nO]OTO

+ Z Zpran/ (t—s)p(s)s""ds (3.13)

n=2r=0
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Applying (2.3) on (3.13)

an (— 2”T()F(Qj—l)g»
Tu hE g J
( N) + n=0 j=0 2-7+1))2 !

N
+Znanf(2)F(n—1) n

t
o F'n+1)

1 ] 2j .
anpr Fr)r@j+r+1) 5,
t]+7‘+2
B Sh9 S IR,

n= 0] 0r=0
pragl’ n+T+ )n+r+2
+ t 3.14
ZZ retrey G.19

Letuy_1 (t) = Y1 g an cos (nt) + ZN Lot N € ZF

(Tawea) 0 = () + 1305 T T 2= e

2
n=0 j=0 2J+1))

+Z_: nbu L (2)T (n—1)

t
o I'(n+1)

1 2] .
npr P( )F(2]+T+1) 27 2
t]+r+
DRI T

N-1 R

per FCn+r+1) 000
t 3.15
S s
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\(TUN) (t) - (TUN—l) @)

nJF (2)r'(2j—1) 9
_hzz 2j+1))2 |an b’t]

n=0 j=0
NayT (2)T (N a0 (2)r(n—1)
N
+Z lan — ba|t"  (3.16)
F(N+1 = n+1
1 .
Z Zpr — QJI‘() (27 +r+1) | — by £27H742
n n
=]0r0 23+ I'(2j+7r+3)
e (N+r+3)
N—-1 R
p I (2)T (n+7r+1)
— by | T2 3.18
Zz% n+r+3) @ = bul (5-18)

since ¢t € [0, 1], |an, — byn| # 0, hence obviousely

lim (Tun (t) — Tun—1(t)) — 0, Vr

N—o00
Therefore the method converges to the exact solution. O

4 Numerical Examples

In this section, we solve examples to test the efficiency of the new method. All
computations in this section are done with the aid of program written in MATLAB
(2015a) and run on a PC.

Example 4.1. [7] Consider
8
u” (t) + Eu’ (t) 4 tu (t) = t5 — t* + 44t> — 30¢ 4.1

0<t<1, withu(0)=0,u'(0) = 0.The solution u (t) = t* — t3. Comparing
with (L.1), g (t) = t°> — t* + 44> — 30t, h = 8, P (t) = t. The integral form gives

S

u(t)+8/0 (t—s)lu'(s)ds—i—/o (t—s)su(s)ds

t
= / (t—s) (s° — s* + 44s* — 30s) ds
0



Numerical solution of linear Emden Fowler equations: - -

31

Taking N = 4and J = 1,r = 1, Iy (t)

11 £ 0568 0.3333754},

B

collocating using the standard points t; = [ 0 ; i 1 } , hence,
11 0 0 O
101 1
L
L(t)=]11 3 51 v (t5)
1 1 2 2r 8L
18 64 256
11 1 1 1
:[0 —73181 —10649 —1091799 ;M}T
1146880 26850 1146830 35 :
3 3 5 6 7
IQ(t):[% £ £ £ %},then,
0 0 0 0 0
11 1 1 1
I (1) 381 381 20480 T22880 T6SRIZ
o (t;) = 1 1 _1 _1 _1
DTIE O o oW Ep
I35 135 20fs0 0960 22937
6 6 20 30 42
0O 0 0 0 O
o0 =L L 1 1
32 16 128 768
Il(t):[o _2t2 % % %],henee,Il(tj): 0 _;i % 1i 43
0 o & ¥ F
33 16 128 236
0% 1 53 3
Therefore w (t;) = Io (¢;) + 8Ly (¢;) + 12 (¢5) ,
1 1 0 0 0
385 289 11521 9601 9857
) 38 381 20480 T3S0 GSSIRS
w(t;) = L& L AL
! B B 3ths AL 2068
15 I3 20450 40000 22076
6 6 20 30 421
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Solving for A = w(tj)_1 v(tj),givesA=[0 0 0 -1 1 ]T. Substitut-
ing back into the approximate solution gives u (t) = t* — 3, which is the exact
solution. Same results are obtained when N > 4.

Example 4.2. [2]|] Consider
2
u” (t) + ;u/ t)+u"(t)=0,m=0o0r1,u(0)=1,u (0)=0 (4.2)

t2 sin (t)

The solution u (t) = 1 — 5 when m = 0 and u (t) = when m = 1. We

write the solution in the form u (N; J).

Ifm = 1,using N =5, J = 3,r = 0, for illustration, following the steps in Exam-
ple 1, we obtain the following: 21> (t) = [ 0 G(t) 2 £ L L } 0o (1) =

t6 tt 2 .2 M s 6 4T 9 .
{7 () & % w E] 1) = 55551

IR
3600 2ty 1)

t
E,Io(t) =[1 n@ ¢ & ¢ ], vty))=[1 1111 1].
th 2
m(t) =5 =5 +Lw(t) =L (t;) + 2L (&) + L2 (t;), w(t)) =
[ 1 1 0 0 0 0
51 54002503 901 1001 417 788
3 T Gor i 350 8%
3 183303 W5 181 I8bs3  'BARSSS | .
33 7300983 3880 3308 WD 319803
P BB 1§p s TEIS 1640625
L 2 3600 12 20 10 21
thereforeA=[1 2 3 0 g 0 }T. Substituting back into the approximate
solution gives
1 1
53)=1— "+ —t*
u(5,3) 6 " 120
o . ) sin (t) .
which is the Taylor series expansion of o the exact solution.

If m = 0, (3.1]) reduces to
t 1 t
u(t)+/(ts)u’(s)d5:1/(ts)ds (4.3)
0 o 0

Using N = 4, J = 3 forillustration, Io (t) = [ 1 no(t) t* 3 ¢* ], no(t) =



Numerical solution of linear Emden Fowler equations: - - 33

G-S+1].2nw=[0 60) 2 4§ 4] bty = LT
A2 P2 2 2 3 [P72W T 3600 T2 2

A=1]1

solution.

=L 00 ]T. Therefore u (4,3) = 1 — 5 which is the exact

Example 4.3. /7, |11} 122]] Consider
2
u” (t) + gu/ ) —2022+3)u(t) =0 (4.4)

with u (0) = 1, W/ (0) = 0, the solution u (t) = €'". On comparing with (L.1)) ,
h=2.p(t)=-2 (2t2 + 3) . The integral form is

u (t)+2/0 (t—s) %u' (s) ds—4/0 (t — s) s%u (s) ds—6/0 (t—s)u(s)ds=1

Following the same steps in previous Examples above, we obtain the following
results, we equate the coefficient of t < e~ *7 to zero and truncate the series at
power of 10. Usmg u (10 5) for illustration, Let 1Ty (t fo (t — 5) s2u(s) ds,
2[ 1 ( fo (t—s)u(s)ds

18 6 ¢ 42
10320 72021 327

Lity=[1 no ¢ ¢ t* 5 5 47 8], no=
L,

2 =0 6(t) ¢* 0.5t 0.333t* 0.25t° 0.2t 0.167¢7 0.148¢° |,

0o (t) = 3.54e 6" — 2.78¢~4" 4 0.0139t* — 0.5¢2,

-4 (t) =

[0.83t° 1np 0.83% 0.02¢7 0.02t* 0.012¢7 0.01¢° 0.001¢ 0.001¢2],
Iy (t) = —1.54¢ 5" 4 7.44¢=4" — 0.0167t5 + 0.0833¢4,

—6211 (t) =

[ 0.5¢% 2p; 0.83% 0.05¢° 0.033t° 0.024¢7 0.02¢% 0.0014¢7 0.011¢10 ],
2 (t) = —2.48¢ 77" 4 0.00139¢% — 0.0417¢* + 0.5¢2

A=

[ 24965 —2.49¢5 —1.25¢° 1584 1.04c™* 0.007 —346 0.03 6.2 |
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Substituting back into the approximate solution gives

w(8;5) = 0.0255t% 4 0.0255¢7 + 0.148% + 0.0073t> 4 0.498¢* + 0.0001¢>
40.999995¢% + 1.0

In the results below, we equate the coefficient of ¢ < e~%7 to zero and truncate the
series at power of 10

w(15;8) = 0.0083561578¢° — 5.4439212¢ 6" 4+ 0.041667245¢5
+0.16666662t° + 0.5¢* + t* + 1.0

1 (20; 8) = 0.0083335118¢'° +0.041666675t° + 0.16666667t° + 0.5t + 1% + 1.0
1 (25;8) = 0.0083333334¢'° +0.041666667¢® +0.16666667t5 + 0.5t* + 2 +1.0

The results obtained show that /V is increasing, the accuracy is improving hence it
shows that the method converges.

Example 4.4. [15] Consider
2
u’ (t) + gu’ (t) +u(t) =64 12t + 12 + 3 (4.5)

with u (0) = 0, ' (0) = 0, the solution u (t) = t*> + t3. Taking N = 3 and J = 2,

3 t 12
then, 21> (1) = | 0 62(t) £ G |.62(t) = o5 + 5
0 0 0 0
0 323 1 1L
Mat)= | o T 1 ¥
732; 9 217
’ S ' 2 4 2
. . 2 4 5 —t t
Taking » = 0 in (3.6), I; (t) = [% 01(t) L %}’Hl(t):ﬂ—F?’
0 0 0 0
1107 1 1
Li(ty)= | B 188 2 50 | () =[1 n@) & ], m() =
2 2 12 2
1 1 0 0
t? A S 2
1— —, Io(t;) = By ¥ |, 9@ = — (33 + 5% + 120t + 180) ,
2 1 ? 5 7 60
1 3 1 1
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1 0 0
6475 325 361

@ %% "o,

oond!

T
g(t;)=[0 331 238 T1 1% Thereforew (t;) =

mow

- 72 12 1215
Hence A = [ 0 011 } . Substituting back into the approximate solution
gives the exact solution.

sl —

Example 4.5. [6]] Consider

u” (t) + %u’ B+ B-t)u)=0

subject to the initial conditions u (0) = 1, v/ (0) = 0. The exact solution u (t) =
et Following the steps in Examples 1 — 3, we obtain the following results, we
equate the coefficient of t < e~%7 to zero and truncate the series at power of 10

u (10;4)
— —1.6030642¢ 4" — 8.7365408¢ 5" + 5.347587¢ 4" — 5.6801769¢ "
— 0.020811163t° — 5.3737829¢ 51" 1+ 0.12500076t* — 0.5t2 + 1.0

u (15;6)
— —2.6123777¢~ 4" 1 0.0026040537t3 — 0.020833338t5 + 0.125¢1 — 0.5¢2 + 1.0

u (20 6)
— —92.6041701e~4" + 0.0026041667¢% — 0.020833333t5 + 0.125¢t4 — 0.5t2 + 1.0

u (25;6)
— —92.6041667e~4" + 0.0026041667t8 — 0.020833333t5 + 0.125t* — 0.5¢2 + 1.0

The results obtained is the Taylor series expansion of the approximate solution
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5 Conclusion

We have discussed the development and implementation of method of approxi-
mating the solution of linear singular second order initial value problems. The
approach in this paper is simple to develop and implement without loosing accu-
racy. The implementation is done with the aid of a MATLAB code which makes
the implementation simple, easier and flexible. The limits are verified using scien-
tific workplace software. The approximate solution effectively handle the singular
points, hence the method works with all the method of choosing collocation points.
Numerical results confirmed the efficiency of the new method in terms of accuracy
and simplicity.
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