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Abstract

This work presents a projection computational technique for solving Volterra-
Fredholm integro-differential equations (VFIDEs) via second kind Cheby-
shev polynomials as basis functions. The method transform VFIDEs into
system of linear algebraic equations with the unknown Chebyshev coeffi-
cients, which is then solved using matrix inversion. To test for the accuracy
and efficiency of the scheme, numerical example were solved and results ob-
tained shows the method perform excellent than the compared results in the
literature.
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1 Introduction

This work take into consideration the VFIDE equation given in the form:

n ' z )
;“i(z)vl (z)=f(z)+XM /1 ki (z,t) v (t)dt +A2/1k2 (z,t) v (t)dt
(1.1)

With the initial conditions
v (0)=v;, i=0,1,2,---n—1 (1.2)

Where k; (2,t) and k2 (2,t) and p; (2), ¢ = 0,1,2,---n with p, (2) # 0 are
known functions on the an interval —1 < z <t < 1. p1, 49, +, tn » A1, Ao, are
constant values, f (z) is a known function and v (z) is the unknown function to be
determined. Integro-differential equations are widely employed as mathematical
models in different fields. Integro-differential equations (IDEs) have attracted a lot
of interest lately. Since many IDEs cannot be solved analytically, it would be quite
helpful to establish exact approximations using numerical techniques. Here are
only a few authors who have provided numerical methods for solving the IDEs:
A technique for computing the VFIDEs [1], Utilizing an operational matrix and
block-pulse functions, a direct approach for solving the first kind of Volterra in-
tegral equation is presented [2], Block pulse functions and operational matrices
are used to numerically solve the VFIDEs [3], Chebyshev polynomial approach
for the linear Fredholm-Volterra IDEs in their generic form [4,5,6], Fourth-order
IDEs are treated using a variational iteration approach [7], and high-order nonlin-
ear VFIDEs are treated using the differential transform method [8], Fixed point
methods and Schauder bases are used to approximate the solution of the first-
order mixed Fredholm-Volterra IDEs [9], and Chebyshev wavelets approximate
the analytical solution for high-order IDEs [10], Numerical solution of VFIDEs
using Legendre collocation method [11], Taylor collocation method and conver-
gence analysis for the VFIDEs [12] and the numerical solution of high-order lin-
ear with variable coefficients using two proposed schemes for rational Chebyshev
functions [13], For the solution of the linear and nonlinear Fredholm-Volterra IDEs
[14,15], Bernstein polynomials are used as the basis function. Collocation method
[16,17,18] for solving the VFIDEs. For the solution of Volterra IDEs [19] used the
Legendre spectral element approach and VFIDEs are solved using the Lagrange
collocation method in [20]. Other similar approach can be found in [21-27]. In-
spired by the aforementioned studies, we provide a projection computational tech-
nique for the class of problem in equation (1) with improved accuracy and less
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rigorous work.

2 Materials and Methods

2.1 Chebyshev Polynomials of the Second Kind
The Chebyshev Polynomials of the second kind are defined by
Qn(2) = M;n =0,1,2,... with Qo (2) = 1 and Q; (z) = 2z.

sin(cos—1z2)
These polynomials form an orthogonal system with weight function w (z) =
V1 — 22 on interval [—1, 1].

The recurrence relation is given by

Qnt1(2) =22Qp (2) — Qp—1(2),n=1,2,...

With initial Qo (z) = 1, @1 (2) = 22
Hence, the first few second kind Chebyshev Polynomials is given below

Qo(2) =1, Q1(2) =22,Q2(2) =422 — 1, Q3(2) = 82° — 4z.
“The shifted equivalent of it, denoted as @,,* (z) , that valid in € [0, 1] are given
as: Qn* (2) = Qn (22 —1), n = 2,3,--- with initial Qp* (2) = 1, Q1" (2) =
4 — 2.7
2.2 Absolute error

We define absolute error as follows in this study: Absolute Error= |V (2) — v (2)|;
—1 < z < 1, where V (z) is the exact solution and v (z) is the approximate
solution.

2.3 Proposed method

The work assumed an approximate solution by means of the second kind Cheby-
shev polynomials in the form:

v(z) = Z Qi (2)a; 2.1
i=0

The unknown constants to be determined are a; , ¢ = 0,1, ---n.
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Thus, substituting (2.1) into (1.1) gives > 7" pi (2) Q' (2) a;
= f(2)+ M 7 R (2 8) 200 Qi (Dagdt +a [T ko (2,8) S0 Qi (t)aydt

Let
¢ =Y m @ @ar ) =i [ k(203 Qi asde
i=0 -1 i=0
and
1 n
() = Ao / b (21) Y Qi (asdt 22)
-1 i=0
Thus, (2.2) becomes
C(2) =n(2) = C(2) —7(2) = f(2) (2.3)

The linear algebraic system of equations in (n+1) unknown constants a’;s are ob-
tained by Collocating (2.3) at the evenly spaced point z; = a + @ , (1 =
0(1)n).

Additional equations are obtained from Eq. (1.2), which are represented in matrix
form:

ag
Wi Wia Wiz Wi o Wiy a1 X1
War Waa Was Way - Wy : Xo1
Wml Wm2 Wm3 Wm4 e Wmn : _ an
Wi’ W’ wiz® o W’ W’ X1"
W Wao! Was! Wal oo TR, : Xoo!
Wmlnil Wanil ngnfl Wm4nfl o Wmnnil ann,1
QAn
(2.4)

! / . .
where W; s and Wi0 s are the coefficients of a/s given as:
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Wit, Wig, Wiz, Win=2Q" (1) +111Q (21) +¢ (21) +10Q (2
Woar, Waz, Wasz, - Wan=p2Q" (22) +111Q (2) +¢ (22) +10Q (22
W1, Wag, Wag, - - Wan=0Q" (23) +111Q (23) +C (z3) +110Q (2) =1 (23) —7 (2)

) —n(z1) =7 (21)
) =1 (z2) =7 (22)

Wii%, W22, Wi - Wi,0 are values of Q; and X, are values of f(zi).

Let equation (2.4) be:

G (Zz) A= B(Z,) (2.5)
Wi Wiz Wiz Wi - Wiy
W1 Was Was Wog oo Way
Wml Wm2 Wm3 Wm4 cee Wmn
Wh G ) - 5
ere G (2:) Wi W? Wi’ W W
Wt Wao! Was! Wasl . TR0
Wmnn—l Wan—l Wm3n—1 Wm4n—1 Wmnn_l
ag
a1 X1
: Xo1
X,
A — B (%) = mn
(2) X
X!
. me;n—l
an
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Multiply both sides of equation (2.5) by G (zi)_l gives
A=G(z) "'B(z) (2.6)

The required approximate solution is obtained by solving Eq.(2.6) and then substi-
tuting the unknown constant values into the assumed approximate solution.

3 Numerical Examples

Example 3.1 [6]:Consider the Volterra integro-differential equation of second or-
der

v (2) + 20 (2) — 20 (2) = €* — (2 + 1)sinz — zsinz + / sin(z) e v (t) dt
-1

subject to the conditions

The exact solution is

v(z) = €.

Using the method outlined above, we obtained the following unknown constants:

ao = 1.13031935229582, a1 = 0.542990644215075, az = 0.133010595011089,
az = 0.0218970380731072, a4 = 0.00271434567755696, a5 = 0.000269842693362447,
as = 0.0000227798900969393, a7 = 0.00000161974692477898.

Thus, the approximate solution is given as;

v (z) = 1.000000323 + 0.9999992337z + 1.5000169493z> + 0.16667091822°
+0.04160713964z" + 0.0083239747792° + 0.0014579129662° + 0.00020732760642".

Example 3.2 [6]. Let us consider the problem 3.3 v" (z) + z0'®) — 20 (2) =
zC0sz — 3sinz

Subject to the conditions v (0) = 0,v'(?) = 1. The exact solution is v (z) =
sinz Using the method outlined above, we obtained the following unknown con-
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stants:

ap = —2.05030655677534 x 1071, a1 = 0.459614039666964,

as = —3.98522913460800 x 10716, a3 = —7.99858803824260 x 10~ &,
as = 0.000251259077919744, a5 = 0.000251136330810642,

ag = 1.32319620694249 x 107*% ¢; = —0.00000149131183219825,

Consequently, the approximate solution is given as:

v(z) = —1.661105428 x 107 + 2z — 1.466351889 x 107922 — 0.16666446702>

—2.33833105 2 x 10~ 1524 4+ 0.0083266223652° + 8.468455725x 1017 2°
— 0.000190887914527

Example 3.3 [4, 6 ]: Consider the following fifth-order
Fredholm integro- differential equation

1
v (2) — 220" 2 = V'®) — 20 (2) = 2%cosz — zsinz + / v (t)dt
-1

subject to the conditions

v(0)=0,0D =1,0"(0)=0,0" () = -1, (0) = —1.

The exact solution is v (z) = sinz. Using the method outlined above, we obtained
the following unknown constants:

ap = —2.77555756156289 x 10715, a; = 0.459613929931025,

as = 5.89805981832114 x 10717, a3 = —0.0198131174943388,

as = 1.35525271560688 x 1071, a5 = 0.000251260108178906,

ag = 8.47032947254300 x 1072, a7 = —0.00000150726946032969,
ag = 3.17637355220363 x 10?2, ag = 5.13558377666354 x 10~°.

Consequently, the approximate solution is given as:

v (2) = 2+ 6.844026214 x 1071926 +1.414545023 x 1071824 4 2.345120828 x
1071622-2.834411423x 10~ 154-0.000002629418894 29 —8.131516293x 102028 —
0.000198189328727 + 0.0083331703102° — 0.1666666667.
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4 Results and Discussion

Table 1 Shows comparison of the absolute errors for the Example 3.1

z [6] Our Method
N=9 n=7

-1.0 2.0697374 E-2 1.429E-06
-0.8 1.1470384 E-2 6.971E-07
-0.6 4.420981E-3 1.560E-06
-0.4 9.73181E-4 1.894E-6
-0.2 5.9298E-5 1.032E-7
0 1.0E-8 3.230E-7
0.2 8.849E-5 7.881E-7
0.4 1.21776E-3 1.661E-6
0.6 5.26806E-3 1.465E-8
0.8 1.334832E-2 6.871E-7
1.0 2.336246E-2 1.951E-6

Table 2 Shows comparison of the absolute errors for the Example 3.2

z [6] Our Method
N=9 n=7

-1.0 2.0697374 E-2 | 2.827E-07
-0.8 1.1470384 E-2 1.375E-07
-0.6 4.420981E-3 1.362E-07

-0.4 9.73181E-4 8.367E-08
-0.2 5.9298E-5 1.554E-05
0 1.0E-8 0.000

0.2 8.849E-5 1.554E-08
04 1.21776E-3 8.367E-08
0.6 5.26806E-3 1.362E-07
0.8 1.334832E-2 1.375E-07

1.0 2.336246E-2 2.827E-07
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Table 3 Shows comparison of the absolute errors for the Example 3.3

z [4] [6] Our
N=9 Method
n=9

-1.0 1.3591E-5 9.0E-8 4.150E-08
-0.8 3.1940E-6 3.9E-8 2.140E-08
-0.6 | 5.3450E-7 1.4E-8 7.620E-09
-0.4 | 4.8962E-8 4.0E-9 1.330E-09
-0.2 1.0561E-9 1.0E-9 5.600E-11
0 0.00000 0.0000 4.800E-12
0.2 5.1234E-10 | 1.0E-9 5.600E-11
0.4 1.1835E-8 1.6E-8 1.330E-09
0.6 6.7471E-8 1.79E-7 | 7.620E-09
0.8 2.2275E-7 1.156E- | 2.140E-08

6
1.0 5.5371E-7 5.292E- | 4.110E-08
6
2.6
244
22
24
e 1.8
1.6
1.4+
12
14 : % : : 5
0 02 04 ) 06 0.8 1

Exact Solution ® = ' Approximate Solutim|

Figure 1: The exact solution and approximation of the example 3.1 problem’s so-
lution in graphical form
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0 02 04 06 0.8 1

z

Exact Solution = = * Approximate Solulitm|

Figure 2: The exact solution and approximation of the Example 3.2 problem’s
solution in graphical form

0 02 04 0.6 0.3 1

¥4

Exact Solution ® = ' Approximate Solutim|

Figure 3: The exact solution and approximation of the Example 3.3 problem’s
solution in graphical form
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5

Conclusion

In this study, the proposed scheme has been successfully applied to get numerical solu-
tions to VFIDEs by using second-kind Chebyshev polynomials. Numerical examples are
provided to illustrate the technique’s accuracy and efficiency using tables and figures. The
error table found in Table 1-3 shows that the method used was more accurate because the
errors are smaller than those found in [4, 6], and the graphs of the approximation solutions
in Figure 1-3 show excellent agreement with the exact solutions. On the basis of this work,
researchers can use this technique for a variety of additional VFIDE:s.
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