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Abstract

In the present study, we investigate the combination of Taylor series and
Block pulse functions solutions of higher order linear integro-differential
Volterra-Fredholm equations (IDVFE) by using a new method. This method
transforms IDVFE into the matrix equations which correspond to a system of
linear algebraic equations. Some numerical results are also given to illustrate
the efficiency of the method.

1 Introduction

Integro-differential equations (IDE) have many applications in different fields of
study such as biological models, industrial mathematics, control theory of financial
mathematics, economics, electrostatics, fluid dynamics, heat and mass transfer,
oscillation theory, queuing theory.

It is usually difficult to solve IDE analytically, therefore it is better to find an ef-
ficient approximation scheme for solving such equations. There are several numeri-
cal methods for integro-differential equations such as El-gendi’s, Wolfe’s, Galerkin
methods [1], Euler–Chebyshev [2], Runge–Kutta [3] methods, rationalized Haar
functions[4] method, Galerkin methods with hybrid functions [5], Parabolic Basis
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Functions method [6], Lagrange polynomial method [7] and the Taylor collocation
method [8].

A Chebyshev collocation method, which was given for the solution of the linear
integro-differential equations, was developed for the system of Fredholm–Volterra
IDE [9].

Taylor polynomial method was recently developed for the following single
Volterra-Fredholm integral equation and integro-differential equations in real ap-
plication. Yalçinbaş and Sezer [10] employed the Taylor collocation method to
solve second-order linear differential equations. Sezer et al. [11, 12] also used this
method in their work on linear integro-differential equations and high-order lin-
ear Fredholm–Volterra integro-differential equations, Furthermore, there is not any
available research on the solution methods of the higher-order Fredholm–Volterra
IDE using the hybrid of Taylor series and Block pulse functions method which will
be our focus in Section 2. In this study, we have presented a numerical framework
for solving the integro-differential equations by modifying diffusion the known
method for integral equation. As a result, we observe that the approximation solu-
tion obtained by the present method has a good agreement with the exact solution
so it provides a good approximation when compared to other methods. A consid-
erable advantage of the method is that it allows us to make use of the computer
because this hybrid of Taylor series and Block pulse functions method transform
the problem into the matrix equation which is a linear algebraic system. Therefore,
hybrid of Taylor series and Block pulse functions coefficients of the solution are
found very easily by using the computer programs.

In this paper, we will consider linear IDEs of Fredholm–Volterra type in the
form

2∑
n=0

Pn (x) y
(n) (x) = g (x) +

∫ x

0
K (x, s) y (s) ds +

∫ 1

0
F (x, s) y (s) ds,

0 < x < 1, (1.1)

under the initial conditions. Consider the Taylor polynomials Tm (t) = tm;m =
0, 1, 2, 3, . . . , on the interval [0, 1]. A set of block pulse functions φi (t) ; i =
1, 2, . . . ,m and the set of functions hij (t) ; j = 0, . . . , (M − 1), i = 1, 2, . . . , N
that produces by hybrid of Taylor series and Block pulse functions on the interval
[0, 1] are defined as follows respectively:

φi (t) =

{
1 ; i−1

m ≤ t < i
m

0 ; otherwise
, (1.2)
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hij (t) =

{
Tj(Nt− i+ 1) ; i−1

N ≤ t < i
N

0 ; otherwise
, (1.3)

a function y (x)∈L2([0, 1]) can be approximated as

y (x) =
∞∑
i=1

∞∑
j=0

yijhij (x) , (1.4)

where

yij =
1

N jj!
(
djy(x)

dxj
)

∣∣∣∣
x= i−1

N

,

if y (x) is in Eq. (1.4) is truncated, then Eq. (1.4) can be written as

y (x)≈
N∑
i=1

M−1∑
j=0

yijhij (x) = H(x)Y, (1.5)

where

Y = [y10, . . . , y1(M−1), y20, . . . , y2(M−1), . . . , yN0 , . . . , yN(M−1)]
T , (1.6)

and

H (t) =
[
h10, . . . , h1(M−1), h20, . . . , h2(M−1), . . . , hN0 , . . . , hN(M−1)

]□
. (1.7)

We also approximate the function K(x, s)∈L2([a, b]× [a, b]) as follows

K (x, s)≈H (x)KH (s)T , (1.8)

where K is an NM ×NM matrix that

Kij =
1

N r+mr!m!
(
di+jK(x, s)

dxidsj
)

∣∣∣∣
(x,s)=( i

N
, i
N
)

, (1.9)

such that

i, j = 0, 1, 2, . . . ,NM − 1, r = i−
[
i

N

]
N,m = j −

[
j

N

]
N.

The integration of the H(t) defined in Eq. (1.7) can be approximated by
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∫ t

0
H (τ) dτ = PHT (t) = H(t)P T , (1.10)

where P is an NM ×NM operational matrix for integration and is given by

P =


E H . . . H
0
...
0

E · · · H
...

. . .
...

0 · · · E


NM×NM

(1.11)

with

H =
1

N


1 0 . . . 0
1
2
...
1
M

0 · · · 0
...

. . .
...

0 · · · 0


M×M

(1.12)

and E is the operational matrix of integration for Taylor polynomials on the
interval

[
i−1
N , i

N

]
which is given in [13, 14] by

E =


010 . . . 0

001
2 · · ·

...
...

. . . 1
M−1

000 · · · 0


M×M

. (1.13)

2 The method of the solution

In this section, we will modify the hybrid of Taylor series and Block pulse functions
for single Volterra-fredholm integral equation to the current system of higher order
of Volterra-Fredholm integro-differential equations.

The functions y(2) (x) used in (1.1) can be written in the matrix form

y(2) (x)≈H (x)Y, (2.1)

Integrating Eq. (14) from 0 to x and using Eq. (11) we obtain

ý (x)≈H (x)P TY + ý (0) , (2.2)
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y (x)≈H (x)
(
P T

)2
Y + ý (0)x+ y (0) , (2.3)

where P is the operational matrix of integration given in Eq. (1.11).
The functions

∫ x
0 K (x, s) y (s) ds and

∫ 1
0 F (x, s) y (s) ds can be written in

matrix form ∫ x

0
K (x, s) y (s) ds = K1 (x)Y +K2 (x) , (2.4)∫ 1

0
F (x, s) y (s) ds = F1 (x)Y + F2 (x) , (2.5)

where

K1 (x) =

[∫ x

0
K (x, s)H(s)

(
P T

)2
ds

]
1×NM

,

K2 (x) =

∫ x

0
K (x, s) (ý (0) s+ y(0))ds,

(2.6)

F1 (x) =

[∫ 1

0
F (x, s)H(s)

(
P T

)2
ds

]
1×NM

,

F2 (x) =

∫ 1

0
F (x, s) (ý (0) s+ y(0))ds,

(2.7)

By substituting Equations (2.1), (2.2), (2.3), (2.4) and (2.5) into Eq. (1), we obtain

Q1 (x)Y +Q2 (x) = g(x) +K1 (x)Y +K2 (x) + F1 (x)Y + F2(x), (2.8)

where

Q1 (x) = P2 (x)H (x) + P1 (x)H (x)P T + P0 (x)H (x)
(
P T

)2
, (2.9)

Q2 (x) = P1 (x) ý (0) + P0 (x) (ý (0)x+ y (0)) . (2.10)

Then the system (2.8) can be rewritten as

Q(x)Y = G (x) , (2.11)

where

Q (x) = Q1 (x)−K1 (x)− F1 (x) , G(x) = g(x) +K2(x) + F2(x)−Q2(x).
(2.12)
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2.1 Application of the hybrid of Taylor series and Block pulse func-
tions method

To compute the hybrid of Taylor series and Block pulse functions coefficients we
use the collocation points defined by xr = rh, r = 1, . . . ,NM where h = 2

NM
and the values xr are spread out over the interval [0, 1]. Substituting the hybrid of
Taylor series and Block pulse functions points into (2.11), we obtain the following
matrix form

QY = G, (2.13)

where

Q =


(Q1 −K1 − F1) (x0)
(Q1 −K1 − F1) (x1)

...
(Q1 −K1 − F1) (xNM )

 , (2.14)

G =


(g +K2 + F2 −Q2) (x0)
(g +K2 + F2 −Q2) (x1)

...
(g +K2 + F2 −Q2) (xNM )

 . (2.15)

Eq. (2.13) is the fundamental matrix equation for the Volterra-Fredholm integro-
differential equations.

Which yield a system of linear algebraic equations of unknown hybrid of Tay-
lor series and Block pulse functions coefficients.

If the matrix Q is nonsingular then we can write Y = Q−1G and the hybrid
of Taylor series and Block pulse functions coefficients without initial conditions
are determined. Thus the hybrid of Taylor series and Block pulse functions are
uniquely determined.

An interesting feature of this method is that when an integral equation has
linearly independent polynomial solution of degree n or less than n, the method
can be used for finding the analytical solution. The suggested expansion method is
closer to the exact solution.

Comparison of the results obtained from this method with another methods
indicate that the suggested method has simple algorithm and this method can be
applied efficiently to a variety of similar problems.
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3 Numerical examples

In this section, we state the numerical results for Volterra-Fredholm integro-differential
equations.

Example 3.1. Let us now consider the linear second order FVIDE for 0≤x, t≤1

given by

y(2) (x) + xy(1) (x)− xy (x) = ex − sin (x) +
1

2
xcos (x)

+

∫ 1

0
sin (x) e−sy (s) ds − 1

2

∫ x

0
(cos [2061?](x)e−sy (s))ds,

with the initial conditions y (0) = 1 and ý (0) = 1 which is the exact solution
y (x) = ex.

Here, g (x) = ex − sin (x) + 1
2xcos (x), K (x, s) = −1

2 cos [2061?](x)e−s,
F (x, s) = sin (x) e−s, P2 (x) = 1, P1 (x) = x and P0 (x) = −x .

Let us approximate the solution by hybrid of Taylor series and Block pulse
functions.

Table 1 shows the approximate solution by present method for N =6, M= 3
and N =8, M= 5.

Table 1. Numerical results of the absolute error functions
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X
C

A
S

w
avelet

m
ethod

[15]

D
ifferential

transform
ation

[16]
H

PM
[17]

Present
m

ethod
(N

=6,M
=3)

Present
m

ethod
(N

=8,
M

=5)
0.1

1.34917637e −
0
3

1.00118319e −
0
2

2.314814815e −
0
6

3.2481
e −

0
4

5.7374
e −

0
8

0.2
1.15960044e −

0
3

2.78651355e −
0
2

9.259259259e −
0
6

1.2172
e −

0
4

2.2371
e −

0
8

0.4
5.93105645e −

0
2

7.55356316e −
0
2

3.703703704e −
0
5

4.7262
e −

0
4

6.7251
e −

0
8

0.6
4.39287720e −

0
2

1.09551714e −
0
1

8.333333333e −
0
5

3.2475
e −

0
4

2.3664
e −

0
8

0.8
1.34514117e −

0
2

6.94512700e −
0
2

1.481481481e −
0
4

4.3150
e −

0
4

4.3141
e −

0
8

0.9
1.32045209e −

0
2

1.00034260e −
0
2

1.875000000e −
0
4

2.3401
e −

0
4

2.6121
e −

0
7

In addition, the numerical results of the absolute error functions obtained by
the present method for N =6, M= 3 and N =8, M= 5, the CAS wavelet method [15],
the differential transformation [16] and the HPM [17] are compared in Table 1. It
is seen from Table 1 that the results obtained by the present method is better than
that obtained by the other methods.
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Example 3.2. Consider the linear Fredholm integro-differential equation given by

y(1) (x) = xex + ex − x+

∫ 1

0
xy (t) dt , 0≤x, t≤1

with the initial condition y (0) = 1 and the exact solution y (x) = xex. Here,
g (x) = xex + ex − x, F (x, t) = x and P1 (x) = 1.

Table 2. Numerical results of the absolute error functions

X
Exact solution

CAS wavelet
method
[15]

Error of CAS
wavelet method

Error of
Present
method (N=8,
M=5)

0.1 0.11051709 0.10050526 1.00118319e−02 3.2118e−07

0.2 0.24428055 0.21641542 2.78651355e−02 2.0346e−07

0.4 0.59672988 0.52119425 7.55356316e−02 4.1376e−07

0.6 1.09327128 0.98371957 1.09551714e−02 1.4251e−07

0.8 1.78043274 1.71098147 0.94512700e−02 1.0251e−06

0.9 2.21364280 2.22364623 1.00034260e−02 3.4652e−06

Example 3.3. Consider the linear Voltra integro-differential equation given by

y(1) (x) = 1−
∫ x

0
y (t) dt , 0≤x, t≤1

with the initial condition y (0) = 0 and the exact solution y (x) = sin(x). Here,
g (x) = 1, F (x, t) = −1 and P1 (x) = 1.
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Table 3. Numerical results of the absolute error functions

x
Exact solu-
tion

Taylor method
[18] (N=5)

Error of Taylor
method

Error of
Present method
(N=8, M=5)

0.1 0.0998334166 0.09983341667 0.2e−10 2.3938e−07

0.2 0.1986693308 0.1986693333 0.25e−8 4.0140e−07

0.4 0.3894183423 0.3894186667 0.3244e−6 2.0474e−07

0.6 0.5646424734 0.5646480000 0.55266e−5 3.6576e−07

0.8 0.7173560909 0.7173973333 0.412424e−4 1.7172e−07

0.9 0.7833269096 0.7834207500 0.938404e−4 1.1776e−06

.

4 CONCLUSIONS

High order integro-differential equations are usually difficult to solve analytically.
In many cases, it is required to obtain the approximate solutions. For this purpose,
the presented method can be proposed.

The method presented in this study is a method for computing the coefficients
in the hybrid of Taylor series and Block pulse functions of the solution of a lin-
ear integro-differential equation. To obtain the best approximating solution of the
equation, we take more terms from the hybrid of Taylor series and Block pulse
functions of functions; that is, the truncation limit N must be chosen to be large
enough.

The method can also be extended to the partial integro-differential equations
and to the system of ordinary differential equations with variable coefficients.
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