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Abstract

Let α be non-zero element of Fq, where Fq is a field of order q

and q is a power of an odd prime p. The main goal of this paper

is to study structural properties of cyclic codes over the finite ring

R = Fq[u1, u2]/⟨u1
2 − α2, u2

2 − 1, u1u2 − u2u1⟩. Moreover, as an

application, we construct quantum-error-correcting (QEC) codes.

1 Introduction

Unless otherwise stated, the field of order q is denoted by Fq, where q is an
odd prime power, and α is the non-zero element of Fq. Next, let us consider

Keywords and phrases: Cyclic code, Quantum code, Gray map, Dual code

2020 AMS Subject Classification: 94B05, 94B15, 94B60
∗Corresponding Author



48 Shakir Ali, Turki Alsuraiheed, Pushpendra Sharma & M. Jeelani

the finite ring R = Fq[u1, u2]/⟨u21 − α2, u22 − 1, u1u2 − u2u1⟩. It is simple
to verify that R is an order q4 non-chain semi-local ring. For the construc-
tion of quantum-error-correcting (QEC) codes, cyclic codes are immensely
useful. Compared to classical-error-correcting (CEC) codes, QEC codes are
different. A significant breakthrough happened in 1998, when Calderbank
et al. [9] solved the problem of obtaining QEC codes with the help of CEC
codes over GF(4). Calderbank et al. [9] also introduced a concept to con-
struct QEC codes from CEC codes. Over finite fields, cyclic codes have been
extensively investigated (see, for example [13], [17], [18], and [20], and ref-
erences therein). In 2015, from the cyclic codes over Fq + vFq + v2Fq + v3Fq

(where q = pm, p is a prime such that 3|(p − 1), v4 = v, and m is a
positive integer), Gao et al. [11] constructed new quantum codes over Fq.
Afterwards, Ozen et al. [19] constructed many ternary quantum codes from
cyclic codes over F3 + uF3 + vF3 + uvF3. In 2021, Ashraf et al. [2] found
better quantum and LCD codes over the ring Fpm + vFpm with v2 = 1,
where m is a positive integer. In this article, we discuss the structural prop-
erties of cyclic codes over the ring R. On this ring R, we construct a Gray
map that provides better parameters and contributes to the finding of bet-
ter quantum codes over R than presented in [1], [2], [3], [4], [6], [10], and [16].

Our primary goals in this article are to construct quantum-error-correcting
(QEC) codes over the finite ring R, and to study the structural properties
of cyclic codes over R. Paper’s main contribution is that it provides better
quantum codes to those presented in recent references ( [1], [2], [3], [4], [6],
[10], [16] and references therein).

2 Some preliminaries

This section deals with some preliminary studies and describe the Gray map
over the ring R. Additionally, we establish certain important results that
are required for the subsequent discussions. If a code C is an R-submodule
of Rn (where n is a positive integer), then C is linear. The components of C
are referred to as codewords. The total number of codewords in C, denoted
by |C|, is referred to as the size of C.

An element z of R is of the form z = z1 + z2u1 + z3u2 + z4u1u2, where
zi ∈ Fq and 1 ≤ i ≤ 4. With the help of a set of orthogonal idempotents,
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every element of this ring can be represented:

∆1 =
(α+ u1)(1 + u2)

4α
,

∆2 =
(α+ u1)(1− u2)

4α
,

∆3 =
(α− u1)(1 + u2)

4α

and

∆4 =
(α− u1)(1− u2)

4α
.

It is easy to show that ∆2
i = ∆i, 0 = ∆i∆j , and ∆1+∆2+∆3+∆4 = 1,

where 1 ≤ i, j ≤ 4, and i ̸= j. In view of Chinese Remainder, we obtain
R = ∆1R⊕∆2R⊕∆3R⊕∆4R ∼= ∆1Fq ⊕∆2Fq ⊕∆3Fq ⊕∆4Fq.

We can express every element z of R as z = ∆1z1+∆2z2+∆3z3+∆4z4,
where zi ∈ Fq and 1 ≤ i ≤ 4.

The Gray map η : R −→ F4
q is defined by

η(∆1z1 +∆2z2 +∆3z3 +∆4z4) = (z1, z2, z3, z4)A, (2.1)

where A ∈ GL4(Fq) is a fixed matrix and GL4(Fq) is the linear group of all
4 × 4 invertible matrices over the field Fq such that AAT = ϵI4×4, where
AT is the transpose of A and ϵ ∈ Fq\{0}.

The aforementioned Gray map is linear, and we can also extend it component-
wise from Rn to F4n

q , where n is a positive integer. The Hamming weight
wH(C) is the number of non-zero components in any codeword c = (c0, c1, c2,
. . . , cn−1) ∈ C. Consider c = (c0, c1, c2, ... , cn−1), d = (d0, d1, d2, ... , dn−1)
∈ Rn, the Hamming distance is denoted by dH(c, d) = {i | ci ̸= di} for
the codewords c and d. dH(C) = min{dH(c, d) | c ̸= d}, or in short dH , is
the Hamming distance of the code C. For any element z = ∆1z1 +∆2z2 +
∆3z3 + ∆4z4 ∈ R, the Lee weight of z is defined as wL(z) = wH(η(z)),
where wH represents the Hamming weight over Fq. We begin our discussion
with the first result of the above-described Gray map.

Proposition 2.1. The map η : R −→ F4
q defined in (2.1) is an Fq-linear

and distance-preserving map from (Rn, dL) to (F4n
q , dH), where dL = dH .
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Define Θ1 ⊗ Θ2 ⊗ Θ3 ⊗ Θ4 = {(θ1, θ2, θ3, θ4) | θi ∈ Θi : 1 ≤ i ≤ 4}
and Θ1 ⊕Θ2 ⊕Θ3 ⊕Θ4 = {(θ1 + θ2 + θ3 + θ4) | θi ∈ Θi : 1 ≤ i ≤ 4}. Let
C be a linear code of length n over R. We assume that

C1 = {z1 ∈ Fn
q | ∆1z1+∆2z2+∆3z3+∆4z4 ∈ C, where z2, z3, z4 ∈ Fn

q },

C2 = {z2 ∈ Fn
q | ∆1z1+∆2z2+∆3z3+∆4z4 ∈ C, where z1, z3, z4 ∈ Fn

q },

C3 = {z3 ∈ Fn
q | ∆1z1+∆2z2+∆3z3+∆4z4 ∈ C, where z1, z2, z4 ∈ Fn

q }

and

C4 = {z4 ∈ Fn
q | ∆1z1+∆2z2+∆3z3+∆4z4 ∈ C, where z1, z2, z3 ∈ Fn

q }.

Now, each Ci is a linear code of length n over Fq, for 1 ≤ i ≤ 4. Hence,
any linear code of length n can be represented as C = ∆1C1 ⊕ ∆2C2 ⊕
∆3C3 ⊕∆4C4 such that |C| = |C1||C2||C3||C4| over R. A matrix is called a
generator matrix of C if the rows of the matrix generate C. If Mi are the
generator matrices of the linear code Ci, for i = 1, 2, 3, 4, respectively, then
a generator matrix of C is

M =


∆1M1

∆2M2

∆3M3

∆4M4


and a generator matrix of η(C) is

η(M) =


η(∆1M1)
η(∆2M2)
η(∆3M3)
η(∆4M4)

 .

Proposition 2.2. Let C = ∆1C1 ⊕∆2C2 ⊕∆3C3 ⊕∆4C4 be a linear code

of length n over R. Then, η(C) is a [4n,
4∑

i=1
ki, d] linear code over Fq for

1 ≤ i ≤ 4, where each Ci is [n, ki, d].
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Proof. The proof is obvious with the help of the Gray map.

Proposition 2.3. If C is a linear code of length n over R, then η(C) = C1⊗
C2 ⊗ C3 ⊗ C4.

Proof. The proof is similar to the one in [7].

Theorem 2.1. Let C be a self-orthogonal linear code of length n over R and

A be a 4×4 non-singular matrix over Fq which has the property AAT = ϵI4,

where I4 is the identity matrix, 0 ̸= ϵ ∈ Fq, and AT is the transpose of

matrix A. Then, the Gray image η(C) is a self-orthogonal linear code of

length 4n over Fq.

3 Structural properties of cyclic codes over R

We will examine various structural properties of cyclic codes on a ring R
and present some results. We start with the definition that follows:

Definition 3.1. A linear code C of length n over R is said to be a cyclic

code if every cyclic shift of a codeword in C is again a codeword in C, i.e.,
(c0, c1, c2, . . . , cn−1) ∈ C, its cyclic shift (cn−1, c0, . . . , cn−2) ∈ C.

Theorem 3.1. Let C = ∆1C1 ⊕∆2C2 ⊕∆3C3 ⊕∆4C4 be a linear code of

length n over R. Then, C is a cyclic code over R if and only if each Ci is a

cyclic code over Fq, where 1 ≤ i ≤ 4.

Proof. Suppose s is any codeword in C such that s = (s0, s1, . . . , sn−1).

We can write its components as si = ∆1z1,i + ∆2z2,i + ∆3z3,i + ∆4z4,i,

where z1,i, z2,i, z3,i, z4,i ∈ Fq and 1 ≤ i ≤ n− 1. Let

z1 = (z0,1, z1,1, . . . , zn−1,1),

z2 = (z0,2, z1,2, . . . , zn−1,2),

z3 = (z0,3, z1,3, . . . , zn−1,3),

z4 = (z0,4, z1,4, . . . , zn−1,4),
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where zi ∈ Ci and 1 ≤ i ≤ 4. Now, let us assume that every Ci is a cyclic

code over Fq, where 1 ≤ i ≤ 4. This implies that

ζ(z1) = (zn−1,1, z0,1, . . . , zn−2,1) ∈ C1,

ζ(z2) = (zn−1,2, z0,2, . . . , zn−2,2) ∈ C2,

ζ(z3) = (zn−1,3, z0,3, . . . , zn−2,3) ∈ C3,

ζ(z4) = (zn−1,4, z0,4, . . . , zn−2,4) ∈ C4,

Thus, ∆1ζ(z1) +∆2ζ(z2) +∆3ζ(z3) +∆4ζ(z4) ∈ C. It can easily be seen

that ∆1ζ(z1) + ∆2ζ(z2) + ∆3ζ(z3) + ∆4ζ(z4) = ζ(s). Hence, ζ(s) ∈ C. We

can conclude that C is a cyclic code over R.

On the other hand, let us assume that C is a cyclic code over R. Next, let

us consider si = ∆1z1,i +∆2z2,i +∆3z3,i +∆4z4,i, where z1 = (z0,1, z1,1,

. . . , zn−1,1), z2 = (z0,2, z1,2, . . . , zn−1,2), z3 = (z0,3, z1,3, . . . , zn−1,3) and

z4 = (z0,4, z1,4, . . . , zn−1,4). Then, z1 ∈ C1, z2 ∈ C2, z3 ∈ C3, and z4 ∈ C4.
Again, s = (s0, s1, . . . , sn−1) ∈ C, by the hypothesis ζ(s) ∈ C. We

have ∆1ζ(z1) + ∆2ζ(z2) + ∆3ζ(z3) + ∆4ζ(z4) ∈ C. Here, ζ(zi) ∈ Ci, where
1 ≤ i ≤ 4. Consequently, every Ci is a cyclic code of length n over Fq, where

1 ≤ i ≤ 4.

Theorem 3.2. Let C = ∆1C1 ⊕∆2C2 ⊕∆3C3 ⊕∆4C4 be a cyclic code of

length n over R and hi(z) be a standard generator polynomial of Ci. Then,

C = ⟨h(z)⟩ and |C| = q
4n−

4∑
i=0

hi(z)
, where h(z) = ∆1h1(z) + ∆2h2(z) +

∆3h3(z) + ∆4h4(z) and 1 ≤ i ≤ 4.

Proof. Given Ci = ⟨hi(z)⟩, where 1 ≤ i ≤ 4 and C = ∆1C1⊕∆2C2⊕∆3C3⊕
∆4C4. Let c ∈ C be such that c = {c(z) | ∆1h1(z) + ∆2h2(z) + ∆3h3(z)

+ ∆4h4(z) for hi(z) ∈ Ci}. Therefore, C ⊆ ⟨∆1h1(z), ∆2h2(z), ∆3h3(z),

∆4h4(z)⟩ ⊆ R[z]/⟨zn−1⟩. For any ∆1t1(z)h1(z)+∆2t2(z)h2(z)+∆3t3(z)h3(z)

+∆4t4(z)h4(z) ∈ ⟨∆1h1(z)+∆2h2(z)+∆3h3(z)+∆4h4(z)⟩ ⊆ R[z]/⟨zn−1⟩,
where t1(z), t2(z), t3(z) and t4(z) ∈ R[z]/⟨zn − 1⟩,
then there exist s1(z), s2(z), s3(z) and s4(z) ∈ Fq[z] such that

∆iti(z) = ∆isi(z),
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where 1 ≤ i ≤ 4. Hence, ⟨∆1h1(z), ∆2h2(z), ∆3h3(z), ∆4h4(z)⟩ ⊆ C. This
implies ⟨∆1h1(z), ∆2h2(z), ∆3h3(z), ∆4h4(z)⟩ = C. Since |C| = |C1||C2||C3|
|C4|, we have

|C| = q
4n−

4∑
i=0

hi(z)
.

Theorem 3.3. Let C = ∆1C1 ⊕∆2C2 ⊕∆3C3 ⊕∆4C4 be a cyclic code of

length n over R; there exists a unique monic polynomial h(z) ∈ R[z] such

that C = ⟨h(z)⟩ and h(z) divides (zn−1). If hi(z) is the standard generator

polynomial of Ci, 1 ≤ i ≤ 4, then h(z) = ∆1h1(z) + ∆2h2(z) + ∆3h3(z) +

∆4h4(z).

Proof. By Theorem 3.2, C = ⟨∆1h1(z), ∆2h2(z), ∆3h3(z), ∆4h4(z)⟩,
where hi(z) is the generator polynomial of Ci and 1 ≤ i ≤ 4. Let h(z) =

∆1h1(z) + ∆2h2(z) + ∆3h3(z) + ∆4h4(z). From here, ⟨h(z)⟩ ⊆ C. Now,

∆ihi(z) = ∆ih(z) and 1 ≤ i ≤ 4, so C ⊆ ⟨h(z)⟩, hence C = ⟨h(z)⟩. Since
hi(z) is a monic right divisor of (zn − 1), there are si(z) ∈ Fq[z]/⟨zn − 1⟩,
where 1 ≤ i ≤ 4, such that zn−1 = s1(z)h1(z) = s2(z)h2(z) = s3(z)h3(z)

= s4(z)h4(z). This shows that z
n − 1 = [∆1s1(z) + ∆2s2(z) + ∆3s3(z) +

∆4s4(z)]h(z), i.e., h(z)|(zn − 1). Here, each hi(z) is unique, and hence h(z)

is unique.

Theorem 3.4. Let C = ∆1C1 ⊕∆2C2 ⊕∆3C3 ⊕∆4C4 be a cyclic code of

length n over R. Then, C⊥ = ∆1C⊥
1 ⊕ ∆2C⊥

2 ⊕ ∆3C⊥
3 ⊕ ∆4C⊥

4 is also a

cyclic code of length n over R.

Proof. C⊥ is a cyclic code of length n over R, since C is a cyclic code of

length n over R. Now, we will show that C⊥ = ∆1C⊥
1 ⊕∆2C⊥

2 ⊕∆3C⊥
3 ⊕

∆4C⊥
4 . Here, C is a cyclic code of of length n over R. This implies C is

a linear code of length n over R. Let T1 = {t1 ∈ Fn
q | ∃ t2, t3, t4

such that
4∑

i=1
ti∆i ∈ C⊥}, for 1 ≤ i ≤ 4. Hence, C⊥ is uniquely expressed

as C⊥ = ⊕4
i=1∆iTi. Therefore, T1 ⊆ C⊥

1 . Conversely, let q ∈ C⊥
1 .
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This implies q · s1 = 0 ∀ s1 ∈ C1. Consider y =
4∑

i=1
∆isi ∈ C.

Now, ∆1q · y = ∆1s1 · q = 0. This shows that ∆1q ∈ C⊥
1 . From

the specific expression of C⊥, we obtain q ∈ T1. From here, C⊥ ⊆ T1.

Therefore, C⊥
1 = T1. In the same manner, C⊥

i = Ti for 1 ≤ i ≤ 4. Hence,

C⊥ = ∆1C⊥
1 ⊕∆2C⊥

2 ⊕∆3C⊥
3 ⊕∆4C⊥

4 .

Lemma 3.1. [9] Let C be a cyclic code of length n over Fq with a generator

polynomial h(z) that contains its dual if and only if

zn − 1 ≡ 0 (mod h(z)h∗(z)),

where the reciprocal polynomial of h(z) is denoted by h∗(z).

Theorem 3.5. Let C = ∆1C1⊕∆2C2⊕∆3C3⊕∆4C4 be a cyclic code of length

n over R and C = ⟨h(z)⟩ = ⟨
4∑

i=1
∆ihi(z)⟩, where hi(z) is the generator

polynomial of Ci. Then, C⊥ ⊆ C if and only if

zn − 1 ≡ 0 (mod hi(z)h
∗
i (z)),

where the reciprocal polynomial of hi(z) is denoted by h∗i (z) and 1 ≤ i ≤ 4.

Proof. Suppose zn − 1 ≡ 0 (mod hi(z)h
∗
i (z)) for 1 ≤ i ≤ 4. Hence, by

Lemma 3.1, we have C⊥
i ⊆ Ci. From here, we can write ∆iC⊥ ⊆ ∆iCi for

1 ≤ i ≤ 4. Similarly, C⊥ =
4∑

i=0
∆iC

⊥
i ⊆

4∑
i=0

∆iCi = C. Conversely, assume

C⊥ ⊆ C and
4∑

i=0
∆iC⊥

i ⊆
4∑

i=0
∆iCi, but each Ci is a cyclic code over Fq such

that ∆iCi ≡ C(mod∆i). This implies that C⊥
i ⊆ Ci, where 1 ≤ i ≤ 4. By

Lemma 3.1, we obtain

zn − 1 ≡ 0 (mod hi(z)h
∗
i (z)),

where the reciprocal polynomial of hi(z) is denoted by h∗i (z) for 1 ≤ i ≤ 4.
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Corollary 3.1. Let C = ∆1C1 ⊕∆2C2 ⊕∆3C3 ⊕∆4C4 be a cyclic code of

length n over R. Then, C⊥ ⊆ C if and only if C⊥
i ⊆ Ci and 1 ≤ i ≤ 4.

4 Quantum codes over R

The study of quantum codes over the ring R is the subject of this section.
We start with the definition that follows: If m is a positive integer and
p is a prime, then q = pm. Let q-dimensional Hilbert space H(C) over
the complex field C. Then, the set of n-folded tensor products H(C)n =
H ⊗H ⊗ . . .⊗H︸ ︷︷ ︸

n−times

is also a qn-dimensional Hilbert space.

Definition 4.1. [15] A quantum code represented by [[n, k, d]]q is defined as

a subspace of H(C)n with dimension qk and minimum distance d. Moreover,

we consider [[n, k, d]]q to be better than [[n
′
, k

′
, d

′
]]q if either or both of the

following conditions hold:

(i) d > d
′
whenever the code rate k

n = k
′

n′ (larger distance).

(ii) k
n > k

′

n′ , whenever the distance d = d
′
(larger code rate).

Lemma 4.1. ( [13], Theorem 3) (CSS Construction) Let C1 = [n, k1, d1]q

and C2 = [n, k2, d2]q be two linear codes over GF(q) with C⊥
2 ⊆ C1. Fur-

thermore, let d = min{wgt(v) : v ∈ (C1\C⊥
2 ) ∪ (C2\C⊥

1 )} ≥ min(d1, d2).

Then, there exists a QEC code with the parameters [[n, k1 + k2 − n, d]]q. In

particular, if C⊥
1 ⊆ C1, then there exists a QEC code with the parameters

[[n, 2k1 − n, d1]]q, where d1 = min{wgt(v) : v ∈ (C1\C⊥
1 )}.

Theorem 4.1. Let C be a cyclic code of length n over R and let the param-

eters of its Gray image be [4n, k, dH ]. If C⊥ ⊆ C, then there exists a QECC

[[4n, 2k − 4n, dH ]] over Fq.

5 Applications

In this section, we present some applications of the results proved in the
previous sections. The Examples 5.1–5.3 and Table 1 demonstrate that our
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results provide several quantum codes better than the existing quantum
codes that appeared in references ( [1], [2], [3], [4], [6], [10], and [16]). All
of the computations involved in these examples are accomplished by using
the Magma computation system [8]. We begin our discussions with the
following:

Example 5.1. Let R = F7[u1, u2]/⟨u21−1, u22−1, u1u2−u2u1⟩ be a finite

commutative ring, n = 7 and α = 1. Then,

z7 − 1 = (z + 6)7 ∈ F7[x].

Take

h1(z) = 1

h2(z) = (z + 6)

h3(z) = (z + 6)

h4(z) = (z + 6)6

and

A =


0 4 0 0

0 0 4 0

0 0 0 4

4 0 0 0

 .

Here, matrix A satisfies the condition AAT = 2I4×4, where A ∈ GL4(F7)

and I4×4 is an identity matrix. The cyclic code C = ⟨
4∑

i=0
∆ihi(z)⟩ is of length

7 over R and its Gray image is of length 28, dimension 20, and distance 7

over F7, i.e., [28, 20, 7]7. However,

z7 − 1 ≡ 0 (mod hi(z)h
∗
i (z)),

for 1 ≤ i ≤ 4. Thus, C⊥ ⊆ C by Theorem 3.5. In view of Theorem 4.1, we

conclude that there exists a quantum code [[28, 12, 7]]7. This quantum code

is a new quantum code (see [5] for details).

Example 5.2. Let R = F19[u1, u2]/⟨u21 − 4, u22 − 1, u1u2 − u2u1⟩ be a

finite commutative ring, n = 19 and α = 2. Then,

z19 − 1 = (z + 18)19 ∈ F19[x].
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Take

h1(z) = (z + 18)

h2(z) = (z + 18)2

h3(z) = (z + 18)3

h4(z) = (z + 18)14

and

A =


0 9 0 0

0 0 9 0

0 0 0 9

9 0 0 0

 .

Here, matrix A satisfies the condition AAT = 5I4×4, where A ∈ GL4(F19)

and I4×4 is an identity matrix. The cyclic code C = ⟨
4∑

i=0
∆ihi(z)⟩ is of length

19 over R and its Gray image is of length 76, dimension 56, and distance

15 over F19, i.e., [76, 56, 15]19. However,

z19 − 1 ≡ 0 (mod hi(z)h
∗
i (z)),

for 1 ≤ i ≤ 4. Application of Theorem 3.5 yields C⊥ ⊆ C. By Theorem

4.1, we conclude that there exists a quantum code [[76, 36, 15]]19 which has

a larger code rate and larger minimum distance than the previous known

quantum code [[76, 22, 11]]19 (see [2] for details). Hence, our quantum code

[[76, 36, 15]]19 is better than the previous known quantum code [[76, 22, 11]]19

appeared in [2]. [[76, 36, 15]]19 is also a new quantum code.

Example 5.3. Let R = F13[u1, u2]/⟨u21 − 1, u22 − 1, u1u2 − u2u1⟩ be a

finite commutative ring, n = 78 and α = 1. Then,

z78 − 1 = (z + 1)13(z + 3)13(z + 4)13(z + 9)13(z + 10)13(z + 12)13 ∈ F13[x].

Take

h1(z) = h2(z) = (z + 1)2(z + 4)

h3(z) = h4(z) = (z + 1)2(z + 10)
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and

A =


0 9 0 0

0 0 9 0

0 0 0 9

9 0 0 0

 .

Here, matrix A satisfies the condition AAT = 3I4×4, where A ∈ GL4(F13)

and I4×4 is an identity matrix. The cyclic code C = ⟨
4∑

i=0
∆ihi(z)⟩ is of length

78 over R and its Gray image is of length 312, dimension 300, and distance

3 over F13, i.e., [312, 300, 3]13. However,

z78 − 1 ≡ 0 (mod hi(z)h
∗
i (z)),

for 1 ≤ i ≤ 4. This implies that, C⊥ ⊆ C. In view of Theorem 4.1, we

conclude that there exists a quantum code [[312, 288, 3]]13, which has same

minimum distance but larger code rate than the previous known quantum

code [[312, 282, 3]]13 (see [10] for details). Therefore, our quantum code

[[312, 288, 3]]13 is better than the previous known quantum code [[312, 282, 3]]13

appeared in [10].

Table 1. Quantum codes from cyclic codes over R.
n h1(z) h2(z) h3(z) h4(z) η(C) [[n, k, d]]q [[n′, k′, d′]]q
15 z + 1 z + 1 z + 4 z + 4 [60, 56, 2] [[60, 52, 2]]5 [[60, 48, 2]]5 [3]

20 (z + 1)2 (z + 1)2 (z + 1) (z + 1) [80, 68, 3] [[80, 56, 3]]5 [[80, 54, 3]]5 [6]

(z + 3) (z + 3) (z + 3)2 (z + 3)2

30 (z + 4) (z + 4)2 (z2 + z + 1)2 (z2 + z + 1)2 [120, 100, 3] [[120, 80, 3]]5 [[120, 32, 3]]5 [16]

(z2 + 4z + 1)2 (z2 + 4z + 1)2 (z + 1) (z + 1)

31 1 z + 4 z + 4 (z3 + 2z2 + z + 4) [124, 115, 3] [[124, 106, 3]]5 [[124, 100, 4]]5 [2]

(z4 + 4z2 + 3z + 4)

33 (z2 + z + 1) (z2 + z + 1) (z2 + z + 1) (z2 + z + 1) [132, 104, 4] [[132, 76, 4]]5 [[132, 72, 2]]5 [4]

(z5 + 4z4+ (z5 + 4z4+ (z5 + 4z4+ (z5 + 4z4+

4z3 + z2 + z + 4) 4z3 + z2 + z + 4) 4z3 + z2 + z + 4) 4z3 + z2 + z + 4)

40 z + 3 z + 3 z + 4 z + 4 [160, 156, 2] [[160, 152, 2]][5] [[160, 146, 2]]5 [1]

42 (z + 1) (z + 1) (z + 1) (z + 1) [168, 140, 4] [[168, 112, 4]]5 [[168, 96, 2]]5 [4]

(z6 + 3z4+ (z6 + 3z4+ (z6 + 3z4+ (z6 + 3z4+

z3 + 2z2 + 4) z3 + 2z2 + 4) z3 + 2z2 + 4) z3 + 2z2 + 4)

45 z + 4 z + 4 z + 4 z + 4 [180, 176, 2] [[180, 172, 2]]5 [[180, 166, 2]]5 [1]

24 1 z + 2 z + 2 (z + 2) [96, 91, 3] [[96, 86, 3]]7 [[96, 80, 3]]7 [2]

(z2 + 2z + 2)

78 (z + 1)2) (z + 1)2 (z + 1)2 (z + 1)2 [312, 300, 3] [[312, 288, 3]]13 [[312, 282, 3]]13 [10]

(z + 4 (z + 4) (z + 10) (z + 10)

19 z + 18 (z + 18)2 (z + 18)3 (z + 18)14 [76, 56, 15] [[76, 36, 15]]19 [[76, 22, 11]]19 [2]

In Table 1, we present QEC codes by using cyclic codes C = ⟨
4∑

i=0
∆ihi(z)⟩

of length n over R, where Ci = ⟨hi(z)⟩ such that zn−1 ≡ 0 (mod hi(z)h
∗
i (z)),
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for i = 1, 2, 3, 4. It is noted that our obtained QEC codes [[n, k, d]]q are bet-
ter than the existing quantum codes [[n

′
, k

′
, d

′
]]q collected from the different

references mentioned in this article.

6 Conclusion

In this article, we discuss some of the structural properties of cyclic codes
over the ring R = Fq[u1, u2]/⟨u21 − α2, u22 − 1, u1u2 − u2u1⟩, where α is
the non-zero element of Fq. Furthermore, we obtain better quantum codes
than presented in [1], [2], [3], [4], [6], [10], and [16].
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