A note on the Koethe conjecture

S. K. Pandey

Department of Mathematics SPUP, Vigyan Nagar, Jodhpur 342037, India Email: skpandey12@gmail.com

(Received: September 27, 2022 Accepted: November 24, 2022)

Abstract

In this note we provide some results related to the Koethe conjecture and report some significant observations on some results related to the Koethe conjecture appeared in [2–3].

1 Introduction

The well-known Koethe conjecture was introduced in 1930. It is a longstanding problem in ring theory, with a long and complicated history. It can be stated as follows. Every one-sided nil ideal of a ring R is contained in a two sided nil ideal of R [4]. Let N(R) is the set of all nilpotent elements of a ring R. As per Theorem 2.6 [2–3], the following statements are equivalent for a ring R.

- (a) N(R) is closed under addition.
- (b) N(R) is closed under multiplication and R satisfies Koethe conjecture.
- (c) N(R) is a subring of R.

Thus it has been shown in [2-3] that R satisfies the Koethe conjecture provided N(R) is a subring of R. Also, it has been shown in [2-3] that if N(R) is multiplicatively closed and R satisfies the Koethe conjecture then N(R) is a subring of R.

Keywords and phrases: ring, ideal, nil ideal, subring, Koethe conjecture. 2020 AMS Subject Classification: 16D99, 16N40.

In this note we exhibit that the condition 'R satisfies the Koethe conjecture' given above (Theorem 2.6, [2–3]) is superfluous at least under certain conditions described here.

In addition we provide some results when N(R) does not form a subring of R and these are seen to be related to an open question appeared in [2–3] which asks that if N(R) is multiplicatively closed, then does it imply that R satisfies the Koethe conjecture?

2 Some Results

We provide the following results.

Proposition 2.1. Let R is a non-commutative ring and N(R) is the set of all nilpotent elements of R. If R fails to satisfy the Koethe conjecture, then N(R) is not a subring of R.

Proof. Let R is a non-commutative ring and N(R) is the set of all nilpotent elements of R. If N(R) is a subring of R, then R satisfies the Koethe conjecture [2–3, Theorem 2.6].

Therefore, it follows that if R fails to satisfy the Koethe conjecture, then N(R) is not a subring of R.

Proposition 2.2. The converse of the proposition 2.1 is not true.

Proof. Let R is the ring of all 2×2 matrices over the field of order two. Then N(R) is not a subring of R. However, R satisfies the Koethe conjecture. \Box

Proposition 2.3. Let R is a non-commutative ring and N(R) is the set of all nilpotent elements of R. Then the following are equivalent.

- (i) N(R) is not a subring of R.
- (ii) N(R) is not additively closed.

Proof. Let R is a non-commutative ring and N(R) is the set of all nilpotent elements of R. It is trivial that (ii) \Rightarrow (i). Let N(R) is additively closed. Then N(R) is a subring of R [2–3. Theorem 2.6]. This is a contradiction. Hence, if N(R) is not a subring of R, then N(R) is not additively closed. Thus, (i) \Rightarrow (ii). **Proposition 2.4.** Let R is a non-commutative ring and N(R) is the set of all nilpotent elements of R. Then N(R) is not multiplicatively closed is equivalent to N(R) is not additively closed.

Proof. Let N(R) is not multiplicatively closed. This implies that N(R) is not a subring of R. Now from Proposition 2.3, it follows that N(R) is not additively closed.

Remark 2.1. It may be noted that there is an open question given in [2–3]. The question is as follows. Let R is a ring such that N(R) is multiplicatively closed. Does R satisfy the Koethe conjecture? It should be emphasized that this open question posed in [1–2] remains open if the converse of the Proposition 2.4 is not true. This is due to the fact that if N(R) is multiplicatively as well as additively closed, then R satisfies the Koethe conjecture.

In the next few results we exhibit that the condition 'R satisfies the Koethe conjecture' given in [2–3, Theorem 2.6] is superfluous at least under certain conditions.

Proposition 2.5. Let R is a ring such that N(R) is multiplicatively closed. Then N(R) is additively closed and it is superfluous to assume that R satisfies the Koethe conjecture provided each element of N(R) is of index two.

Proof. Let R be a ring such that N(R) is multiplicatively closed. Let $a, b \in N(R)$ are any two elements of N(R). Then it easily follows that $a+b \in N(R)$ since $(a + b)^4 = 0$. Therefore, N(R) a subring of R and hence R satisfies the Koethe conjecture [2–3, Theorem 2.6]. Clearly, in this case, in order to prove that N(R) is a subring of R it suffices that N(R) is multiplicatively closed and unlike [2–3] one does not require additional condition, namely, R satisfies the Koethe conjecture.

Theorem 2.1. Let R is a ring such that N(R) is multiplicatively closed. Then N(R) is additively closed and it is superfluous to assume that R satisfies the Koethe conjecture provided any one of the following hold.

- (i) $S(R)[x] \subseteq N(R[x])$.
- (*ii*) S(R)[x] = N(R[x]).

Here R[x] stands for polynomial ring defined over R and S(R)[x] is the set of polynomials defined over N(R).

Proof. We refer [1, Theorem 2.11].

Theorem 2.2. Let R is a ring such that N(R) is multiplicatively closed. Then N(R) is additively closed and it is superfluous to assume that R satisfies the Koethe conjecture provided S(R)[[x]] = N(R[[x]]). Here R[[x]] stands for power series ring defined over R and S(R)[[x]] is the set of power series defined over N(R).

Proof. We refer [1, Theorem 2.11].

Proposition 2.6. If R is a non-commutative ring, then N(R) is an ideal of R provided N(R) = E(R). Here E(R) is the set of all even elements of R.

Proof. Let R is a ring and N(R) = E(R). Let a, b are arbitrary elements of N(R). Then we have a = 2c for some $c \in R$ and b = 2d for some $d \in R$ (since N(R) = E(R)). Therefore, $a - b \in N(R)$. Similarly $ra \in N(R)$ and $ar \in N(R)$ for each $a \in N(R)$ and for each $r \in R$. Hence N(R) is an ideal of R.

Corollary 2.1. If R is a ring such that N(R) = E(R), then R satisfies the Koethe conjecture.

Remark 2.2. The notion of even elements of a ring has been introduced and studied in [5].

Below we shall generalize Proposition 2.6 to get the next Proposition.

Proposition 2.7. If R is a non-commutative ring, then N(R) is an ideal of R provided $N(R) = E_k(R)$. Here $E_k(R)$ is the set of all elements of R satisfying a = kb for some fixed positive integer k and some $b \in R$.

Proof. Similar to the proof of Proposition 2.6.

Corollary 2.2. If R is a ring such that $N(R) = E_k(R)$, then R satisfies the Koethe conjecture.

Statements and Declaration

The author declares that there is no competing interest and this is an original work of this author. Also no funds, grants were available for this research.

Acknowledgements

The author is thankful to the anonymous referee for his/her valuable suggestions.

References

- J. K. Choi, T. K. Kwak, and L. Yang, *Rings whose nilpotents form a multiplicative set*, Comm. Algebra, 46(8)(2018), 3229–3240.
- [2] J. Ster, Rings in which nilpotents form a subring, Carpathian J. Math. 32(2)(2016), 251–258.
- [3] J. Ster, Rings in which nilpotents form a subring arXiv:1510.07523v1. [math. RA] (2015).
- [4] O. D. Artemovych, Associative rings in which nilpotents form an ideal, Studia Sci. Math. Hungar., 56(2)(2019), 177–184.
- [5] S. K. Pandey, Nil elements and even square rings, Int. J. Algebra, 11(1)(2017), 1–7.