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Abstract

Let R be a commutative ring with the multiplicative identity. In

this paper, we apply the notions of cleanness on modules and rings to

comodules and coalgebras. Based on the cleanness concept in modules

theory, a C-comodule M is a clean comodule provided the endomor-

phism ring of C-comodule M is clean. A clean coalgebra is defined

by considering every R-coalgebra C as a comodule over itself. In the

trivial case, every clean R-module is a clean R-comodule. Here, we

obtained some sufficient conditions of clean comodules by generalizing

the cleanness condition of comodules over R[G].

1 Introduction and preliminaries

Throughout R is a commutative ring with the multiplicative identity and
(C,∆, ε) is a coassociative and counital coalgebra over R. A ring R is called
a clean ring if every element of R can be expressed as a sum of a unit and
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an idempotent element (see [1]). In [2] and [3], the authors showed that a
clean ring is one of the subclasses of exchange rings. It is well known that
fields, local rings and von Neumann regular rings are clean. Furthermore, a
direct product of the family of clean rings is a clean ring if and only if each
factor is clean. Also, if R is a clean ring then the ring matrixMn(R) is clean
(see [4] and [5]). Furthermore, [6] gives the property of the tensor product
of two clean algebras. Some necessary and sufficient conditions of the clean
group ring R[G] can refer to [4] and [7].

By considering R as an R-module, the ring of endomorphism R-module
R (denoted by EndR(R)) is isomorphic to the ring R. It implies R is a
clean ring if and only if EndR(R) is clean. As a special case, in [8], the
ring of linear transformations on a countable vector space V is clean. In the
general case, the ring of linear transformations of an arbitrary vector space
over a field is clean (see [9]). Moreover, in Lemma 1, [10] have modified
the results in [8, 9] for any vector spaces over a division ring. Based on
the result of [8], [9] and [10], a clean module is defined as an R-module
M which the endomorphism of R-module M (denoted by EndR(M)) is a
clean ring [11]. We recall the important result in [11], i.e., necessary and
sufficient conditions of clean elements of an endomorphism R-module (see
Proposition 2.2 and 2.3). One example of clean modules is a continuous
module (see [11]). Furthermore, in [12] this property has been proved more
shortly, i.e., by proving that every non M -singular self-injective module M
is clean (see Lemma 4).

In a clean module, its submodules are not necessarily clean. For example,
Z is not clean in Z-module Q. Based on this fact, in [13], Ismarwati, et.al.,
have introduced the notion of nice modules. An R-module M is called a
nice module if every submodule of M is a clean module. For examples, the
duo modules, finite-length modules and semi-simple modules are nice.

In [14], the author has introduced coalgebras over a field as the dualiza-
tion of algebras over a field. This ground field has been generalized to any
commutative ring with multiplicative identity (see [15]). A comodule over
a coalgebra is well-known as a dualization of a module over a ring. For any
R-coalgebra C, we can construct C∗ = HomR(C,R) (the set of all homo-
morphism of R-module C to R-module R). Here, C∗ is an algebra (ring)
over the convolution product. We call C∗ as the dual algebra of C. Hence,
if M is a C-comodule, then M is a module over the dual algebra C∗ [15].

In this research, the cleanness of rings and modules are transferred on co-
modules and coalgebras, by introducing the notion of clean comodules and
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clean coalgebras. Since any R-module M can be considering as the triv-
ial comodule over the trivial coalgebra R, we have a relation between the
cleanness of the endomorphism ring of R-module M (EndR(M)) and the
endomorphism of R-comodule M (EndR(M)). Then, the ring of EndR(M)
is clean if and only if EndR(M) is also a clean ring. We generalize it for
any C-comodules. A C-comodule M is called a clean C-comodule if the
endomorphism ring of C-comodule (denoted by EndC(M)) is clean. More-
over, by using the α-condition of C, we have that the ring of EndC(M) ≃
C∗End(M) ( [15]). It implies a C-comodule M is clean if M is clean as a
C∗-module. An R-coalgebra is a comodule over itself, an R-coalgebra C is
said to be a clean coalgebra if C is a clean C-comodule.

To recall some notions of comodules and coalgebras we refer to [15]. An
R-module C is called an R-coalgebra if there exist (R,R)-bilinear maps

∆ : C → C ⊗R C and ε : C → R

where

(IC ⊗∆) ◦∆ = (∆⊗ IC) ◦∆ and (IC ⊗ ε) ◦∆ = IC = (ε⊗ IC) ◦∆.

The maps are called coassociative and counital comultiplication, respec-
tively. For any R-coalgebra C, [15] has been defined the convolution product
(∗) of C∗ = HomR(C,R) such that (C∗,+, ∗) is an R-algebra and we call it
as the dual algebra of C.

An R-coalgebra (C,∆, ε) satisfies the α-condition if the map

αN : N ⊗R C → HomR(C
∗, N), n⊗ c 7→ [f 7→ f(c)n]

is injective, for every N ∈ MR. Moreover, for any R-coalgebra (C,∆, ε) the
following statements are equivalent:

1. C satisfies the α-condition;

2. for any N ∈ MR and u ∈ N ⊗R C, (IN ⊗ f)(u) = 0 for all f ∈ C∗,
implies u = 0;

3. C is locally projective as an R-module.

A right C-comodule M is a right R-module together with R-linear map
ϱM :M →M ⊗R C called a right C-coaction, with properties coassociative
and counital:
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(IM ⊗∆) ◦ ϱM = (ϱM ⊗ IC) ◦ ϱM and (IM ◦ ε) ◦ ϱM = IM .

Throughout, comodules on this paper mean a right comodule. A comodule
morphism f :M → N between C-comodule M and N is an R-linear map f
which satisfies

ϱN ◦ f = (f ⊗ IC) ◦ ϱM .

The set of all comodule morphisms fromM toN is denoted byHomC(M,N).
We have already known from [15] that any right C-comodule M can be

considered as a left module over the dual algebra C∗ by the following action.

⇀: C∗ ⊗R M →M ,
f ⊗m 7→ (IM ⊗ f) ◦ ϱM (m) = Σm0f(m1)

and any comodule morphisms h : M → N is a left C∗-module homomor-
phism. Consequently, the category of MC is a full subcategory of the cat-
egory of left C∗M. The category MC become a full subcategory of C∗M
if and only if C satisfies the α-condition, i.e., if and only if C is locally
projective R-module (see [15]).

For a group G, in comodule theory we have special condition that any G-
graded module over a ring R is an R[G]-comodule. Moreover, in [15], an R-
module M is a G-graded if and only if it is an R[G]-comodule. It motivated
us to start investigation from the clean R[G]-comodule. Here, we give some
properties of cleanness notion on comodules and obtained some sufficient
conditions of clean comodules by generalizing clean R[G]-comodules.

2 Clean Comodules and Clean Coalgebras

Assume that C is an R-coalgebra with the α condition. Here, we com-
bine two concepts, i.e., the clean property of modules and the structure of
comodules to obtain the notions of clean comodules and clean coalgebras.

Definition 2.1. Let R be a ring and (C,∆, ε) an R-coalgebra. A right

(left) C-comodule M is called a clean comodule if the ring of endomorphism

of C-comodule M (EndC(M)) is a clean ring.

Based on the α-condition of C, since the ring EndC(M) ≃ C∗End(M),
Definition 2.1 means that a right C-comodule M is a clean if M is a clean
C∗-module. In this paper we also extend to clean coalgebras. Since every
R-coalgebra C is a right and left comodule over itself, based on Definition
2.1 we introduce a clean coalgebra as follows.
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Definition 2.2. Let R be a ring. An R-coalgebra C is called a clean coal-

gebra if C is a clean comodule over itself.

Definition 2.2 means that C is a clean coalgebra if C is clean as a C∗-
module. We start our example with a trivial clean coalgebra. It is obtained
based on the fact that every ring R is a trivial R-coalgebra with the trivial
comultiplicaion ∆T : R → R ⊗R R, r 7→ r ⊗ r and counit εT : R → R, r 7→
1 for any r ∈ R. Hence, as an R-coalgebra, the dual algebra of R, i.e.,
(R∗,+, ∗) is isomorphic to the ring R by mapping f 7→ f(1) for all f ∈ R∗.
Then we have the relationship between clean rings and clean coalgebras.

Proposition 2.1. Let R be a ring. A trivial R-coalgebra (R,∆T , εT ) is

clean if and only if R is a clean ring.

Proof. The proof is obvious since the ring EndR(R) ≃ R.

The R-coalgebra R with comultiplication ∆T and counit εT is called
the trivial R-coalgebra. The cleanness of R-coalgebra R depends on its
comultiplication and counit. Even tough R is a clean ring, it does not imply
that the ring R is clean as an R-coalgebra.

Example 2.1. Let (Z4,+, ·) be a clean ring and define a comultiplication

in Z4 as below:

∆ : Z4 → Z4 ⊗Z4 Z4

a→ a⊗ 1 + 1⊗ a.

Since Z4 is a projective Z4-module, Z4 satisfies the α-condition and the ring

EndZ4(Z4) ≃ Z∗
4. It means, the cleanness of Z4-coalgebra Z4 depends on the

dual ring Z∗
4. The elements of Z4-endomorphism Z4 are

1. f0(x) = 0̄ for all x ∈ Z4;

2. f1(x) = x for all x ∈ Z4;

3.

f2(x) =


0̄ if x = 0̄

2̄ if x = 1̄

0̄ if x = 2̄

2̄ if x = 3̄

(2.1)
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Table 1: Convolution Product for Z∗
4

∗ f0 f1 f2 f3

f0 f0 f0 f0 f0

f1 f0 f1 f0 f2

f2 f0 f0 f0 f0

f3 f0 f2 f0 f2

4.

f3(x) =


0̄ if x = 0̄

3̄ if x = 1̄

2̄ if x = 2̄

1̄ if x = 3̄.

(2.2)

Hence, we will investigate the structure of the ring Z∗
4 = EndZ4(Z4,+, ∗),

where Z∗
4 = {f1, f2, f3, f4}. In general, for any fi, fj ∈ Z∗

4, the convolution

product of any element of Z∗
4 are fi ∗fj = (fi⊗fj)◦∆ such that we have the

Table 1. Based on Table 1, Z∗
4 does not contain the multiplicative identity.

It means, the ring Z∗
4 does not contain the unit element. Hence, Z∗

4 is not

a clean ring. Consequently, although the ring Z4 is a clean ring, the Z4-

coalgebra Z4 with comultiplication ∆ as above is not clean.

Therefore, we must be precise in determining whether an R-coalgebra
is clean or not, since it depends on the comultiplication. For the trivial
coalgebra (R,∆T , εT ), any R-module M can be considered as a trivial right
and left R-comodule with an R-coaction, i.e., m 7→ m⊗ 1. Here, we give a
necessary and sufficient condition of the trivial clean R-comodules.

Proposition 2.2. Let (R,∆T , εT ) be a trivial R-coalgebra. An R-module

M is a clean module if and only if M is a right and left clean R-comodule

Proof. ⇒ Let M be a clean R-module and R is the trivial R-coalgebra with

a comultiplication ∆T and counit εT . For any R-module M , we can define

a right coaction ϱ on M
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ϱM :M →M ⊗R R,m 7→ m⊗ 1.

Hence, (M,ϱM ) is a right C-comodule. Thus M is an R∗-module. Hence,

the dual algebra of R-coalgebra R, (i.e., R∗ = HomR(R,R)) is isomorphic

to R. Thus, ifM is a clean R-module, then we have EndR∗(M) ≃ EndR(M)

is a clean ring and it implies M is a clean R-comodule.

⇐ Suppose M is a clean R-comodule. Then EndR∗(M) is a clean ring.

Since R∗ = HomR(R,R) ≃ R and EndR∗(M) is a clean ring, we have

EndR∗(M) ≃ EndR(M) is a clean ring, or M is a clean R-module.

Based on Proposition 2.2, a clean comodule is a generalization of the

cleanness concept of modules. The cleanness property of trivial coalgebras

or comodules is not delightful to be discussed, because it is an evident from

cleanness as a ring and as a module. However, from an R-module M , it is

possible that M could be a comodule over an R-coalgebra C where C is not

always the same as R. In this paper, we are going to discuss it further and

give more examples of clean comodule.

3 Some Sufficient Conditions of Clean Comodules

and Clean Coalgebras

In this section, we investigate some conditions of R-coalgebra C to be a clean
coalgebra. As a comodule over itself, we have EndC(C) ≃ EndC∗(C) ≃ C∗.
Thus, the cleanness of ring EndC(C) can be determined from the structure
of C∗. Hence, we get a sufficient condition of clean coalgebras as a direct
consequence of the α-condition of C.

Proposition 3.1. Let (C,∆, ε) be an R-coalgebra.

1. If C∗ is a clean ring, then C is a clean R-coalgebra.

2. If C∗ is a division ring, then C is a clean R-coalgebra.

Proof. Let C be an R-coalgebra. Since C satisfies the α-condition and C is

a C-comodule, we have :

1. C∗ is a clean ring, then the ring EndC∗C ≃ C∗ is clean. Then C is a

clean C∗-module and C is a clean C-comodule.
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2. Since C∗ is a division ring by considering C as a comodule over it-

self, then C is a C∗-module. Thus, C is a clean module over C∗.

Consequently, C is a clean R-coalgebra.

Recall definition of injective C-comodule [15]. Let N be a right C-

comodule. A C-comodule Q is said to be N -injective if

HomC(f,Q) : HomC(N,U) → HomC(K,U)

is a surjective map for every comodule monomorphism f : K → N. A C-

comodule Q is said to be an injective comodule, if Q is N -injective for any

N ∈ MC .

In [15], if C satisfies the α-condition then MC is a full subcategory
of C∗M. Moreover, if C is a finitely generated projective R-module, then

C∗M = MC . Consequently, if M is an injective C-comodule, then M is
also injective as a C∗-module. From the result of [11] every (quasi)-injective
module is a clean module, thus we have this proposition.

Proposition 3.2. If C is an R-coalgebra and a finitely generated projective

R-module, then every injective C-comodule is a clean comodule.

Proof. Suppose that M is an injective comodule over C. Since C satisfies

the α-condition and the finitely generated projective R-module,

C∗M = MC .

Consequently, M is also injective as a C∗-module. Based on [11] every

injective module is a clean module; thus M is a clean C∗-module. That is,

M is a clean C-comodule.

In [15], if C is a coalgebra over a quasi-Frobenius ring A, then C has

satisfied the α-condition. It implies MC is a full subcategory C∗M. Here,

we give a sufficient condition of the cleanness of C-comodules when C is

module over A.

Furthermore, for any C-comodule M we have a condition as below:

Proposition 3.3. Let A be a QF ring and M,C be a finitely generated

A-module. If M is an injective C-comodule, then M is a clean C-comodule.
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Proof. Suppose that C is a finitely generated A-module and A is a QF ring.

It implies C is a locally projective A-module. Since M is finitely generated

as an A-module and C satisfies the α-condition, then MC =C∗ M. Hence,

if M is an injective C-comodule, then M is an injective C∗-module. By [11]

M is a clean C∗-module, thus M is a C-clean comodule.

3.1 The Cleanness of R[G]-Comodules

Let R be a ring and G a group. It is well-known that the group ring R[G]
is an R-coalgebra by the following comultiplication

∆ : R[G] → R[G]⊗R R[G], g 7→ g ⊗ g.

Since the group ring R[G] is a free R-module, R[G] is projective as an R-
module. It implies that the coalgebra R[G] satisfies the α-condition. On the
following proposition, we give the cleanness properties of comodules over
coalgebra R[G] and obtain a sufficient condition of clean R[G]-comodules.

Theorem 3.1. Let G be a finite group and R be a field. If M is a G-graded

module over R, then M is a clean R[G]-comodule.

Proof. From [15] it is clear that every G-graded R-module is an R[G]-

comodule. We want to prove that M is a clean R[G]-comodule by proving

R[G]∗ is a semisimple ring, i.e., R[G]∗ is a finite product of simple rings.

Since R is a field, R[G] and R[G]∗ can be considered as vector spaces over

R. We have some facts of R[G] and R[G]∗ as below

1. Since G is finite with |G| = n, we have dim(R[G]∗) = dim(R[G]) = n;

2. Since both of R[G]∗ and Rn are vector spaces with dimension n, we

have R[G]∗ ≃ Rn as a vector space;

3. Suppose that basis of R[G]∗ is {δgi |gi ∈ G} where

δgi(gj) =

1 if i = j

0 if i ̸= j.

Here, we need to know that R[G]∗ and Rn are isomorphic as a ring. We

define the following map
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ψ : R[G]∗ → Rn, δgi 7→ (0, 0, ..., 1, 0, ..., 0)

where 1 lies at the i-th entry and n = |G|.

1. It has been known that R[G]∗ ≃ Rn as a vector spaces by ψ. We
only need to prove that ψ preserves convolution product on R[G]∗ to
multiplication on Rn (multiplication on Rn is a point-wise product).
For any δgi , δgj ∈ R[G]∗, based on definition ψ we obtain:

ψ(δgi) · ψ(δgj ) =

{
(0, ..., 0) if i ̸= j

(0, 0, ..., 0, 1i, 0, ..., 0) if i = j.

By definition of convolution product on R[G]∗, for any g ∈ R[G] we
have

(δgi ∗ δgj )(g) = (µ ◦ (δgi ⊗ δgj ) ◦∆)(g)

= (µ ◦ (δgi ⊗ δgj ))(g ⊗ g)

= (δgi(g))(δgj (g))

where

δgi(g)δgj (g) =

{
0 if gi ̸= g or gj ̸= g

1 if gi = g and gj = g.

It means

δgi(g)δgj (g) = 1 if gi = gj = g.

Thus δ2g = δg ∗ δg = δg and δgi ∗ δgj = 0 if gi ̸= gj . Then

ψ(δgi ∗ δgj ) =

{
ψ(0) = (0, 0, ..., 0) if i ̸= j

ψ(δgj ) = (0, 0, ..., 0, 1i, 0, ..., 0) if i = j.

Consequently, ψ(δgi) · ψ(δgj ) = ψ(δgi ∗ δgj ).

2. Suppose δgi ̸= δgj ∈ R[G]∗. It implies that ψ(δgi) ̸= ψ(δgi), then ψ is
injective;

3. Finally, we want to prove ψ is surjective. It is clear that

{(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ..., 0, 1)}
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is a basis of Rn. For every (0, 0, ..., 0, 1i, 0, ..., 0) ∈ Rn where 1 lies at
the i-th entry, there is δgi ∈ R[G]∗ such as ψ(δgi) = (0, ..., 0, 1, 0, ..., 0).
Then ψ is surjective.

From point 1-3, ψ is an isomorphism ring. Hence, R[G]∗ is isomorphic to
finite product of fields (simple rings) R. Consequently, R[G]∗ is a semisimple
ring. Since R[G]∗ is a semisimple ring, M is an injective R[G]∗-module. It
implies M is a clean R[G]∗-module, and hence M is a clean R[G]-comodule.

Since every R-module M can be considered as a G-graded module over
R with the trivial grading, it implies that every R-module M is an R[G]-
comodule. Theorem 3.1 has the following direct consequence.

Corollary 3.1. If R is a field and G is a finite group, then every R-module

M is a clean R[G]-comodule.

Proof. Consider M a G-graded module over R with the trivial grading and

the proof is clear.

Furthermore, we generalize the Theorem 3.1 for any simple ring as follow.

Theorem 3.2. Let G be a finite group and R be a simple ring. If M is a

G-graded module over R, then M is a clean R[G]-comodule.

Proof. Suppose G be a finite group, then R[G] is a free R-module with

basis G. Since M is a G-graded module over R, M is an R[G]-comodule.

Considering M as an R[G]∗-module, we need to prove R[G]∗ is a semisimple

ring. Hence, ring R[G]∗ is a free R-module with basis {pgi |gi ∈ G} where

pgi(gj) = δi,j . For any f ∈ R[G]∗ with f =
∑
ripgi we define

β : R[G]∗ → Rn,

β(f) = β(
∑
ripgi) =

∑
ri(0, 0, ..., 0, 1i, 0, ..., 0).

We see β is a ring isomorphism. Given f, h ∈ R[G]∗, where f =
∑
ripgi and

h =
∑
sipgi .
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1. The map β preserve addition operation as below

β(f + g) = β((
∑

ripgi) + (
∑

sipgi))

= β(
∑

(ri + si)pgi)

=
∑

((ri + si)(0, 0, ..., 0, 1i, 0, ..., 0))

=
∑

((ri)(0, 0, ..., 0, 1i, 0, ..., 0))

+ ((si)(0, 0, ..., 0, 1i, 0, ..., 0))

=
∑

((ri)(0, 0, ..., 0, 1i, 0, ..., 0))

+
∑

((si)(0, 0, ..., 0, 1i, 0, ..., 0))

= β(
∑

ripgi) + β(
∑

sipgi)

= β(f) + β(h).

2. We want to see that β(fg) = β(f)β(g). Analogue with the Theorem

3.1 for any i, j, then pi ∗ pj = 0 if j ̸= i and pi ∗ pj = pi if i = j.

Therefore for f, g ∈ R[G]∗,

f ∗ g = (
∑
ripgi) ∗ (

∑
sipgi) =

∑
risipgi ,

such that

β(f ∗ g) = β(
∑

risipgi)

=
∑

risi(0, 0, ..., 0, 1i, 0, ..., 0)

= (r1s1, ..., rnsn).

On the other hand,

β(f)β(g)

= (
∑

ri(0, 0, ..., 0, 1i, 0, ..., 0))(
∑

si(0, 0, ..., 0, 1i, 0, ..., 0))

= (r1, ..., rn)(s1, ..., sn) = (r1s1, ..., rnsn).

It means β(f ∗ g) = β(f)β(g). Then β is a homomorphism ring.
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3. Moreover, by mapping every basis on R[G]∗ to basis of Rn i.e.,

pgi 7→ (0, ..., 1i, 0, ..., 0),

β is a bijective map, then β is an isomorphism ring.

Hence, Rn ≃ R[G]∗ for any simple ring R and finite group G. Consequently,

R[G]∗ is a semisimple ring and M is an injective R[G]∗-module. Thus, M is

a clean R[G]-comodules.

Every module over commutative Artinian principal ideal ring is clean
[11]. On the other hand, if R is a finite ring, then R is Artinian. We prove
the following proposition as a generalization the situation of Proposition 3.2.

Proposition 3.4. Let R be an Artinian principal ideal ring and G be a

finite group. Every R[G]-comodule M is a clean comodule.

Proof. Suppose that R is an Artinian principal ideal ring and G is a finite

group with order n. Since M is a comodule over R[G], M is an R[G]∗-

module. Furthermore, R[G]∗ ≃ Rn as rings. Since R is a commutative

Artinian principal ideal ring, by using point-wise operation we have that Rn

is also a commutative Artinian principal ideal ring. As an R[G]∗-module,

since R[G]∗ ≃ Rn and Rn is a commutative Artinian principal ideal ring, M

is a clean R[G]∗-module (by [11]). Therefore, M is a clean R[G]-comodule.

3.2 The generalization of the Clean R[G]-Comodules

In the previous result, if G is finite with order n, then the dual algebra
R[G]∗ is isomorphic to the ring Rn. It motivates us to make this concepts
more general for any R-coalgebra C. Based on module theory, we know that
if C is a free R-module with dimension n, then HomR(C,R) ≃ Rn as an
R-module. Moreover, if C is an R-coalgebra we have a particular condition
as below.

Theorem 3.3. Let C be a free R-module with basis {xi}ni=1. If C is an

R-coalgebra with comultiplication

∆ : C → C ⊗R C, xi 7→ xi ⊗ xi,
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then the dual algebra C∗ is isomorphic to the ring Rn.

Proof. Suppose that C is a free R-module with basis {xi}ni=1 and the co-

multiplication on R-coalgebra C is

∆ : C → C ⊗R C, xi 7→ xi ⊗ xi.

The dual algebra C∗ is also a finitely generated R-module with basis {x∗i }ni=1

where x∗i (xj) = δi,j for any i, j. Define a map

σ : C∗ 7→ Rn

i.e., for any f ∈ C∗

σ(f) = σ(
n∑

i=1

rix
∗
i )

=
n∑

i=1

ri(0, 0, ..., 0, 1i, 0, ..., 0)

= (r1, r2, ..., rn).

We want to prove σ is a ring isomorphism.

1. For f =
∑n

i=1 rix
∗
i , g =

∑n
i=1 six

∗
i ∈ C∗, the map σ preserves the

addition operation as below

σ(f + g) = σ((
n∑

i=1

rix
∗
i ) + (

∑
six

∗
i ))

= σ(
n∑

i=1

(ri + si)x
∗
i )

= (r1 + s1, r2 + s2, ..., rn + sn)

= (r1, r2, ..., rn) + (s1, s2, ..., sn)

= σ(
n∑

i=1

rix
∗
i ) + β(

n∑
i=1

six
∗
i )

= σ(f) + σ(g).

2. Suppose that f =
∑n

i=1 rix
∗
i , g =

∑n
i=1 six

∗
i ∈ C∗. Using the definition

of convolution product of C∗, we see that f ∗ g =
∑n

i=1 risix
∗
i . Here,
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we put any c ∈ C where c =
∑n

i=1 aixi and see the result of f ∗ g(c)
as below

f ∗ g(
n∑

i=1

aixi) = µ ◦ (f ⊗ g) ◦∆(

n∑
i=1

aixi)

= µ ◦ (f ⊗ g)(

n∑
i=1

ai(xi ⊗ xi))

= µ(

n∑
i=1

aif(xi)⊗ g(xi))

= µ(

n∑
i=1

ai((

n∑
i=1

rix
∗
i )(xi)⊗ (

n∑
i=1

rix
∗
i )(xi)))

= µ(

n∑
i=1

ai(ri ⊗ si)

=

n∑
i=1

airisi.

On the other hand, the result
∑n

i=1 risix
∗
i (c) is

n∑
i=1

risix
∗
i (

n∑
i=1

aixi)

= r1s1x
∗
1(

n∑
i=1

aixi) + ...+ rnsnx
∗
n(

n∑
i=1

aixi)

= a1r1s1 + ...+ anrnsn

=

n∑
i=1

airisi.

Hence we can see that for any c ∈ C, f ∗ g(c) =
∑n

i=1 risix
∗
i (c). Con-

sequently, the function f ∗ g =
∑n

i=1 risix
∗
i on C∗. It implies that

σ(f ∗ g) = σ(

n∑
i=1

risix
∗
i ) = (r1s1, r2s2, ..., rnsn),
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and for other side we have this condition,

σ(f)σ(g) = σ(

n∑
i=1

rix
∗
i )σ(

n∑
i=1

six
∗
i )

= (r1, r2, ..., rn)(s1, s2, ..., sn)

= σ(f)σ(g) = (r1s1, r2s2, ..., rnsn).

Since the left and right side give the equivalent result, i.e., σ(f ∗ g) =
σ(f)σ(g), σ is a ring homomorphism.

3. For f =
∑n

i=1 rix
∗
i , g =

∑n
i=1 six

∗
i ∈ C∗ with σ(f) = σ(g), we have

(r1, r2, ..., rn) = (s1, s2, ..., sn). It means ri = si for any i. Therefore,∑n
i=1 rix

∗
i =

∑n
i=1 six

∗
i if and only if f = g. Then σ is injective.

4. Let (a1, a2, ..., an) is an element of Rn. Since C∗ is an R-module,

aix
∗
i ∈ C∗ for every i = 1, 2, ..., n. Furthermore,

∑n
i=1 aix

∗
i ∈ C∗.

Putting h =
∑n

i=1 aix
∗
i ∈ C∗, then we have σ(h) = σ(

∑n
i=1 aix

∗
i ) =

(a1, a2, ..., an). It is proved that σ is surjective.

From this explanation we have a conclusion that σ is an isomorphism
ring. In particular, C∗ ≃ Rn.

In general condition, the isomorphism between C∗ and Rn as a ring
really depends on the comultiplication ∆. We give the following example as
an illustration that there is ∆ that make the ring C∗ is not isomorphic with
the ring Rn.

Example 3.1. Let C be a free R-module with basis {x, y}. We consider C

as an R-coalgebra with comultiplication

∆ : C → C ⊗R C

x 7→ x⊗ y + y ⊗ x

y 7→ y ⊗ y − x⊗ x.

Let C∗ be the dual algebra of C with basis {x∗, y∗}. We prove that for any

f = a1x
∗ + a2y

∗, g = b1x
∗ + b2y

∗ ∈ C∗, we have f ∗ g ̸= a1b1x
∗ + a2b2y

∗.
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Put any c ∈ C where c = c1x+ c2y, then we have

f ∗ g(c) = f ∗ g(c1x+ c2y)

= µ ◦ (f ⊗ g) ◦∆(c1x+ c2y)

= µ ◦ (f ⊗ g)(∆(c1x) + ∆(c2y))

= µ ◦ (f ⊗ g)((c1(x⊗ y

+ y ⊗ x)) + (c2(y ⊗ y − x⊗ x)))

= µ((c1(f(x)⊗ g(y) + f(y)⊗ g(x)))

+ (c2(f(y)⊗ g(y)− f(x)⊗ g(x))))

by subtituting f = a1x
∗ + a2y

∗, g = b1x
∗ + b2y

∗ we get

f ∗ g(c) = c1a1b2 + c1a2b1 + c2a2b2 − c2a1b1,

and a1b1x
∗
1 + a2b2x

∗
2(c) = a1b1x

∗
1 + a2b2x

∗
2(c1x+ c2y) = a1b1c1 + a2b2c2.

Hence, f ∗ g ̸= a1b1x
∗
1 + a2b2x

∗
2 in C∗. Thus, the map σ on Theorem 3.3

does not preserve the multiplication operation. In particular, C∗ and R2 is

not isomorphic as a ring.

As a direct consequence of Theorem 3.3, we give some sufficient con-
ditions for clean C-comodules. The proof of the following proposition is
obviously obtained by using the fact that C∗ ≃ Rn as a ring.

Proposition 3.5. Let R be a field and C be a vector space over R with basis

{xi}ni=1. If C is an R-coalgebra with comultiplication ∆ : C → C⊗RC, xi 7→
xi ⊗ xi, then every C-comodule M is clean.

Proof. By using Theorem 3.3, since C is a vector space over R, we have

C∗ ≃ Rn is a simple ring. If we consider C-comodule M as a module over

simple ring C∗, then M is an injective C∗-module. Hence, M is a clean

C∗-module [11]. It means M is a clean C-comodule.

Proposition 3.6. Let R be a simple ring and C a free R-module with basis

{xi}ni=1. If C is an R-coalgebra with comultiplication ∆ : C → C⊗RC, xi 7→
xi ⊗ xi, then every C-comodule M is clean.
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Proof. Analogue to Proposition 3.5, since the dual algebra C∗ ≃ Rn is a

semisimple ring, M is an injective C∗-module. It means M is a clean C-

coalgebra.

Recall that every R-coalgebra C is a comodule over itself. We have the

structure of clean coalgebra. Here, we give the conditions that make the

coalgebra C is clean.

Proposition 3.7. Let R be a clean ring and C a free R-module with basis

{xi}ni=1. If C is an R-coalgebra with comultiplication ∆ : C → C⊗RC, xi 7→
xi ⊗ xi, then C is a clean R-coalgebra.

Proof. Suppose that C is an R-coalgebra. Since C is a free R-module, C

is a projective R-module. Thus the colagebra C satisfies the α-condition.

It means C∗End(C) ≃ C∗. Moreover, from Theorem 3.3 C∗ ≃ Rn where

R is a clean ring. From [5] direct product of clean ring is also clean, then

C∗ is a clean ring. It implies C is a clean C∗-module. Then C is a clean

R-coalgebra.

In [11], a continuous module as a generalization of (quasi)-injective mod-
ule is clean. Most of the proof of the clean C-comodule M in this paper
is shown by proving that M is an injective module over C∗. On the other
hand, generally, module over a commutative Artinian principal ideal domain
is not always be an injective module, but it is a clean module [11]. By this
fact, we have a generalization of the Proposition 3.4.

Proposition 3.8. Let R be a Artinian principal ideal ring and C is a free

R-module with basis {xi}ni=1. If C is an R-coalgebra with comultiplication

∆ : C → C⊗RC, xi 7→ xi⊗xi, then every C-comoduleM is a clean comodule.

Proof. Suppose that R is an Artinian principal ideal ring and C is a free R-

module with dimension n. Consider C-comodule M as a C∗-module. Based

on Theorem 3.3 C∗ ≃ Rn as a ring. Since R is a commutative Artinian

principal ideal ring, Rn is a commutative principal ideal ring (by point-

wise multiplication). By Theorem 3.3 C∗ ≃ Rn, then M is a module over

a commutative Artinian principal ideal ring C∗. It implies M is a clean

C∗-module. Consequently, M is a clean C-comodule.
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4 Conclusions

The sufficient conditions of clean comodules have been obtained by observ-
ing the relationship between the category of C-comodules and C∗-modules.
Moreover, we also get the sufficient conditions of R[G]-comodule and its
generalization for any C-comodules. The clean comodules (coalgebras) on
this paper is intensely depending on the structure of R-module and the co-
multiplication of C, since we assumed that the α-condition of C.
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