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Abstract

We investigate the approximation of the functions by trigonometric poly-

nomials Nλ
n (f ;x) of degree n in the weighted variable exponent Lebesgue

spaces.

1 Introduction, some auxiliary results and main results

Let T denote the interval [0, 2π] and Lp(T), 1 ≤ p ≤ ∞, the Lebesgue space of
measurable functions on T.
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Let us denote by ℘ the class of Lebesgue measurable functions p : T −→
(1,∞) such that 1 < p∗ := ess inf

x∈T
p(x) ≤ p∗ := ess

x∈T
sup p(x) < ∞. The

conjugate exponent of p(x) is shown by p′(x) := p(x)
p(x)−1 . For p ∈ ℘, we define a

class Lp(.)(T) of 2π periodic measurable functions f : T → R satisfying the
condition ∫

T

|f(x)|p(x) dx <∞.

This class Lp(.)(T) is a Banach space with respect to the norm

‖f‖Lp(.)(T) := inf{ λ > 0 :

∫
T

∣∣∣∣f(x)

λ

∣∣∣∣p(x) dx ≤ 1}.

The spaces Lp(.)(T) are called generalized Lebesgue spaces with variable ex-
ponent. It is know that for p(x) := p (1 < p < ∞), the space Lp(x)(T) coincides
with the Lebesgue space Lp(T). If p∗ < ∞ then the spaces Lp(.)(T) represen-
t a special case of the so-called Orlicz-Musielak spaces [32]. For the first time
Lebesgue spaces with variable exponent were introduced by Orlicz [34]. Note
that the generalized Lebesgue spaces with variable exponent are used in the the-
ory of elasticity, in mechanics, especially in fluid dynamics for the modelling of
electrorheological fluids, in the theory of diferential operators, and in variation-
al calculus [7], [8], [9], [36] and [38]. Detailed information about properties of
the Lebesque spaces with variable exponent can be found in [10], [26], [30], [31],
[37] and [39]. Note that, some of the fundamental problems of the approximation
theory in the generalized Lebesgue spaces with variable exponent of periodic and
non-periodic functions were studied and solved by Sharapudinov [39]-[44] .

A function ω : T → [0,∞] is called a weight function if ω is a measurable
and almost everywhere (a.e.) positive.

Let ω be a 2π periodic weight function. We denote by Lpω(T) the weighted
Lebesgue space of 2π periodic measurable functions f : T → C such that
fω

1
p ∈ Lp(T). For f ∈ Lpω(T) we set

‖f‖Lp
ω(T) :=

∥∥∥fω 1
p

∥∥∥
Lp(T)

.

L
p(.)
ω (T) stands for the class of Lebesgue measurable functions f : T → C

such that ωf ∈ Lp(.)(T). L
p(.)
ω (T) is called the weighted Lebesgue space with
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variable exponent. The space Lp(.)ω (T) is a Banach space with respect to the norm

‖f‖
L
p(.)
ω (T) := ‖fω‖Lp(.)(T) .

Its known [25] that the set of trigonometric polynomials is dense in Lp(.)ω (T), if
[ω(x)]p(x) is integrable on T.

Let B be the class of all intervals in T. For B ∈ B we set

pB := (
1

|B|

∫
B

1

p(x)
dx)−1.

For given p ∈ ℘ the class of weights ω satisfying the condition

∥∥∥ωp(x)∥∥∥
Ap(.)

:= sup
B∈B

1

|B|pB
∥∥∥ωp(x)∥∥∥

L1(B)

∥∥∥∥ 1

ωp(x)

∥∥∥∥
L(p′(.)/p(.))(B)

<∞

will be denoted by Ap(.) [1].

We say that the variable exponent p(x) satisfies local log-Hölder continuity
condition, if there is a positive constant c1 such that

| p(x)− p(y) |≤ c1

log( 1
|x−y|)

, (1.1)

for all x, y ∈ T.

A function p ∈ ℘ is said to belong to the class ℘log, if the condition (1.1) is
satisfied.

We denote byEn(f)
L
p(.)
ω (T) the best approximation of f ∈ Lp(.)ω (T) by trigono-

metric polynomials of degree not exceeding n, i.e.,

En(f)
L
p(.)
ω (T) = inf{‖ f − Tn ‖

L
p(.)
ω (T)

: Tn ∈ Πn},

where Πn denotes the class of trigonometric polynomials of degree at most n.

Let us suppose that p ∈ ℘, ω−p0 ∈ A(
p(.)
p0

)′ , for some p0 ∈ (1, p∗) . For
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f ∈ Lp(.)ω (T) we set

(νhf) (x) :=
1

2h

h∫
−h

f (x+ t) dt, 0 < h < π, x ∈ T.

If p ∈ ℘log, ω−p0 ∈ A(
p(.)
p0

)′ with some p0 ∈ (1, p∗) and f ∈ Lp(.)ω (T), then

the shift operator νhi is a bounded linear operator on Lp(.)ω (T) [27]:

‖νhi (f)‖
L
p(.)
ω (T) ≤ c2 ‖f‖Lp(.)

ω (T) .

Let p ∈ ℘ and ω−p0 ∈ A(
p(.)
p0

)′ with some p0 ∈ (1, p∗) . The function

Ωp(.),ω (δ, f) := sup
0<h≤δ

‖f − (νhf)‖
L
p(.)
ω (T) , δ > 0

is called the moduli of continuity of f ∈ Lp(.)ω (T).
It can easily be shown that Ωp(.),ω (·, f) is a continuous, nonnegative and non-

decreasing function satisfying the conditions

lim
δ→0

Ωp(.),ω (δ, f) = 0, Ωp(.),ω (δ, f + g) ≤ Ωp(.),ω (δ, f) + Ωp(.),ω (δ, g) , δ > 0

for f, g ∈ L
p(.)
ω (T). Note that detailed information about properties of moduli

of continuity Ωp(.),ω (·, f) can be found in the paper [1]. Also, moduli of this
type was considered by E. A. Hadjieva [16] in Lebesgue space with Muckenhoupt
Ap, 1 < p <∞ weight.

Let 0 < α ≤ 1. The set of functions f ∈ Lp(·)ω (T) such that

Ωp(.),ω(f, δ) = O(δα), δ > 0

is called the Lipschitz class Lip(α, p (·) , ω).

Let
a0
2

+
∞∑
k=1

(ak (f) cos kx+ bk (f) sin kx) (1.2)

be the Fourier series of the function f ∈ L1(T), where ak(f) are bk(f) the Fourier
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coefficients of the function f . The n-th partial sum of series (1.2) is defined, as

Sn (f ;x) =
a0
2

+
n∑
k=1

(ak (f) cos kx+ bk (f) sin kx) ,

=
n∑
k=0

Qk(f ;x).

Let {pn}∞0 be a sequence of positive real numbers. The sequence {pn}∞0 is
called almost monotone decreasing (increasing), denoted by {pn}∞0 ∈ AMDS
({pn}∞0 ∈ AMIS), if there exist a constant c, depending only on the sequence
{pn}∞0 such that for all n ≥ m the following inequality holds:

pn ≤ cpm, (pm ≤ cpn) .

In proof of the main result we will use the notations

∆βn := βn − βn+1, ∆mβ(n,m) := β(n,m)− β(n,m+ 1).

As in [33] we suppose that F is an infinite subset of N and consider F as the
range of strictly increasing sequence of positive integers, say F = {λ(n)}∞1 . Fol-
lowing [4], [35] the Cesáro submethod Cλ is defined as

(Cλx)n =
1

λ(n)

λ(n)∑
k=1

xk, n = 1, 2, ...,

where {xk} is a sequence of a real or complex numbers. Therefore, the Cλ−
method yields a subsequence of the Cesáro method C1, and hence it is regular for
any λ. Cλ is obtained by deleting a set of rows from Cesáro matrix. We suppose
that {pn}∞0 is a sequence of positive real numbers. We define the mean of the
series (1.2), as

Nλ
n (f ;x) =

1

Pλ(n)

n∑
m=0

pλ(n)−msm(f ;x)

where Pn :=
∑n

m=0 pm 6= 0 (n ≥ 0), p−1 = P−1 = 0. Note that in the case
pn = 1, n ≥ 0, N(f ;x) is equal to the mean
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σλn(f ;x) =
1

λ(n) + 1

λ(n)∑
m=0

Sm(f ;x).

In the present paper we study the approximation of the functions by trigono-
metric polynomialsNλ

n (f ;x) in weighted Lebesgue spaces with variable exponen-
t. The results obtained in this work are generalization of the results [33] to the
weighted Lebesgue spaces with variable exponent. Similar problems about ap-
proximations of the functions by trigonometric polynomials in the different spaces
have been investigated by several authors (see, for example, [2-6], [11-15], [17-24],
[28], [29], [33] and [45-47]).

Note that, in the proof of the main results we use the method as in the proof of
[33]. Our main result is the following:
Theorem 1.1.
1. Let p ∈ ℘, ω−p0 ∈ A(

p(.)
p0

)′ with some p0 ∈ (1, p∗) , if f ∈ Lip(α, p(.), ω), 0 <

α < 1 and if one of the following conditions

(i) {pn}∞0 ∈ AMDS

(ii) {pn}∞0 ∈ AMIS,

and

(λ(n) + 1)pλ(n) = O(Pλ(n)) (1.3)

holds, then ∥∥∥f −Nλ
n (f)

∥∥∥
L
p(·)
ω (T)

= O ((λ (n)))−α).

2. Let p ∈ ℘, ω−p0 ∈ A(
p(.)
p0

)′ with some p0 ∈ (1, p∗) , if f ∈ Lip(1, p(.), ω) and

if one of the following conditions

(iii)
λ(n)−1∑
k=1

k |∆pk| = O(Pλ(n))

(iv)
λ(n)−1∑
k=0

|∆pk| = O(Pλ(n)/λ(n)), and (1.3) holds,
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then the estimate ∥∥∥f −Nλ
n (f)

∥∥∥
L
p(·)
ω (T)

= O ((λ (n)))−1.

holds.

In the proof of the main result we need the following Lemmas:
Lemma 1.1. (see [19]). Let p ∈ ℘, ω−p0 ∈ A(

p(.)
p0

)′ with some p0 ∈ (1, p∗) .

Then for f ∈ Lip(α, p(.), ω), 0 < α ≤ 1 and n = 1, 2,3.... the estimate

‖f − Sn(f)‖
L
p(·)
ω (T) = O(n−α)

holds.
Lemma 1.2. (see [19]). Let p ∈ ℘, ω−p0 ∈ A(

p(.)
p0

)′ with some p0 ∈ (1, p∗) .

Then for f ∈ Lip(1, p(.), ω) and n = 1, 2,3, ... the estimate

‖Sn(f)− σn(f)‖
L
p(·)
ω (T) = O(n−1)

holds.
Lemma 1.3. (see [33]). If {pn}∞0 ∈ AMDS or {pn}∞0 ∈ AMIS and (1.3) holds,
then

λ(n)∑
m=1

m−αpλ(n)−m = O ((λ(n))−α Pλ(n))

for 0 < α < 1.

2 Proofs of the main results
Proof of Theorem 1.1. We prove the cases (i) and (ii) together. It is clear that

Nλ
n (f ;x)− f(x) =

1

Pλ(n)

λ(n)∑
m=o

pλ(n)−m {sm(f ;x)− f(x)} . (2.1)

Then using Lemma 1.1 and Lemma 1.3 and (2.1) and condition (1.3) we have
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∥∥∥Nλ
n (f)− f

∥∥∥
L
p(·)
ω (T)

≤ 1

Pλ(n)

λ(n)∑
m=o

pλ(n)−m ‖f − sm(f)‖
L
p(·)
ω (T)

=
1

Pλ(n)

λ(n)∑
m=1

pλ(n)−m ‖f − sm(f)‖
L
p(·)
ω (T)

+ ‖f − s0(f)‖
L
p(·)
ω (T)

=
1

Pλ(n)

λ(n)∑
m=1

pλ(n)−mO(m−α) +O(
pλ(n)

Pλ(n)
)

= O((λ(n))−α).

Case (iv): We suppose that α = 1. Using Abel’s transformation, we find that

Nλ
n (f ;x) =

1

Pλ(n)

λ(n)∑
m=o

pλ(n)−m {sm(f ;x)− f(x)}Qm(f ;x).

Thus we have

sλn(f ;x)−Nλ
n (f ;x) =

1

Pλ(n)

λ(n)∑
m=1

(Pλ(n)−Pλ(n)−m) {sm(f ;x)− f(x)}Qm(f ;x).

Use of Abel’s transformation leads to

sλn(f ;x)−Nλ
n (f ;x) =

1

Pλ(n)

λ(n)∑
m=1

∆m(m−1(Pλ(n) − Pλ(n)−m))

×
m∑
k=1

kQk(f ;x) +
1

(λ(n) + 1)

λ(n)∑
k=1

kQk(f ;x).(2.2)

Taking account of (2.2) we have
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∥∥∥sλn(f)−Nλ
n (f)

∥∥∥
L
p(·)
ω (T)

≤

∣∣∣∣∣∣ 1

Pλ(n)

λ(n)∑
m=1

∆m(m−1(Pλ(n) − Pλ(n)−m))

∣∣∣∣∣∣
×

∥∥∥∥∥
m∑
k=1

kQk(f)

∥∥∥∥∥
L
p(·)
ω (T)

+
1

(λ(n) + 1)

∥∥∥∥∥∥
λ(n)∑
k=1

kQk(f ;x)

∥∥∥∥∥∥
L
p(·)
ω (T)

. (2.3)

It is clear that

sn(f, x)− σn(f ;x) =
1

n+ 1

n∑
k=1

kQk(f ;x). (2.4)

Then from Lemma 1.2 and (2.4) we have∥∥∥∥∥
n∑
k=1

kQk(f)

∥∥∥∥∥
L
p(·)
ω (T)

= (n+ 1) ‖sn(f)− σn(f)‖
L
p(·)
ω (T) = O(1). (2.5)

Thus use of (2.3) and (2.5) gives us

∥∥∥sλn(f)−Nλ
n (f)

∥∥∥
L
p(·)
ω (T)

= O(
1

Pλ(n)
)

λ(n)∑
m=1

∣∣∆m(m−1(Pλ(n) − Pλ(n)−m))
∣∣

+O((λ(n))−1). (2.6)

By [33] the following relations hold :

∆m(m−1(Pλ(n) − Pλ(n)−m) =
1

m
∆m(Pλ(n) − Pλ(n)−m)

+
Pλ(n) − Pλ(n)−m−1

m(m+ 1)

=
Pλ(n)−m−1 − Pλ(n)−m

m
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+
Pλ(n) − Pλ(n)−m−1

m(m+ 1)

=
Pλ(n) − Pλ(n)−m−1

m(m+ 1)
−
pλ(n)−m

m

=
1

m(m+ 1)

[
Pλ(n) − Pλ(n)−m−1

]
− 1

m(m+ 1)
(m+ 1)pλ(n)−m, (2.7)

∆m(
Pλ(n) − Pλ(n)−m

m
) =

1

m(m+ 1)

×

 λ(n)∑
k=λ(n)−m

pk − (m+ 1)pλ(n)−m

 . (2.8)

Next we will prove by the induction the inequality∣∣∣∣∣∣
λ(n)∑

k=λ(n)−m

pk − (m+ 1)pλ(n)−m

∣∣∣∣∣∣
≤

m∑
k=1

k
∣∣pλ(n)−k+1 − pλ(n)−k

∣∣ . (2.9)

Let m = 1. Then we obtain∣∣∣∣∣∣
λ(n)∑

k=λ(n)−1

pk − 2pλ(n)−1

∣∣∣∣∣∣ =
∣∣pλ(n) − pλ(n)−1∣∣ .

That is, the relation (2.9) holds, for m = 1. Now we suppose that the relation
(2.9) holds for m = j. We prove the inequality for m = j + 1 (≤ λ(n)). The
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inequality∣∣∣∣∣∣
λ(n)∑

k=λ(n)−(j+1)

pk − (j + 2)pλ(n)−(j+1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
λ(n)∑

k=λ(n)−j

pk − (j + 1)pλ(n)−(j+1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
λ(n)∑

k=λ(n)−j

pk − (j + 1)pλ(n)−j + (j + 1)pλ(n)−j − (j + 1)pλ(n)−(j+1)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
λ(n)∑

k=λ(n)−j

pk − (j + 1)pλ(n)−1

∣∣∣∣∣∣+
∣∣(j + 1)pλ(n)−j − (j + 1)pλ(n)−(j+1)

∣∣
≤

j∑
k=1

k
∣∣pλ(n)−k+1 − pλ(n)−k

∣∣+ (j + 1)
∣∣pλ(n)−j − pλ(n)−(j+1)

∣∣
=

j+1∑
k=1

k
∣∣pλ(n)−k+1 − pλ(n)−k

∣∣ .
holds. That is, (2.9) is true for m = j+ 1. Thus the relation (2.9) is proved for any
1 ≤ m ≤ λ(n). Consideration of (2.8) and (2.9) gives us

λ(n)∑
m=1

∣∣∣∣∆m

(
Pλ(n) − Pλ(n)−m

m

)∣∣∣∣
≤

λ(n)∑
m=1

1

m (m+ 1)

m∑
k=1

k
∣∣pλ(n)−k+1 − pλ(n)−k

∣∣
≤

λ(n)∑
k=1

k
∣∣pλ(n)−k+1 − pλ(n)−k

∣∣ ∞∑
m=k

1

m (m+ 1)

=

λ(n)−1∑
k=0

|∆pk| . (2.10)
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Taking into account the condition of the Theorem 1.1 the relation, we have

λ(n)−1∑
k=0

|∆pk| = O(Pλ(n)/λ(n)) (2.11)

holds. Then taking the relations (2.10), (2.11) and (2.6) into account we get∥∥∥sλn(f)−Nλ
n (f)

∥∥∥
Lp
ω

= O((λ(n))−1). (2.12)

Thus from (2.12) and Lemma 1.1 for α = 1 we have∥∥∥f −Nλ
n (f)

∥∥∥
Lp
ω

= O((λ(n))−1).

Case (iii): First of all we prove the estimate

λ(n)∑
m=1

∆m

(
Pλ(n) − Pλ(n)−m

m

)
= O

(
Pλ(n)

λ(n)

)
. (2.13)

According to condition in the case (iii) of Theorem 1.1 the following relations
holds:

λ(n)−1∑
k=1

k |∆pk| = O(Pλ(n)). (2.14)

Consideration of (2.8) and (2.9) gives us
λ(n)∑
m=1

∆m

(
Pλ(n) − Pλ(n)−m

m

)

≤
λ(n)∑
m=1

1

m (m+ 1)

m∑
k=1

k
∣∣∆kpλ(n)−k

∣∣
=

r∑
m=1

1

m (m+ 1)

m∑
k=1

k
∣∣∆kpλ(n)−k

∣∣
+

λ(n)∑
m=r+1

1

m (m+ 1)

m∑
k=1

k
∣∣∆kpλ(n)−k

∣∣
: = S1 + S2. (2.15)
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Let r denote the integral part of (λ(n)/2) . Using Abel’s transformation and
(2.14), we find that

S1 =

r∑
m=1

1

m (m+ 1)

m∑
k=1

k
∣∣∆kpλ(n)−k

∣∣
≤

r∑
k=1

∣∣∆kpλ(n)−k
∣∣ ≤ λ(n)−1∑

j=r−2
|∆pj | = O

(
Pλ(n)

λ(n)

)
. (2.16)

For S2, we can write the following:

S2 =

λ(n)∑
m=r+1

1

m (m+ 1)

m∑
k=1

k
∣∣∆pλ(n)−k∣∣

=

λ(n)∑
m=r+1

1

m (m+ 1)

r∑
k=1

k
∣∣∆pλ(n)−k∣∣

+

λ(n)∑
m=r+1

1

m (m+ 1)

m∑
k=r

k
∣∣∆pλ(n)−k∣∣

: = S21 + S22. (2.17)

If using again the condition (2.14) we get

S21 ≤
λ(n)∑
m=r

1

(m+ 1)

λ(n)−1∑
j=r−2

|∆pj | = O

(
Pλ(n)

λ(n)

)
,

S22 ≤
λ(n)∑
m=r

1

(m+ 1)

m∑
k=r

∣∣∆pλ(n)−k∣∣
= O

(
1

λ(n)

)
[|∆p0|+ 2 |∆p1|+ ...+ (r + 1) |∆pr+1|]

= O

(
Pλ(n)

λ(n)

)
. (2.18)

By (2.15)-(2.18) this implies that (2.13). Using (2.6), (2.13) and Lemma 1.1
we reach∥∥f −Nλ

n (f)
∥∥
L
p(·)
ω (T)

=
∥∥f − sλn(f) + sλn(f)−Nλ

n (f)
∥∥
L
p(·)
ω (T)
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≤
∥∥f − sλn(f)

∥∥
L
p(·)
ω (T) +

∥∥sλn(f)−Nλ
n (f)

∥∥
L
p(·)
ω (T)

≤ O((λ(n))−1).

The proof of Theorem 1.1 is completed.
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