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Abstract

This study is about the poloids that are obtained by the formation of a new
algebraic structure obtained by adding the condition (G4) obtained from the
solution of the equation XA = B and B|A to the definition of monoid. The
(G4) property is based on the factorial property of a noncommutative matrix.
The (G4) property is based on the factorial property of a noncommutative ma-
trix. Divisibility in matrices contributes to the existence of common factors
of a matrix. This necessitates the distinguishing feature in data in theoretical
and applied computer sciences. For example, it paves the way for detecting
the truth of lying in the syntax of the person who is lying.

1 Introduction

Here is a brief history of the monoid. The name “monoid” was first used in math-
ematics by Arthur Cayley for a surface of order n which has a multiple point of
order n− 1.

In the context of semigroups the name is due to Bourbaki.

It is also worth commenting on the related term monoid, meaning an associative
magma with identity. This term is a little more recent than semigroup, and seems to
originate with Bourbaki. Before this, Birkhoff (1934) was using the term groupoid
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for an associative magma with identity. More precisely Bourbaki (1942, p. 7):
A set endowed with the structure determined by an associative law every where
defined takes the name of monoid. Perhaps this was motivated by Eilenberg & Mac
Lanes upcoming A monoid is a category with one object? (They started categories
around 1942.) [2, 3].

The monoid, which briefly forms the algebraic structures of mathematics de-
fined by a binary operation, is the basis for the study of monoids, automata theory
(Krohn-Rhodes theory) and formal language theory (star height problem) in theo-
retical computer science.
The definition of poloid, defined by this binary operation, which includes a monoid,
was discovered during work on factoring a matrix. It is defined by us, considering
that it will make a wider contribution to theoretical computer science and formal
language theory. The (G4) condition added to a monoid definition preserves the
algebraic structure being applied in computer science, and also offers new unob-
servable paths and alternative options.

Let us start with the row co-divisor definition that I gave in the study in 2022.

Here F is a field and Mn(F ) =
{
[aij ]n

∣∣ aij ∈ F, n ∈ Z+
}

is the set of regular
matrices. The transpose of A ∈Mn(F ) is denoted by AT .

Let A and B be two regular square matrices of order n. The determinant of the
new matrix obtained by writing the ith row of the matrix A on the jth row of
the matrix B is called the co-divisor by row of the matrix A by the row on the
matrix B. It denoted by AB

ij
. Their number is n2. The matrix co-divisor by row is[(

AB
ij

)
ij

]
[9].

Example 1.1. Let A =

[
1 3

2 5

]
and B =

[
2 1

4 7

]
be regular matrices. Matrix of

co-divisors by row of matrix A on matrix B is

[(
AB
ij

)
ij

]
.
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AB
11

=

∣∣∣∣1 3
4 7

∣∣∣∣ = −5, AB12 =

∣∣∣∣2 1
1 3

∣∣∣∣ = 5. AB
21

=

∣∣∣∣2 5
4 7

∣∣∣∣ = −6, AB22 =

∣∣∣∣2 1
2 5

∣∣∣∣ = 8.[(
BA
ij

)
ij

]
=

[
−5 5
−6 8

]
Likewise, the matrix of rows co-dividing matrix B over matrix A is a matrix[(

BA
ij

)
ij

]
.

BA
11

=

∣∣∣∣2 1
2 5

∣∣∣∣ = 8, BA
12

=

∣∣∣∣1 3
2 1

∣∣∣∣ = −5. BA
21

=

∣∣∣∣4 7
2 5

∣∣∣∣ = 6, BA
22

∣∣∣∣1 3
4 7

∣∣∣∣ = −5.[(
AB
ij

)
IJ

]
=

[
8 −5
6 −5

]
.

For the two matrices satisfying the above conditions, the matrix division is also

given by A
B := 1

|B|

[(
Ai
Bj

)
ji

]
and at the same time, the solution of the equation

AX = B is X = B
A [4, 7, 6, 5, 8].

Volodymyr P. Shchedryk gave the following proved theorem in [12]. It is been
determined that this theorem has to do with column division. The proof is given in
my study called “ Different Approaches on the Matrix Division and Generalization
of Cramers Rule” in 2017 [5].

Lemma 1.1. Let A,B ∈Mn(F ). If B|A, then it is A|B.

Proof. For all A,B ∈Mn(F ), If B|A then,

B|A⇔ ∃T ∈Mn(F ) : A = BT

A = BT ⇔ A

(
In
T

)
= B ⇔ A|B.

Theorem 1.1. Let R be a commutative elementary divisor domain. If BX = A is
a solvable matrix equation over R, where A,B,X ∈Mn(F ) then a left g.c.d. and
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a left l.c.m. of solutions of this equation are also solutions of BX = A [10].

The solution of the equation BX = A is X = [xij ] =

[(
Ai
Bj

)
ji

|B|

]
in terms of column

co-divisors and X = A
B according to the division operation [5,8,9].

Lemma 1.2. Let A ∈Mn(F ).Then,(
In
A

)T

=
In
AT

.

Proof. Let a regular matrix A = [aij ]n be given.

In
AT

.AT = In ∧AT .
In
AT

= In

In
AT

=
(
AT
)−1

=
(
A−1

)T
=

(
In
A

)T

In
AT

=

(
I

A

)T

.

The following lemma is given which simply explains the relationship between the
row co-divisors matrix and the transpose.

Lemma 1.3. Let A,B ∈Mn(F ). Then,

1

|A|

[(
BA
ij

)
ij

]
=

(
BT

AT

)T

.

Proof. For all A,B ∈ Mn(F ) then BA
ij

= BT

AT ij. Because, the row co-divisors

of matrix B on matrix A are the same as the column co-divisors of matrix BT on
matrix AT . [(

BA
ij

)]
=

[(
BT

AT ij
)
ij

]
1

|A|

[(
BA
ij

)
ij

]
=

1

|AT |

[(
BT

AT ij
)]T

=

(
BT

AT

)T

.
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Proposition 1.1. Let A,B ∈ Mn(F ) . Then, the solution of the linear matrix
equation XA = B

X =

(
BT

AT

)T

.

Proof. The solution of the equation AX = B is X = B
A , for all A,B ∈ Mn(F ).

Then
XA = B ⇔ (XA)T = BT ⇔ ATXT = BT

XT =
1

|AT |

[(
BTAT

ij

)
ij

]
⇒ X =

1

|AT |

[(
BTAT

ij

)
ji

]T

X =
1

|AT |

[(
BTAT

ij

)
ij

]
=

(
BT

AT

)T

.

Due to the properties as given is [8], the following Proposition regarding the solu-
tion of this equation is obtained.

Proposition 1.2. Let A,B ∈ Mn(F ). If the factors of matrix A is BA1 and the
factors of matrix B is AB1 then

(i) The rational matrix A
B is equal to matrix A1.

(ii) The rational matrix A
B is equal to matrix In

B1
.

Proof. (i) The matrix A is written in terms of B as A = BA1.

A

B
=

BA1

B
= A1.

(ii) The matrix B is written in terms of A as B = AB1.

A

B
=

A

AB1
=

In
B1

.

Theorem 1.2. Let A,B,X ∈ Mn(F ) and X unknowns matrix. Then, in the
solution of the equation AX = B, there are regular matrices A = B2A3, B =
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B2B3, such as B2, A3 and B3, and the rational matrix B3
A3

is the solution of the
equation AX = B. This solution is equal to the rational matrix B

A .

Proof. Since the solution of Ax = B is the rational matrix B
A , where any factor of

matrix B is matrix B2

B = B2B3,

Likewise, matrix A in terms of this B2 matrix multiplier.
It can be written as

A = B2A3

Therefore
X =

B

A
=

B3

A3
.

Example 1.2. Let A =

[
1 2

2 5

]
and B =

[
2 1

4 7

]
be two matrices in M2(F ), the

solution of the equation AX = B is X = B
A . If B2 =

[
3 2

1 2

]
is selected

B = B2

[
−8

3 −19
3

10
3

20
3

]
︸ ︷︷ ︸

B3

Likewise,

A = B2

[
−4

3 −3
5
3 4

]
︸ ︷︷ ︸

A3

Then we obtain,

X =
B

A
=

B2B3

B2A3
= I3

B3

A3
=

B3

A3
=

[
2 16

0 −5

]

2 Matrix Poloids

Let’s start this section with the following definition.
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Definition 2.1. A group is a set G equipped with a binary operation · : G×G→ G

that associates an element a.b ∈ G to every pair of elements a, b ∈ G, and having
the following properties: is associative, has an identity element e ∈ G, and every
element in G is invertible (w.r.t. ). More explicitly, this means that the following
equations hold for all a, b, c ∈ G:

(G1) a.(b.c) = (a.b).c. (associativity);

(G2) a.e = e.a = a (identity);

(G3) For every a ∈ G, there is some a−1 ∈ G such that a.a−1 = a−1.a = e

(inverse)[11].

A set M together with an operation : ·M ×M → M and an element e satisfying
only Conditions (G1) and (G2) is called a monoid [1].

Noticed that if the conditions for G1 and G2 are met on the multiplication oper-
ation in matrices. So let’s briefly examine whether it is a monoid or not. The set
of Mn(F )-square matrices satisfies the conditions (G1) and (G2), However, the
following example has A = BA1, and A = A1C whereas B 6= C.

Example 2.1. We have matrix A =

[
1 2

3 4

]
written as follows:[

1 −1
2 1

]
︸ ︷︷ ︸

B

[
4
3 2
1
3 0

]
︸ ︷︷ ︸

A1

=

[
1 2

3 4

]
= A,

And it is also, [
4
3 2
1
3 0

]
︸ ︷︷ ︸

A1

[
9 12

−11
2 −7

]
︸ ︷︷ ︸

C

=

[
1 2

3 4

]
= A.

Here, neither B = C nor A1 = In nor A1 = A.

To further explore this expression, the following new definition is given.

Definition 2.2. A group is a set G equipped with a binary operation ∗ : G×G→ G

that associates an element a.b ∈ G to every pair of elements a, b ∈ G, and having
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the following properties: is associative, has an identity element e ∈ G , and every
element in G is invertible (w.r.t. ∗ ). More explicitly, this means that the following
equations hold for all a, b, c, d, e ∈ G:

(G1) a ∗ (b ∗ c) = (a ∗ b) ∗ c. (associativity)

(G2) a ∗ e = e ∗ a. (identity);

(G3) For every a ∈ G, there is some a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e.
(inverse)

(G4) For every a ∈ G, there some d, f ∈ G such that b ∗ f = f ∗ d = a with
b 6= d. (escort).

A set M together with an operation ∗ : G × G → G and an element e satisfying
only Conditions (G1), (G2), (G3) and (G4) is called a poloid. It is denoted by
(G, ∗).

Example 2.2. For example, the set Mn(R) of square matrices is poloid under
multiplication. But, the set of real numbers R is not poloid by multiplication. Let
us take the real number 2.

2 =
1

3
.6 ∧ 2 =

12

2
.
1

2

Here although

6 =
12

2

The condition (G4) is not satisfied. Therefore, every poloid is also a monoid. The
converse of the statement is not always true.

The set Mn(F ) is poloid when the multiplication operation in the matrices is con-
sidered.

Lemma 2.1. Let Mn(F ) be a poloid. For all A1 ∈Mn(F ) then,

(i) There are A,C ∈Mn(F ) regular matrices such that A1 =
A
C .

(ii) There are A,C ∈Mn(F ) regular matrices such that A1 =
1
|C|

[(
AC
ij

)
ij

]
.
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Proof. The proofs of (i) and (ii) are easily obtained from Lemma 2.

Theorem 2.1. Let Mn(F ) be a poloid. Then, there are matrices A,C ∈ Mn(F )

such that A1 =
1
|C|

[(
AC
ij

)
ij

]
=
(
AT

CT

)
, for all A1 ∈Mn(F ).

Proof. The proof of the theorem 5 is easily obtained from Lemma 2, Lemma 3 and
(G4).

Theorem 2.2. Let Mn(F ) be a poloid. Then, there are matrices B,C ∈ Mn(F )

such that satisfying the equation A = BAC, for all A ∈Mn(F ).

Proof. For all A ∈ Mn(F ), there are S,R,A1 ∈ Mn(F ) such that A = SA1 =

A1R from (G4)
C|S ⇒ S = CS1, where S1 ∈Mn(F ).

A = SA1 = CS1A1,

A|S1 ⇒ S1 = AS2, where S2 ∈Mn(F )

A = SA1 = CAS2A1, B := S2A1

A = SA1 = CAB.

C|A⇔ A1 = CC1, where C1 ∈Mn(F )

A = A1R = CC1R ∧A|C1 ⇔ C1 = AC2, where C2 ∈Mn(F )

A = A1R = CAC2R,B′ = C2R.

We want to prove that B = B′. Assume that B is not equal to B′. Then the fact
that the B matrix is different in the B′ matrix contradicts the (G4) condition.

Theorem 2.3. Let Mn(F ) be a poloid. Then, there are matrices K,L ∈ Mn(F )

such that satisfying the equations A = AKC = BLA, for all A ∈Mn(F ).

Proof. It is clear if A is the unit matrix and the zero matrix. Since (G4) is provided

A1 = AK ⇒ KC = In ⇒ A1C = AKC = A,
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and because of Lemma 4, A1 = LA⇒ L = 1
|A|

[(
A1A
ij

)
ij

]
[6].

BL = In ⇒ BA1 = BLA = A.

Example 2.3. We have the matrix A =

[
1 2

3 4

]
written as follows:

[
4
3 2
1
3 0

]
︸ ︷︷ ︸

A1

[
9 12
−11

2 −7

]
︸ ︷︷ ︸

C

=

[
1 2
3 4

]
= A

A1 =

[
1 2
3 4

] [
−7

3 −4
11
6 3

] [
4
3 2
1
3 0

]
K =

[
−7

3 −4
11
6 3

]
⇒
[
−7

3 −4
11
6 3

] [
9 12
−11

2 −7

]
= I2[

1 2
3 4

] [
−7

3 −4
11
6 3

] [
9 12
−11

2 −7

]
︸ ︷︷ ︸

C

=

[
1 2
3 4

]
= A

And it is also, [
1 −1
2 1

]
︸ ︷︷ ︸

B

[
4
3 2
1
3 0

]
︸ ︷︷ ︸

A1

[
1 2
3 4

]
= A

A1 = L

[
1 2
3 4

]
=

[
1 −1
2 1

]

L =
1

|A|

[(
A1A
ij

)
ij

]
=

[
1
3

1
3

−2
3

1
3

]
[
1 −1
2 1

] [
1
3

1
3

−2
3

1
3

]
= I2[

1 −1
2 1

]
︸ ︷︷ ︸

B

[
1
3

1
3

−2
3

1
3

] [
1 2
3 4

]
=

[
1 2
3 4

]
= A.



POLOIDS AND MATRICES 51

Conclusions and Discussions

It is obvious that the concept of “poloid”, which has just been defined as our knowl-
edge, will find many application areas. The existence of an algebraic structure that
manifests itself when any element is processed from the right and left is still an
open problem.
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