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Abstract

Let R be a noncommutative prime ring with involution of the sec-

ond kind and H(R) and S(R) be the set of symmetric and skew sym-

metric elements of R. The aim of the present paper is to show that

every strong commutativity preserving endomorphism on H(R) and

S(R) is strong commutativity preserving on R.

1. Introduction

Let R be a ring with centre Z(R). The symbol [x, y] = xy−yx denotes the
commutator of x, y ∈ R. A mapping φ : R → R preserves commutativity
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if [φ(x), φ(y)] = 0 whenever [x, y] = 0 for all x, y ∈ R. The commutativi-
ty preserving maps has been studied intensively in matrix theory, operator
theory and ring theory (see [5,11]). Following [4], let S be a subset of R, a
map φ : R → R is said to be strong commutativity preserving (SCP) on S if
[φ(x), φ(y)] = [x, y] for all x, y ∈ S . In the course of time several techniques
have been developed to investigate the behaviour of strong commutativity
preserving maps using restrictions on polynomials invoking derivations, gen-
eralized derivations etcetera.
In [3], Bell and Daif investigated the commutativity in rings admitting a
derivation which is strong commutativity preserving on a nonzero right ide-
al. More precisely, they proved that if a semiprime ring R admits a deriva-
tion d satisfying [d(x), d(y)] = [x, y] for all x, y in a right ideal I of R, then
I ⊆ Z(R). In particular, R is commutative if I = R. Later, Deng and
Ashraf [8] proved that if there exists a derivation d of a semiprime ring
R and a map f : I → R defined on a nonzero ideal I of R such that
[f(x), d(y)] = [x, y] for all x, y ∈ I, then R contains a nonzero central ideal.
Thus, R is commutative in the special case when I = R. Further Al and
Huang [2] showed that if R is a 2-torsion free semi prime ring and d is a
derivation of R satisfying [d(x), d(y)] + [x, y] = 0 for all x, y in a nonzero
ideal I of R, then R contains a nonzero central ideal. Many other results
in this direction can be found in [1, 5–7,9] and references therein.
Recall that a ring R is called ∗-ring or ring with involution if there is an
additive map ∗ : R → R satisfying (xy)∗ = y∗x∗ and (x∗)∗ = x for all
x, y ∈ R. Let H(R) = {x ∈ R|x∗ = x} and S(R) = {x ∈ R|x∗ = x}
denote the set of symmetric and skew symmetric elements of R. The invo-
lution is said to be of the first kind if Z(R) ⊆ H(R), otherwise it is said to
be of the second kind. In the later case, S(R)∩Z(R) 6= (0) (e.g. involution
in the case of ring of quaternions).

One can observe that every strong commutativity preserving endomor-
phism on R is strong commutativity preserving on the subsets H(R) and
S(R) of R but the converse is not true in general (see Example 3.1). Now
if we take the statement that an endomorphism θ is strong commutativity
preserving on the subsets H(R) and S(R) of R, does it follow that θ is
strong commutativity preserving on R. The answer is obviously affirmative
in case R is commutative or θ is the identity map. However some restric-
tions must certainly be imposed here for the answer is negative in case of
noncommutative rings, if θ is not the identity map. Thus we will assume
that R is a 2-torsion free noncommutative prime ring with involution of the
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second kind and θ 6= I, the identity map in order that the said question
makes sense.

2. Preliminary Results

In the present section, we present following facts which are very crucial for
developing the proofs of our main results.

Fact 2.1. If the involution is of the second kind, then S(R) ∩Z(R) 6= (0).

which indeed implies that H(R) ∩ Z(R) 6= (0).

Fact 2.2. Let R be a 2-torsion free prime ring with involution of the second

kind. Then every x ∈ R can uniquely be represented as 2x = h + k, where

h ∈ H(R) and k ∈ S(R).

Fact 2.3. Let R be a 2-torsion free prime ring with involution of the second

kind such that

(1) If [h, h
′
] = 0 for all h, h

′ ∈ H(R), then R is commutative.

(2) If [k, k
′
] = 0 for all k, k

′ ∈ S(R), then R is commutative.

Proof. (1) Suppose that [h, h
′
] = 0. Replacing h by kk0, with k ∈ S(R) and

k0 ∈ S(R) ∩ Z(R)/{0}, we obtain [k, h
′
]k0 = 0 for all h

′ ∈ H(R) and k ∈
S(R), which because of primeness yields that [k, h

′
] = 0 for all h

′ ∈ H(R)

and k ∈ S(R). Invoking Fact 2.2, we obtain 2[x, h
′
] = [2x, h

′
] = [h+k, h

′
] =

[h, h
′
] + [k, h

′
] = 0. Hence [x, h

′
] = 0 for all x ∈ R and h

′ ∈ H(R). Again

replacing h
′

by k
′
k0, where k

′ ∈ S(R), k0 ∈ S(R)∩Z(R)/{0}, we find that

[x, k
′
] = 0 for all x ∈ R and k

′ ∈ S(R). Again making use of Fact 2.2, we

finally arrive at [x, y] = 0 for all x, y ∈ R. Hence R is commutative.

(2) Assume that [k, k
′
] = 0. Replacing k by hk0, where h ∈ H(R) and k0 ∈

S(R)∩Z(R)/{0}, we obtain [h, k
′
]k0 = 0 for all h ∈ H(R) and k

′ ∈ S(R),

which because of primeness yields that [h, k
′
] = 0 for all h ∈ H(R) and

k
′ ∈ S(R). Invoking Fact 2.2, we obtain 2[x, k

′
] = [2x, k

′
] = [h + k, k

′
] =

[h, k
′
] + [k, k

′
] = 0. Hence [x, k

′
] = 0 for all x ∈ R and k

′ ∈ S(R). Again

replacing k
′

by h
′
k0, where h

′ ∈ H(R) and k0 ∈ S(R)∩Z(R)/{0}, we find

that [x, h
′
] = 0 for all x ∈ R and h

′ ∈ H(R). Again making use of Fact 2.2,

we finally arrive at [x, y] = 0 for all x, y ∈ R. Hence R is commutative.
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Fact 2.4. Let R be a 2-torsion free noncommutative prime ring with invo-

lution of the second kind.

(1) If a[h, h
′
]b = 0 for all h, h

′ ∈ H(R), a, b ∈ R, then a = 0 or b = 0.

(2)If a[k, k
′
]b = 0 for all k, k

′ ∈ S(R), a, b ∈ R, then a = 0 or b = 0.

Proof. (1) Suppose that a[h, h
′
]b = 0 for all h, h

′ ∈ H(R). Arguing on

similar lines as in the proof of Fact 2.3, we obtain a[x, y]b = 0 for all x, y ∈ R.

Substituting yb for y, we get ay[x, b]b = 0 so that a = 0 or b ∈ Z(R). In

the later case, our hypothesis leads to a = 0 or b = 0.

(2) Suppose that a[k, k
′
]b = 0 for all k, k

′ ∈ S(R). Again arguing on similar

lines as in the proof of Fact 2.3, we obtain a[x, y]b = 0 for all x, y ∈ R.

Hence a = 0 or b = 0 as shown above.

Fact 2.5. Let R be a 2-torsion free prime ring. If [[a, y], a] = 0 for all

y ∈ R, then a ∈ Z(R).

Proof. Let a ∈ R is such that [a, [a, y]] = 0 for all y ∈ R. First ap-

plying 2[a, y][a, x] = [a, [a, yx]] − y[a, [a, x]] − [a, [a, y]]x, we conclude that

[a, y][a, x] = 0 for all y, x ∈ R. Replacing x by xy in this identity and

using [a, xy] = [a, x]y + x[a, y], we get [a, y]R[a, y] = 0 for all y ∈ R. Thus

[a, y] = 0 by the primeness of R.

3. When θ is SCP on the subsets H(R) and S(R) of R

We begin this section with the following examples which show that a
strong commutativity preserving endomorphism on the subsets H(R) and
S(R) need not be strong commutativity preserving on R.

Example 3.1. Let R =

{(
a b

c d

)∣∣∣ a, b, c, d ∈ Q

}
. Of course, R with

matrix addition and matrix multiplication is a prime ring. Define ∗ : R −→

R such that

(
a b

c d

)∗

=

(
d b

c a

)
. Let S(R) be the set of skew sym-

metric elements of R. If θ : R → R is an inner automorphism of R

defined by θ(X) = PXP−1, where P =

(
2 0

0 1

)
. Clearly θ(K) = K

for all K ∈ S(R). Thus one can easily see that [θ(K), θ(K
′
)] = [K,K

′
]
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for all K,K
′ ∈ S(R). But [θ(X), θ(Y )] 6= [X,Y ] for all X,Y ∈ R. For

instance if X =

(
1 1

2 1

)
and Y =

(
1 2

1 1

)
, It is easy to verify that

[θ(X), θ(Y )] 6= [X,Y ].

Further if we define the involution ∗ : R −→ R such that

(
a b

c d

)∗

=(
d −b
−c a

)
. Then clearly θ(H) = H for all H ∈ H(R), symmetric el-

ements of R. Hence [θ(H), θ(H
′
)] = [H,H

′
] for all H,H

′ ∈ H(R). But

again [θ(X), θ(Y )] 6= [X,Y ] for all X,Y ∈ R.

Regarding the converse part, we prove the following result.

Theorem 3.1. Let R be a 2-torsion free noncommutative prime ring with

involution of the second kind. If θ is a nontrivial endomorphism of R, then

the following assertions are equivalent;

(1) [θ(h), θ(h
′
)] = [h, h

′
] for all h, h

′ ∈ H(R);

(2) [θ(k), θ(k
′
)] = [k, k

′
] for all k, k

′ ∈ S(R);

(3) [θ(x), θ(y)] = [x, y] for all x, y ∈ R.

Proof. It is obvious that (3) implies both (1) and (2). Hence we need to

prove that (1) =⇒ (3) and (2) =⇒ (3).

(1) =⇒ (3) Suppose that

[θ(h), θ(h
′
)]− [h, h

′
] = 0 (3.1)

for all h, h
′ ∈ H(R). Replacing h by hh0, where h0 ∈ H(R) ∩ Z(R), we

obtain

[θ(h), θ(h
′
)]θ(h0)− [h, h

′
]h0 = 0 (3.2)

for all h, h
′ ∈ H(R). Right multiplying (3.1) by θ(h0), we have

[θ(h), θ(h
′
)]θ(h0)− [h, h

′
]θ(h0) = 0. (3.3)



32 Nadeem Ahmad Dar, Shakir Ali and Vaishali Varshney

On comparing equations (3.2) and (3.3) one can easily see that

[h, h
′
](θ(h0)− h0) = 0 (3.4)

for all h, h
′ ∈ H(R). Since θ(h0) ∈ Z(θ(R)), the above equation implies

that

[h, h
′
]θ(R)(θ(h0)− h0) = 0 (3.5)

In particular

[h, h
′
][θ(u), θ(v)](θ(h0)− h0) = 0 (3.6)

for all h, h
′
, u, v ∈ H(R). Thus our hypothesis forces that

[h, h
′
][u, v](θ(h0)− h0) = 0 (3.7)

for all h, h
′
, u, v ∈ H(R). Applying Fact 2.4, we get either [h, h

′
] = 0 for all

h, h
′ ∈ H(R) or θ(h0) = h0 for all h0 ∈ H(R)∩Z(R). Now [h, h

′
] = 0 forces

R to be commutative in view of Fact 2.3, which leads us to contradiction.

So θ(h0) = h0 for all h0 ∈ H(R) ∩ Z(R); hence θ(k20) = k20 for all k0 ∈
S(R) ∩ Z(R), therefore (θ(k0) + k0)(θ(k0) − k0) = 0. This implies that

(θ(k0) + k0)θ(R)(θ(k0) − k0) = 0 for all k0 ∈ S(R) ∩ Z(R) . In particular

(θ(k0)+k0)[θ(u), θ(v)](θ(k0)−k0) = 0 for all u, v ∈ H(R). Making use of our

hypothesis, we obtain (θ(k0) + k0)[u, v](θ(k0)− k0) = 0 for all u, v ∈ H(R).

Thus invoking Fact 2.4, it follows that either θ(k0) = k0 or θ(k0) = −k0.
Using Brauer’s trick, we conclude that θ(k0) = k0 for all k0 ∈ S(R)∩Z(R)

or θ(k0) = −k0 for all k0 ∈ S(R) ∩ Z(R).

Suppose θ(k0) = −k0 for all k0 ∈ S(R)∩Z(R). Replacing h by kk0, where

k ∈ S(R) and k0 ∈ S(R) ∩ Z(R)/{0} in (3.1), we obtain ([θ(k), θ(h
′
)] +

[k, h
′
])k0 = 0. Thus primeness of R forces that

[θ(k), θ(h
′
)] + [k, h

′
] = 0 (3.8)

for all h
′ ∈ H(R) and k ∈ S(R). Now since for x ∈ R , x+x∗ ∈ H(R) and

x− x∗ ∈ S(R), one can easily derive from equation (3.8) that

[θ(x), θ(x∗)] + [x, x∗] = 0 (3.9)
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for all x ∈ R. Linearizing equation (3.9), one can find that

[θ(x), θ(y∗)] + [θ(y), θ(x∗)] + [x, y∗] + [y, x∗] = 0 (3.10)

for all x, y ∈ R. Substituting yk0 for y in (3.10), where k0 ∈ S(R) ∩
Z(R)/{0}, we have ([θ(x), θ(y∗)] − [θ(y), θ(x∗)] − [x, y∗] + [y, x∗])k0 = 0

which leads us to

[θ(x), θ(y∗)]− [θ(y), θ(x∗)]− [x, y∗] + [y, x∗] = 0 (3.11)

for all x, y ∈ R. Combining equation (3.10) with (3.11), we get [θ(x), θ(y∗)] =

[x∗, y], which further implies that θ[x, y] = [y, x]∗ for all x, y ∈ R. Replac-

ing y by yx, we obtain [y, x]∗θ(x) = x∗[y, x∗] for all x, y ∈ R. Taking

x = [r, s], where r, s ∈ R, one can verify that [s, r][y, [r, s]] = [y, [r, s]][r, s]

for all r, s, y ∈ R. Thus obtaining [[r, s], y]◦ [r, s] = 0 for all r, s, y ∈ R. This

further implies that [[r, s]2, y] = 0 for all r, s, y ∈ R and thus [r, s]2 ∈ Z(R)

for all r, s ∈ R. On linearizing one can see that

[r, s][r, t] + [r, t][r, s] ∈ Z(R) (3.12)

for all r, s, t ∈ R. If dr(x) = [r, x], then dr is an inner derivation and dr(s) ◦
dr(t) ∈ Z(R). Thus in view of [ [10], Corollary 3.6], either R is commutative

or dr = 0, which again implies commutativity of R, a contradiction.

Therefore we have θ(k0) = k0 for all k0 ∈ S(R) ∩ Z(R). Substituting kk0,

where k0 ∈ S(R)∩Z(R) for h in equation (3.1), we get [θ(k), θ(h
′
)]θ(k0)−

[k, h
′
]k0 = 0. This gives ([θ(k), θ(h

′
)] − [k, h

′
])k0 = 0. Using the primeness

of R, we obtain

[θ(k), θ(h
′
)]− [k, h

′
] = 0 (3.13)

for all h
′ ∈ H(R) and k ∈ S(R). Invoking Fact 2.2 and using equations

(3.1) and (3.13), we find that

2([θ(x), θ(h
′
)]− [x, h

′
]) = [θ(2x), θ(h

′
)]− [2x, h

′
] (3.14)

= [θ(h+ k), θ(h
′
)]− [h+ k, h

′
]

= [θ(h), θ(h
′
)] + [θ(k), θ(h

′
)]− [h, h

′
]− [k, h

′
]

= 0.
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Using 2-torsion freeness of R, we have

[θ(x), θ(h
′
)]− [x, h

′
] = 0 (3.15)

for all x ∈ R and h
′ ∈ H(R). Again replacing h

′
by k

′
k0, where k

′ ∈ S(R)

and k0 ∈ S(R) ∩ Z(R)/{0}, we get

[θ(x), θ(k
′
)]− [x, k

′
] = 0 (3.16)

for all x ∈ R and k
′ ∈ S(R). Thus invoking Fact 2.2 and using (3.15) and

(3.16), one can easily derive that [θ(x), θ(y)] = [x, y] for all x, y ∈ R, as

desired.

(2) =⇒ (3) Assume that

[θ(k), θ(k
′
)]− [k, k

′
] = 0 (3.17)

for all k, k
′ ∈ S(R). Replacing k by kh0, where h0 ∈ H(R) ∩ Z(R) and

proceeding on similar lines as in the first case, one can easily find that

[k, k
′
](θ(h0) − h0) = 0 for all k, k

′ ∈ S(R) and h0 ∈ H(R) ∩ Z(R). Since

θ(h0) ∈ Z(θ(R)), the above equation implies that [k, k
′
]θ(R)(θ(h0)− h0) =

0. In particular [k, k
′
][θ(u), θ(v)](θ(h0) − h0) = 0 for all k, k

′
, u, v ∈ S(R).

Thus our hypothesis forces that

[k, k
′
][u, v](θ(h0)− h0) = 0 (3.18)

for all k, k
′
, u, v ∈ S(R). Applying Fact 2.4, we get either [k, k

′
] = 0 for

all k, k
′ ∈ S(R) or θ(h0) = h0 for all h0 ∈ H(R) ∩ Z(R). Now [k, k

′
] = 0

implies R is commutative in view of Fact 2.3, a contradiction.

So θ(h0) = h0 for all h0 ∈ H(R) ∩ Z(R). This gives θ(k20) = k20 for all

k0 ∈ S(R) ∩ Z(R), therefore (θ(k0) + k0)(θ(k0) − k0) = 0. This implies

that (θ(k0) + k0)θ(R)(θ(k0) − k0) = 0 for all k0 ∈ S(R) ∩ Z(R) . In

particular (θ(k0)+k0)[θ(u), θ(v)](θ(k0)−k0) = 0 for all u, v ∈ S(R). Making

use of our hypothesis, we obtain (θ(k0) + k0)[u, v](θ(k0) − k0) = 0 for all

u, v ∈ S(R). Thus invoking Fact 2.4 again, it follows that either θ(k0) = k0
or θ(k0) = −k0. Using Brauer’s trick, we conclude that θ(k0) = k0 for all

k0 ∈ S(R) ∩ Z(R) or θ(k0) = −k0 for all k0 ∈ S(R) ∩ Z(R).
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If θ(k0) = −k0 for all k0 ∈ S(R) ∩ Z(R). Replacing k by hk0, where

h ∈ H(R) and k0 ∈ S(R) ∩ Z(R)/{0} in (3.17), we obtain

[θ(h), θ(k
′
)] + [h, k

′
] = 0 (3.19)

for all h ∈ H(R) and k
′ ∈ S(R). For x ∈ R , x + x∗ ∈ H(R) and

x− x∗ ∈ S(R), therefore one can easily derive from equation (3.19) that

[θ(x), θ(x∗)] + [x, x∗] = 0 (3.20)

for all x ∈ R which is same as equation (3.9), thus on similar lines one can

get R is commutative, a contradiction.

Therefore, we have θ(k0) = k0 for all k0 ∈ S(R) ∩ Z(R). Replacing k by

hk0, where h ∈ H(R) and k0 ∈ S(R) ∩Z(R) in equation (3.17), we obtain

[θ(h), θ(k
′
)]− [h, k

′
] = 0 (3.21)

for all h ∈ H(R) and k
′ ∈ S(R). Invoking Fact 2.2 and making use of the

equations (3.17) and (3.21), we find that

[θ(x), θ(k
′
)]− [x, k

′
] = 0 (3.22)

for all x ∈ R and k
′ ∈ S(R). Again replacing k

′
by h

′
k0, where h

′ ∈ H(R)

and k0 ∈ S(R) ∩ Z(R)/{0} and arguing as above, one can find that

[θ(x), θ(h
′
)]− [x, h

′
] = 0 (3.23)

for all x ∈ R and h
′ ∈ H(R). Thus in view of Fact 2.2 and equations (3.22)

and (3.23), one can obtain [θ(x), θ(y)] = [x, y] for all x, y ∈ R. Thus the

proof is complete.

In view of the the above result and Theorem 1 [6] ,we have the following
corollary:

Corollary 3.1. Let R be a 2-torsion free noncommutative prime ring with

involution of the second kind. Let S be the set of symmetric elements of R.

Suppose θ : S → R is a nontrivial endomorphism such that [θ(x), θ(y)] =

[x, y] for all x, y ∈ S, then θ(x) = λx+ µ(x) where λ ∈ C , λ2 = 1 and µ is

an additive map of R into C .
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4. When θ is SSCP on the subsets H(R) and S(R) of R

In [2], Ali and Huang established that if R is a 2-torsion free semiprime
ring and d is a derivation of R such that [d(x), d(y)] + [x, y] = 0 for all x, y
in a nonzero ideal I of R, then R contains a nonzero central ideal. To be
more general in the class of such mappings. We call a mapping f : R → R
strong skew-commutativity preserving (SSCP) if [f(x), f(y)] = −[x, y] for
all x, y ∈ R. Here again one can observe that every SSCP endomorphism
θ on R is SSCP on the subsets H(R) and S(R) of R. But the converse is
not true in general.

Example 4.1. Let R be the ring of real quaternions. If we define ∗ : R −→
R by (α+βi+γj+δk)∗ = α−βi+γj+δk. Let S(R) be the set of skew sym-

metric elements of R. Clearly one can see that all skew symmetric elements

commute with one another. Therefore if θ is any non trivial endomorphism

of R, the condition [θ(k), θ(k
′
)] = −[k, k

′
] for all k, k

′ ∈ S(R) holds. How-

ever [θ(x), θ(y)] 6= −[x, y] for all x, y ∈ R, because R is non commutative.

However if ∗ is the usual conjugation (α+βi+γj+δk)∗ = α−βi−γj−δk,

all symmetric elements are central and hence the property [θ(h), θ(h
′
)] =

−[h, h
′
] for all symmetric elements h, h

′
holds. However [θ(x), θ(y)] 6= −[x, y]

for all x, y ∈ R,

Again one can observe that if R is commutative, then the converse is also
true. Moreover, if θ = I, the identity map, then in our case [θ(h), θ(h

′
)] =

−[h, h
′
] implies that [h, h

′
] = 0 for all h, h

′ ∈ H(R). That is, R is commuta-
tive in view of Lemma 2.3. Hence we will again assume R is a 2-torsion free
noncommutative prime ring with involution of the second kind and θ 6= I,
the identity map.

Theorem 4.1. Let R be a 2-torsion free noncommutative prime ring with

involution of the second kind. If θ is a nontrivial endomorphism of R, then

the following assertions are equivalent;

(1) [θ(h), θ(h
′
)] = −[h, h

′
] for all h, h

′ ∈ H(R);

(2) [θ(k), θ(k
′
)] = −[k, k

′
] for all k, k

′ ∈ S(R);

(3) [θ(x), θ(y)] = −[x, y] for all x, y ∈ R.

Proof. Clearly (3) implies both (1) and (2). Hence we need to prove that

(1) =⇒ (3) and (2) =⇒ (3).
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(1) =⇒ (3) Suppose that

[θ(h), θ(h
′
)] + [h, h

′
] = 0 (4.1)

for all h, h
′ ∈ H(R). Replacing h by hh0, where h0 ∈ H(R) ∩ Z(R) and

reasoning as in the case of Theorem 3.1, we obtain θ(h0) = h0 for all h0 ∈
H(R)∩Z(R). This further implies that θ(k0) = k0 for all k0 ∈ S(R)∩Z(R)

or θ(k0) = −k0 for all k0 ∈ S(R) ∩ Z(R). Suppose that θ(k0) = −k0
for all k0 ∈ S(R) ∩ Z(R). Replacing h by kk0, where k ∈ S(R) and

k0 ∈ S(R) ∩ Z(R)/{0} in (4.1), we obtain

[θ(k), θ(h
′
)]− [k, h

′
] = 0 (4.2)

for all h
′ ∈ H(R) and k ∈ S(R). Now for x ∈ R, x + x∗ ∈ H(R) and

x− x∗ ∈ S(R), therefore equation (4.2) leads us to

[θ(x), θ(x∗)]− [x, x∗] = 0 (4.3)

for all x ∈ R. Linearizing (4.3), we find that

[θ(x), θ(y∗)] + [θ(y), θ(x∗)]− [x, y∗]− [y, x∗] = 0 (4.4)

for all x, y ∈ R. Substituting yk0 for y in (4.4), where k0 ∈ S(R)∩Z(R)/{0}
and using θ(k0) = −k0, we have ([θ(x), θ(y∗)] − [θ(y), θ(x∗)] + [x, y∗] −
[y, x∗])k0 = 0 for all x, y ∈ R which proves that

[θ(x), θ(y∗)]− [θ(y), θ(x∗)] + [x, y∗]− [y, x∗] = 0 (4.5)

for all x, y ∈ R. Comparing equations (4.4) and (4.5), it follows that

[θ(x), θ(y)] − [y∗, x∗] = 0. Hence θ[x, y] = [x, y]∗ for all x, y ∈ R. Re-

placing y by yx in the last expression and using it, one can find that

[x, y]∗θ(x) = x∗[x, y]∗ for all x, y ∈ R. Taking x = [r, s], r, s ∈ R,

we get [r, s][[r, s], y] = [[r, s], y][r, s] for all r, s, y ∈ R. This implies that

[[[r, s], y], [r, s]] = 0 for all r, s, y ∈ R. Applying Fact 2.5, we get [r, s] ∈
Z(R) for all r, s ∈ R, therefore R is commutative, a contradiction.

So θ(k0) = k0 for all k0 ∈ S(R) ∩ Z(R). Following the similar steps as in

the proof Theorem 3.1, One finally obtains

[θ(x), θ(y)] = −[x, y] (4.6)
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for all x, y ∈ R, as desired.

(2) =⇒ (3) Suppose that

[θ(k), θ(k
′
)] + [k, k

′
] = 0 (4.7)

for all k, k
′ ∈ S(R). Taking k = kh0, where h0 ∈ H(R)∩Z(R) and arguing

as in Theorem 3.1, one obtains θ(h0) = h0 for all h0 ∈ H(R) ∩Z(R), since

R is noncommutative.

Again following the proof of Theorem 3.1, one can easily show that θ(k0) =

k0 for all k0 ∈ S(R) ∩ Z(R) or θ(k0) = −k0 for all k0 ∈ S(R) ∩ Z(R).

Assume that θ(k0) = −k0 for all k0 ∈ S(R) ∩ Z(R). Replacing k by hk0,

where h ∈ H(R) and k0 ∈ S(R) ∩ Z(R)/{0} in (4.7), we obtain

[θ(h), θ(k
′
)]− [h, k] = 0 (4.8)

for all h ∈ H(R) and k
′ ∈ S(R). Again taking h = x+ x

′
and k

′
= x− x′ ,

where x ∈ R, we get

[θ(x), θ(x∗)]− [x, x∗] = 0 (4.9)

for all x ∈ R. which is same as equation (4.3). Thus arguing on similar

lines, one obtain R is commutative, a contradiction. Now assume θ(k0) = k0
for all k0 ∈ S(R)∩Z(R). Thus following the same steps as in Theorem 3.1,

one can easily derive that

[θ(x), θ(y)] = −[x, y] (4.10)

for all x, y ∈ R, thereby completing the proof of the theorem.

We end our paper by providing an example which shows that the said
question does not hold in case θ is simply an additive map. Hence we
conclude that for the said question to hold, θ needs to be of some special
type such as endomorphism in our case.

Example 4.2. Let R =

{(
a b

c d

)∣∣∣ a, b, c, d ∈ C

}
. Define ∗ : R −→ R

such that

(
a b

c d

)∗

=

(
d̄ b̄

c̄ ā

)
. Clearly ∗ is of the second kind. Let
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H(R) be the set of symmetric elements of R. If θ : R → R is an additive

map of R defined by θ

(
a b

c d

)
=

(
a b̄

c d

)
. Then one can see that

θ(H) = H for all H ∈ H(R) and hence the condition [θ(H), θ(H
′
)] =

[H,H
′
] holds for all H,H

′ ∈ H(R). However [θ(X), θ(Y )] 6= [X,Y ] for all

X,Y ∈ R.
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