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Abstract

In this paper, we prove some common fixed point theorems in the framework
of partial metric spaces by using auxiliary function and give some conse-
quences of the main result. Also we give some examples in support of the
result. The presented results in this paper extend and generalize several re-
sults from the existing literature.

1 Introduction and Preliminaries

Metric fixed point theory has been the centre of extensive research for several re-
searchers. Fixed point theory has become an important tool for solving many non-
linear problems related to science and engineering because of its applications. The
Banach contraction mappings principle is the opening and vital result in the direc-
tion of fixed point theory. In this theory, contraction is one of the main tools to
prove the existence and uniqueness of a fixed point. Banach contraction principle
which gives an answer to the existence and uniqueness of a solution of an operator
equation T x = x (where T is a self mapping defined on a nonempty set X ), is the
most widely used fixed point theorem in all of analysis. In a metric space setting it
can be briefly stated as follows.
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Theorem 1.1. ([7]) Let (X , d) be a complete metric space and S : X → X be a
map satisfying

d(S(p),S(q)) ≤ md(p, q), for all p, q ∈ X , (1.1)

where 0 < m < 1 is a constant. Then
(1) S has a unique fixed point z in X ;

(2) The Picard iteration {yn}∞n=0 defined by

yn+1 = Syn, n = 0, 1, 2, . . . (1.2)

converges to z, for any y0 ∈ X .

Remark 1.1. (i) A self-map satisfying (1) and (2) is said to be a Picard operator
(see, [28, 29]).

(ii) Inequality (1.1) also implies the continuity of S .

In literature, there are many generalizations of Banach contraction principle in met-
ric and generalized metric spaces. These generalizations are made either by using
different contractive conditions or by imposing some additional condition on the
ambient spaces. On the other hand, a number of generalizations of metric spaces
have been done and one of such generalization is partial metric space introduced
in 1992 by Matthews [22, 23]. It is widely recognized that partial metric spaces
play an important role in constructing models in the theory of computation. In par-
tial metric spaces the distance of a point in the self may not be zero. Introducing
partial metric space, Matthews proved the partial metric version of Banach fixed
point theorem ([7]). Then, many authors gave some generalizations of the result
of Matthews and proved some fixed point theorems in this space (see, i.e., [1], [2],
[3], [16], [17], [18], [19], [25], [27], [30], [36]-[39], [40] and many others).

Recently, many authors proved fixed point and common fixed point results via
contractive type conditions in various ambient spaces (see, e.g., [4, 5, 8, 9, 10, 11,
14, 15, 19, 20, 26, 31, 32, 33, 34, 35] and many others).

The purpose of this work is to prove some common fixed point theorems for
contractive type condition involving auxiliary function in the setting of partial met-
ric spaces.

Now, we recall some basic concepts on partial metric spaces defined as follows.
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Definition 1.1. ([23]) Let X be a nonempty set and p : X × X → R+ be a self
mapping of X such that for all u, v, w ∈ X the followings are satisfied:

(P1) u = v ⇔ p(u, u) = p(u, v) = p(v, v),
(P2) p(u, u) ≤ p(u, v),
(P3) p(u, v) = p(v, u),
(P4) p(u, v) ≤ p(u,w) + p(w, v)− p(w,w).
Then p is called partial metric onX and the pair (X , p) is called partial metric

space (in short PMS).

Remark 1.2. It is clear that if p(u, v) = 0, then u = v. But, on the contrary
p(u, u) need not be zero.

Example 1.1. ([6]) Let X = R+ and p : X × X → R+ be given by p(u, v) =

max{u, v} for all u, v ∈ R+. Then (R+, p) is a partial metric space.

Example 1.2. ([6]) Let I denote the set of all intervals [a, b] for any real numbers
a ≤ b. Let p : I × I → [0,∞) be a function such that

p
(

[a, b], [c, d]
)

= max{b, d} −min{a, c}.

Then (I, p) is a partial metric space.

Example 1.3. ([12]) Let X = R and p : X × X → R+ be given by p(u, v) =

emax{u,v} for all u, v ∈ R. Then (X, p) is a partial metric space.

Various applications of this space has been extensively investigated by many
authors (see, Künzi [21] and Valero [40] for details).

Remark 1.3. ([17]) Let (X , p) be a partial metric space.

(1) The function dp : X ×X → R+ defined as dp(u, v) = 2p(u, v)−p(u, u)−
p(v, v) is a metric on X and (X , dp) is a metric space.

(2) The function ds : X × X → R+ defined as ds(u, v) = max{p(u, v) −
p(u, u), p(u, v)− p(v, v)} is a metric on X and (X , ds) is a metric space.

Note also that each partial metric p on X generates a T0 topology τp on X ,
whose base is a family of open p-balls {Bp(u, ε) : u ∈ X , ε > 0} where,

Bp(u, ε) = {v ∈ X : p(u, v) < p(u, u) + ε},
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for all u ∈ X and ε > 0. Similarly, closed p-ball is defined as

Bp[u, ε] = {v ∈ X : p(u, v) ≤ p(u, u) + ε},

for all u ∈ X and ε > 0.
On a partial metric space the notions of convergence, the Cauchy sequence,

completeness and continuity are defined as follows [22].

Definition 1.2. ([22]) Let (X , p) be a partial metric space. Then

(1) a sequence {rn} in (X , p) is said to be convergent to a point r ∈ X if and
only if p(r, r) = limn→∞ p(rn, r);

(2) a sequence {rn} is called a Cauchy sequence if limm,n→∞ p(rm, rn) exists
and finite;

(3) (X , p) is said to be complete if every Cauchy sequence {rn} inX converges
to a point r ∈ X with respect to τp. Furthermore,

lim
m,n→∞

p(rm, rn) = lim
n→∞

p(rn, r) = p(r, r).

(4) A mapping f : X → X is said to be continuous at r0 ∈ X if for every
ε > 0, there exists δ > 0 such that f

(
Bp(r0, δ)

)
⊂ Bp

(
f(r0), ε

)
.

Definition 1.3. ([24]) Let (X , p) be a partial metric space. Then

(1) a sequence {rn} in (X , p) is called 0-Cauchy if limm,n→∞ p(rm, rn) = 0;

(2) (X , p) is said to be 0-complete if every 0-Cauchy sequence {rn} in X
converges to a point r ∈ X , such that p(r, r) = 0.

Lemma 1.1. ([22, 23]) Let (X , p) be a partial metric space. Then

(1) a sequence {rn} in (X , p) is a Cauchy sequence if and only if it is a Cauchy
sequence in the metric space (X , dp),



Some common fixed point theorems on partial metric spaces · · · 5

(2) (X , p) is complete if and only if the metric space (X , dp) is complete,

(3) a subset E of a partial metric space (X , p) is closed if a sequence {rn} in
E such that {rn} converges to some r ∈ X , then r ∈ E.

Lemma 1.2. ([2]) Assume that rn → r as n→∞ in a partial metric space (X , p)
such that p(r, r) = 0. Then limn→∞ p(rn, u) = p(r, u) for every u ∈ X .

Lemma 1.3. (see [19]) Let (X , p) be a partial metric space.
(i) If p(u, v) = 0, then u = v;
(ii) If u 6= v, then p(u, v) > 0.

2 Main Results

In this section, we shall prove some unique common fixed point theorems in the
framework of partial metric spaces by using auxiliary function.

We shall denote Ψ the set of functions ψ : [0,∞) → [0,∞) satisfying the
following conditions:

(Ψ1) ψ is continuous; (Ψ2) ψ(t) < t for all t > 0.
Obviously, if ψ ∈ Ψ, then ψ(0) = 0 and ψ(t) ≤ t for all t ≥ 0.

Theorem 2.1. LetR1 andR2 be two self-maps on a complete partial metric space
(X , p) satisfying the condition:

p(R1y,R2z) ≤ α1 Λp1(y, z) + α2 Λp2(y, z), (2.1)

for all y, z ∈ X , where

Λp1(y, z) = ψ
(
p(y,R1y)

1 + p(z,R2z)

1 + p(y, z)

)
, (2.2)

and

Λp2(y, z) = max
{
ψ(p(y, z)), ψ(p(y,R1y)), ψ

(1

2
[p(z,R1y) + p(y,R2z)]

)
,

ψ
(p(y,R1y)[1 + p(z,R2z)]

1 + p(y, z)

)}
, (2.3)
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for all ψ ∈ Ψ, where α1, α2 ∈ [0, 1) with α1 + α2 < 1. Then R1 and R2 have a
unique common fixed point in X .

Proof. For each u0 ∈ X . Let u2n+1 = R1u2n and u2n+2 = R2u2n+1 for n =

0, 1, 2, . . . , we prove that {un} is a Cauchy sequence in (X , p). It follows from
(2.1) for y = u2n and z = u2n−1 that

p(u2n+1, u2n) = p(R1u2n,R2u2n−1)

≤ α1 Λp1(u2n, u2n−1) + α2 Λp2(u2n, u2n−1), (2.4)

where

Λp1(u2n, u2n−1) = ψ
(
p(u2n,R1u2n)

1 + p(u2n−1,R2u2n−1)

1 + p(u2n, u2n−1)

)
= ψ

(
p(u2n, u2n+1)

1 + p(u2n−1, u2n)

1 + p(u2n, u2n−1)

)
= ψ

(
p(u2n+1, u2n)

1 + p(u2n−1, u2n)

1 + p(u2n−1, u2n)

)
(by (P3))

= ψ
(
p(u2n+1, u2n)

)
, (2.5)

and

Λp2(u2n, u2n−1) = max
{
ψ(p(u2n, u2n−1)), ψ(p(u2n,R1u2n)),

ψ
(1

2
[p(u2n−1,R1u2n) + p(u2n,R2u2n−1)]

)
,

ψ
(p(u2n,R1u2n)[1 + p(u2n−1,R2u2n−1)]

1 + p(u2n, u2n−1)

)}
= max

{
ψ(p(u2n, u2n−1)), ψ(p(u2n, u2n+1)),

(2.6)
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ψ
(1

2
[p(u2n−1, u2n+1) + p(u2n, u2n)]

)
,

(2.7)

ψ
(p(u2n, u2n+1)[1 + p(u2n−1, u2n)]

1 + p(u2n, u2n−1)

)}
≤ max

{
ψ(p(u2n−1, u2n)), ψ(p(u2n+1, u2n)),

ψ
(1

2
[p(u2n−1, u2n) + p(u2n+1, u2n)]

)
,

ψ
(p(u2n+1, u2n)[1 + p(u2n−1, u2n)]

1 + p(u2n−1, u2n)

)}
(by (P3) and (P4))

(2.8)

= max
{
ψ(p(u2n−1, u2n)), ψ(p(u2n+1, u2n)),

ψ
(1

2
[p(u2n−1, u2n) + p(u2n+1, u2n)]

)}
. (2.9)

The following cases arise.

Case (i) If Λp2(u2n, u2n−1) = ψ(p(u2n+1, u2n)), then from (2.4), (2.5), (2.9)
and using the property of ψ that

p(u2n+1, u2n) ≤ α1 ψ
(
p(u2n+1, u2n)

)
+ α2 ψ

(
p(u2n+1, u2n)

)
= (α1 + α2)ψ

(
p(u2n+1, u2n)

)
< (α1 + α2)p(u2n+1, u2n)

< p(u2n+1, u2n), (since, (α1 + α2) < 1) (2.10)

a contradiction.

Case (ii) If Λp2(u2n, u2n−1) = ψ(p(u2n−1, u2n)), then from (2.4), (2.5), (2.9)
and using the property of ψ that

p(u2n+1, u2n) ≤ α1 ψ
(
p(u2n+1, u2n)

)
+ α2 ψ

(
p(u2n−1, u2n)

)
≤ α1 p(u2n+1, u2n) + α2 p(u2n−1, u2n),
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or

(1− α1)p(u2n+1, u2n) ≤ α2 p(u2n−1, u2n),

or

p(u2n+1, u2n) ≤
( α2

1− α1

)
p(u2n−1, u2n). (2.11)

Case (iii) If Λp2(u2n, u2n−1) = ψ
(
1
2 [p(u2n−1, u2n) + p(u2n+1, u2n)]

)
, then

from (2.4), (2.5), (2.9) and using the property of ψ that

p(u2n+1, u2n) ≤ α1 ψ
(
p(u2n+1, u2n)

)
+ α2 ψ

(1

2
[p(u2n−1, u2n) + p(u2n+1, u2n)]

)
≤ α1 p(u2n+1, u2n) +

α2

2
[p(u2n−1, u2n) + p(u2n+1, u2n)],

or

2p(u2n+1, u2n) ≤ 2α1 p(u2n+1, u2n) + α2 p(u2n−1, u2n) + α2 p(u2n+1, u2n)

= (2α1 + α2) p(u2n+1, u2n) + α2 p(u2n−1, u2n),

or

(2− 2α1 − α2)p(u2n+1, u2n) ≤ α2 p(u2n−1, u2n),

or

p(u2n+1, u2n) ≤
( α2

2− 2α1 − α2

)
p(u2n−1, u2n). (2.12)

Put θ = max
{

α2
1−α1

, α2
2−2α1−α2

}
< 1, since (α1 +α2) < 1. Then from (2.12), we

obtain

p(u2n+1, u2n) ≤ θ p(u2n−1, u2n), (2.13)

which implies

p(un+1, un) ≤ θ p(un, un−1). (2.14)
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Let Dn = p(un+1, un) and Dn−1 = p(un, un−1). Then from (2.14), it can be
concluded that

Dn ≤ θDn−1 ≤ θ2Dn−2 ≤ · · · ≤ θnD0. (2.15)

Therefore, since 0 ≤ θ < 1, taking the limit as n→∞, we have

lim
n→∞

p(un+1, un) = 0. (2.16)

Now, we shall show that {un} is a Cauchy sequence in (X , p).

Thus for any n,m ∈ N with m > n, then we have

p(un, um) ≤ p(un, un+1) + p(un+1, un+2) + · · ·+ p(un+m−1, um)

− p(un+1, un+1)− p(un+2, un+2)− · · · − p(un+m−1, un+m−1)

≤ θnp(u0, u1) + θn+1p(u0, u1) + · · ·+ θn+m−1p(u0, u1)

= θn[p(u0, u1) + θp(u0, u1) + · · ·+ θm−1p(u0, u1)]

= θn[1 + θ + · · ·+ θm−1]D0

≤ θn
(1− θm−1

1− θ

)
D0.

Taking the limit as n,m → ∞ in the above inequality, we get p(un, um) → 0,
since 0 < θ < 1, hence {un} is a Cauchy sequence in (X , p). Hence, by Lemma
1.1, this sequence will also Cauchy in (X , dp). In addition, since (X , p) is com-
plete, (X , dp) is also complete. Thus there exists v ∈ X such that un → v as
n→∞. Moreover, by Lemma 1.1,

p(v, v) = lim
n→∞

p(v, un) = lim
n,m→∞

p(un, um) = 0, (2.17)
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implies

lim
n→∞

dp(v, un) = 0. (2.18)

Now, we shall show that v is a common fixed point ofR1 andR2. Notice that due
to (2.17), we have p(v, v) = 0. By (2.1) with y = u2n and z = v and using (2.17),
we have

p(u2n+1,R2v) = p(R1u2n,R2v)

≤ α1 Λp1(u2n, v) + α2 Λp2(u2n, v), (2.19)

where

Λp1(u2n, v) = ψ
(
p(u2n,R1u2n)

1 + p(v,R2v)

1 + p(u2n, v)

)
= ψ

(
p(u2n, u2n+1)

1 + p(v,R2v)

1 + p(u2n, v)

)
. (2.20)

Passing to limit as n→∞ and using the properties of ψ and (2.17), we obtain

Λp1(u2n, v)→ 0, (2.21)

and

Λp2(u2n, v) = max
{
ψ(p(u2n, v)), ψ(p(u2n,R1u2n)),

ψ
(1

2
[p(z,R1u2n) + p(u2n,R2v)]

)
,

ψ
(p(u2n,R1u2n)[1 + p(v,R2v)]

1 + p(u2n, v)

)}
= max

{
ψ(p(u2n, v)), ψ(p(u2n, u2n+1)),

ψ
(1

2
[p(v, u2n+1) + p(u2n,R2v)]

)
,

ψ
(p(u2n, u2n+1)[1 + p(v,R2v)]

1 + p(u2n, v)

)}
. (2.22)

Passing to limit as n → ∞ and using the properties of ψ and (2.17) in equation
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(2.22), we obtain

Λp2(u2n, v) = max
{

0, 0, ψ
(p(v,R2v)

2

)
, 0
}

= ψ
(p(v,R2v)

2

)
<
p(v,R2v)

2
< p(v,R2v). (2.23)

Now from equations (2.19), (2.21) and (2.23), we obtain

p(u2n+1,R2v) ≤ α1 .0 + α2 p(v,R2v)

= α2 p(v,R2v). (2.24)

Passing to limit as n→∞, we obtain

p(v,R2v) ≤ α2 p(v,R2v)

< p(v,R2v), since α2 < 1, (2.25)

which is a contradiction. Hence p(v,R2v) = 0, that is, v = R2v. This shows that
v is a fixed point of R2. By similar fashion, we can show that v = R1v. Thus v is
a common fixed point ofR1 andR2.
Now, we shall show the uniqueness of common fixed point. Assume that v′ is
another common fixed point of R1 and R2 such that R1v

′ = v′ = R2v
′ with

v 6= v′. Using (2.1) for y = v, z = v′ and using the properties of ψ and (2.17), we
have

p(v, v′) = p(R1v,R2v
′)

≤ α1 Λp1(v, v
′) + α2 Λp2(v, v

′), (2.26)

where

Λp1(v, v
′) = ψ

(
p(v,R1v)

1 + p(v′,R2v
′)

1 + p(v, v′)

)
= ψ

(
p(v, v)

1 + p(v′, v′)

1 + p(v, v′)

)
= 0, (2.27)

and
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Λp2(v, v
′) = max

{
ψ(p(v, v′)), ψ(p(v,R1v)), ψ

(1

2
[p(v′,R1v) + p(v,R2v

′)]
)
,

ψ
(p(v,R1v)[1 + p(v′,R2v

′)]

1 + p(v, v′)

)}

= max
{
ψ(p(v, v′)), ψ(p(v, v)), ψ

(1

2
[p(v′, v) + p(v, v′)]

)
,

ψ
(p(v, v)[1 + p(v′, v′)]

1 + p(v, v′)

)}
= max

{
ψ(p(v, v′)), 0, ψ(p(v, v′)), 0

}
= ψ(p(v, v′)). (2.28)

From equations (2.26), (2.27), (2.28) and using the property of ψ, we obtain

p(v, v′) ≤ α1 .0 + α2 ψ(p(v, v′)) = α2 ψ(p(v, v′))

< α2 p(v, v
′) < p(v, v′), since α2 < 1,

which is a contradiction. Hence, p(v, v′) = 0, that is, v = v′. Thus the common
fixed point ofR1 andR2 is unique. This completes the proof.

Theorem 2.2. Let F1 and F2 be two continuous self-maps on a complete partial
metric space (X , p) satisfying the condition:

p(Fm1 y,Fn2 z) ≤ L1Hp1(y, z) + L2Hp2(y, z), (2.29)

for all y, z ∈ X , where m and n are some positive integers,

Hp1(y, z) = ψ
(
p(y,Fm1 y)

1 + p(z,Fn2 z)
1 + p(y, z)

)
, (2.30)

and
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Hp2(y, z) = max
{
ψ(p(y, z)),

ψ(p(y,Fm1 y)), ψ
(1

2
[p(z,Fm1 y) + p(y,Fn2 z)]

)
,

ψ
(p(y,Fm1 y)[1 + p(z,Fn2 z)]

1 + p(y, z)

)}
, (2.31)

for all ψ ∈ Ψ, and L1, L2 ∈ [0, 1) with L1 + L2 < 1. Then F1 and F2 have a
unique common fixed point in X .

Proof. Since Fm1 and Fn2 satisfy the conditions of the Theorem 2.1. So Fm1 and
Fn2 have a unique common fixed point. Let w be the common fixed point. Then
we have

Fm1 w = w ⇒ F1(Fm1 w) = F1w

⇒ Fm1 (F1w) = F1w.

If F1w = w0, then Fm1 w0 = w0. So F1w is a fixed point of Fm1 . Similarly,
Fn2 (F2w) = F2w, that is, F2w is a fixed point of Fn2 .
Now, using equations (2.29) and (2.17) and using the properties of ψ, we have

p(w,F1w) = p(Fm1 w,Fm1 (F1w))

≤ L1Hp1(w,F1w) + L2Hp2(w,F1w), (2.32)

where

Hp1(w,F1w) = ψ
(
p(w,Fm1 w)

1 + p(F1w,Fn2 (F1w))

1 + p(w,F1w)

)
= ψ

(
p(w,w)

1 + p(F1w,F1w)

1 + p(w,F1w)

)
= ψ(0) = 0, (2.33)
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and

Hp2(w,F1w) = max
{
ψ(p(w,F1w)), ψ(p(w,Fm1 (F1w))),

ψ
(1

2
[p(F1w,Fm1 w) + p(w,Fn2 (F1w))]

)
,

ψ
(p(w,Fm1 w)[1 + p(F1w,Fn2 (F1w))]

1 + p(w,F1w)

)}
= max

{
ψ(p(w,F1w)), ψ(p(w,F1w)),

ψ
(1

2
[p(F1w,w) + p(w,F1w)]

)
,

ψ
(p(w,w)[1 + p(F1w,F1w)]

1 + p(w,F1w)

)}
= max

{
ψ(p(w,F1w)), ψ(p(w,F1w)), ψ(p(w,F1w), 0

}
= ψ(p(w,F1w)). (2.34)

From equations (2.32)-(2.34) and using the property of ψ, we obtain

p(w,F1w) ≤ L1 .0 + L2 ψ(p(w,F1w)) = L2 ψ(p(w,F1w))

< L2 p(w,F1w) < p(w,F1w), since L2 < 1,

which is a contradiction. Hence, we deduce that p(w,F1w) = 0, that is, w = F1w

for all w ∈ X . Similarly, we can show that w = F2w. This shows that w is a
common fixed point of F1 and F2. For the uniqueness of w, let w′ 6= w be another
common fixed point of F1 and F2. Then clearly w′ is also a common fixed point
of Fm1 and Fn2 which implies w = w′. Thus F1 and F2 have a unique common
fixed point in X . This completes the proof.

If we takeR1 = R2 = S in Theorem 2.1, then we have the following result as
corollary.

Corollary 2.1. Let S be a self-map on a complete partial metric space (X , p)



Some common fixed point theorems on partial metric spaces · · · 15

satisfying the condition:

p(Sy,Sz) ≤ β1Qp1(y, z) + β2Qp2(y, z), (2.35)

for all y, z ∈ X , where

Qp1(y, z) = ψ
(
p(y,Sy)

1 + p(z,Sz)
1 + p(y, z)

)
,

and

Qp2(y, z) = max
{
ψ(p(y, z)), ψ(p(y,Sy)), ψ

(1

2
[p(z,Sy) + p(y,Sz)]

)
,

ψ
(p(y,Sy)[1 + p(z,Sz)]

1 + p(y, z)

)}
,

for all ψ ∈ Ψ, where β1, β2 ∈ [0, 1) with β1 + β2 < 1. Then S has a unique fixed
point in X .

If we take F1 = F2 = G in Theorem 2.2, then we have the following result as
corollary.

Corollary 2.2. Let G be a self-map on a complete partial metric space (X , p)
satisfying the inequality for some positive integer n:

p(Gny,Gnz) ≤ s1Mp
1(y, z) + s2Mp

2(y, z), (2.36)

for all y, z ∈ X , where

Mp
1(y, z) = ψ

(
p(y,Gny)

1 + p(z,Gnz)
1 + p(y, z)

)
,

and

Mp
2(y, z) = max

{
ψ(p(y, z)), ψ(p(y,Gny)), ψ

(1

2
[p(z,Gny) + p(y,Gnz)]

)
,

ψ
(p(y,Gny)[1 + p(z,Gnz)]

1 + p(y, z)

)}
,

for all ψ ∈ Ψ, and s1, s2 ∈ [0, 1) with s1 + s2 < 1. Then G has a unique fixed
point in X .



16 G.S. Saluja

Proof. Let U = Gn, then from (2.36), we have

p(Uy,Uz) ≤ s1Mp
1(y, z) + s2Mp

2(y, z),

for all y, z ∈ X , where

Mp
1(y, z) = ψ

(
p(y,Uy)

1 + p(z,Uz)
1 + p(y, z)

)
,

and

Mp
2(y, z) = max

{
ψ(p(y, z)), ψ(p(y,Uy)), ψ

(1

2
[p(z,Uy) + p(y,Uz)]

)
,

ψ
(p(y,Uy)[1 + p(z,Uz)]

1 + p(y, z)

)}
,

So by Corollary 2.1, U , that is, Gn has a unique fixed point u0. But Gn(Gu0) =

G(Gnu0) = Gu0. So Gu0 is also a fixed point of Gn. Hence Gu0 = u0, i.e., u0 is a
fixed point of G. Since the fixed point of G is also a fixed point of Gn, so the fixed
point of G is unique. This completes the proof.

Corollary 2.3. Let S be a self-map on a complete partial metric space (X , p).
Suppose that there exists a nondecreasing function ψ ∈ Ψ satisfying the condition:

p(Sy,Sz) ≤ β1 ψ
(
p(y,Sy)

1 + p(z,Sz)
1 + p(y, z)

)
+ β2 ψ

(
max

{
p(y, z),

p(y,Sy),
1

2
[p(z,Sy) + p(y,Sz)],

p(y,Sy)[1 + p(z,Sz)]
1 + p(y, z)

})
, (2.37)

for all y, z ∈ X , where β1, β2 ∈ [0, 1) with β1 + β2 < 1. Then S has a unique
fixed point in X .

Proof. It follows from Corollary 2.1 by taking that if ψ ∈ Ψ is a nondecreasing
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function, we have

Qp2(y, z) = ψ
(

max
{
p(y, z), p(y,Sy),

1

2
[p(z,Sy) + p(y,Sz)],

p(y,Sy)[1 + p(z,Sz)]
1 + p(y, z)

})
.

Remark 2.1. It is clear that the conclusions of the Corollary 2.3 remain valid if in
condition (2.37), the second term of the right-hand side is replaced by one of the
following terms:

β2 ψ(p(y, z)); β2 ψ
(1

2
[p(z,Sy) + p(y,Sz)]

)
;

β2 max
{
ψ(p(y, z)), ψ(p(y,Sy))

}
;

or β2 max
{
ψ(p(y, z)), ψ(p(y,Sy)), ψ

(1

2
[p(z,Sy) + p(y,Sz)]

)}
.

Corollary 2.4. Let S be a self-map on a complete partial metric space (X , p).
Suppose that there exist five positive constants aj , j = 1, 2, 3, 4, 5 with

∑5
j=1 aj <

1 satisfying the inequality:

p(Sy,Sz) ≤ a1
(
p(y,Sy)

1 + p(z,Sz)
1 + p(y, z)

)
+ a2 p(y, z)

+ a3 p(y,Sy) + a4
1

2
[p(z,Sy) + p(y,Sz)]

+ a5
p(y,Sy)[1 + p(z,Sz)]

1 + p(y, z)
, (2.38)

for all y, z ∈ X . Then S has a unique fixed point in X .

Proof. It follows from Corollary 2.1 with ψ(t) = (a1 + a2 + a3 + a4 + a5)t.

As a special case, we obtain partial metric space versions of Banach ([7]) and
Chatterjae ([13]) fixed point results from Corollary 2.4.
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Corollary 2.5. Let S be a self-map on a complete partial metric space (X , p).
Suppose that there exists µ ∈ [0, 1) such that one of the following conditions hold:

p(Sy,Sz) ≤ µ p(y, z),

p(Sy,Sz) ≤ µ

2
[p(z,Sy) + p(y,Sz)],

for all y, z ∈ X . Then S has a unique fixed point in X .

Proof. It follows from Corollary 2.4 by taking (1) a2 = µ and a1 = a3 = a4 =

a5 = 0 and (2) a4 = µ and a1 = a2 = a3 = a5 = 0.

If we take β1 = 0, β2 = 1 and

max
{
ψ(p(y, z)), ψ(p(y,Sy)), ψ

(1

2
[p(z,Sy) + p(y,Sz)]

)
,

ψ
(p(y,Sy)[1 + p(z,Sz)]

1 + p(y, z)

)}
= ψ(p(y, z)),

in Corollary 2.1, then we obtain the following result.

Corollary 2.6. Let S be a self-map on a complete partial metric space (X , p)
satisfying the condition:

p(Sy,Sz) ≤ ψ(p(y, z)),

for all y, z ∈ X and ψ ∈ Ψ. Then S has a unique fixed point in X .

If we take ψ(t) = k t, where 0 < k < 1 is a constant in Corollary 2.6, then we
obtain the following result.

Corollary 2.7. (see [23]) Let S be a self-map on a complete partial metric space
(X , p) satisfying the condition:

p(Sy,Sz) ≤ k p(y, z),

for all y, z ∈ X and k ∈ [0, 1) is a constant. Then S has a unique fixed point in X .
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Remark 2.2. Corollary 2.7 generalizes Banach contraction mapping principle
([7]) from complete metric space to the setting of complete partial metric space.

Now, we give some examples in support of the result.

Example 2.1. Let X = {1, 2, 3, 4} and p : X × X → R be defined by

p(y, z) =


|y − z|+ max{y, z}, if y 6= z,

y, if y = z 6= 1,

0, if y = z = 1,

for all y, z ∈ X . Then (X , p) is a complete partial metric space.
Define the mapping S : X → X by

S(1) = 1, S(2) = 1, S(3) = 2, S(4) = 2.

Now, we have

p(S(1),S(2)) = p(1, 1) = 0 ≤ 3

4
.3 =

3

4
p(1, 2),

p(S(1),S(3)) = p(1, 2) = 3 ≤ 3

4
.5 =

3

4
p(1, 3),

p(S(1),S(4)) = p(1, 2) = 3 ≤ 3

4
.7 =

3

4
p(1, 4),

p(S(2),S(3)) = p(1, 2) = 3 ≤ 3

4
.4 =

3

4
p(2, 3),

p(S(2),S(4)) = p(1, 2) = 3 ≤ 3

4
.6 =

3

4
p(2, 4),

p(S(3),S(4)) = p(2, 2) = 2 ≤ 3

4
.5 =

3

4
p(3, 4).

Thus, S satisfies all the conditions of Corollary 2.7 with k = 3
4 < 1. Now by

applying Corollary 2.7, S has a unique fixed point. Indeed 1 is the required unique
fixed point in this case.

sec

Example 2.2. Let X = [0,∞) and p : X × X → R be defined by p(y, z) =

max{y, z} for all y, z ∈ X . Then (X , p) is a complete partial metric space. Con-
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sider the mappings S : X → X defined by

S(y) =

{
0, if 0 ≤ y < 1,
y2

1+y , if y ≥ 1,

and ψ : [0,∞)→ [0,∞) is defined by ψ(t) = 3t
4 .

We have the following cases:

Case (i) If y, z ∈ [0, 1) and assume that y ≥ z, then we have

p(S(y),S(z)) = 0,

Qp1(y, z) = ψ
(
p(y,Sy)

1 + p(z,Sz)
1 + p(y, z)

)
= ψ

(y(1 + z)

(1 + y)

)
=

3y(1 + z)

4(1 + y)
,

and

Qp2(y, z) = max
{
ψ(p(y, z)), ψ(p(y,Sy)), ψ

(1

2
[p(z,Sy) + p(y,Sz)]

)
,

ψ
(p(y,Sy)[1 + p(z,Sz)]

1 + p(y, z)

)}
= max

{
ψ(y), ψ(y), ψ(

y + z

2
), ψ
(y(1 + z)

1 + y

)}
= ψ(y) =

3y

4
.

Hence from above inequalities, we see that

p(S(y),S(z)) = 0 ≤ β1Qp1(y, z) + β2Qp2(y, z).

Thus the inequality holds.

Case (ii) If z ∈ [0, 1), y ≥ 1 and assume that y ≥ z, then we have

p(S(y),S(z)) = max
{ y2

1 + y
, 0
}

=
y2

1 + y
,
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and

Qp1(y, z) = ψ
(
p(y,Sy)

1 + p(z,Sz)
1 + p(y, z)

)
= ψ

(y(1 + z)

(1 + y)

)
=

3y(1 + z)

4(1 + y)
,

and

Qp2(y, z) = max
{
ψ(p(y, z)), ψ(p(y,Sy)), ψ

(1

2
[p(z,Sy) + p(y,Sz)]

)
,

ψ
(p(y,Sy)[1 + p(z,Sz)]

1 + p(y, z)

)}
= max

{
ψ(y), ψ(y), ψ

(1

2

[ y2

1 + y
+ y
])
, ψ
(y(1 + z)

1 + y

)}
= ψ(y) =

3y

4
.

Using contractive condition (2.35), we have

y2

1 + y
≤ β1

(3y(1 + z)

4(1 + y)

)
+ β2

(3y

4

)
.

If we take y = 1 and z = 0, then the above inequality reduces to

1

2
≤
(3β1

8

)
+
(3β2

4

)
,

or

4 ≤ 3β1 + 6β2.

The above inequality is satisfied for (i) β1 = 1
5 and β2 = 3

5 , (ii) β1 = 1
5 and

β2 = 2
3 with β1 + β2 < 1.

Case (iii) If y ≥ z ≥ 1 and assume that y ≥ z, then we have

p(S(y),S(z)) = max
{ y2

1 + y
,
z2

1 + z

}
=

y2

1 + y
,

and
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Qp1(y, z) = ψ
(
p(y,Sy)

1 + p(z,Sz)
1 + p(y, z)

)
= ψ

(y(1 + z)

(1 + y)

)
=

3y(1 + z)

4(1 + y)
,

and

Qp2(y, z) = max
{
ψ(p(y, z)), ψ(p(y,Sy)), ψ

(1

2
[p(z,Sy) + p(y,Sz)]

)
,

ψ
(p(y,Sy)[1 + p(z,Sz)]

1 + p(y, z)

)}
= max

{
ψ(y), ψ(y), ψ

(1

2
[z + y]

)
, ψ
(y(1 + z)

1 + y

)}
= ψ(y) =

3y

4
.

Using contractive condition (2.35), we have

y2

1 + y
≤ β1

(3y(1 + z)

4(1 + y)

)
+ β2

(3y

4

)
.

If we take y = z = 1, then the above inequality reduces to

1

2
≤ 3β1

4
+

3β2
4
,

or

2 ≤ 3β1 + 3β2.

The above inequality is satisfied for (i) β1 = 1
5 and β2 = 1

2 , (ii) β1 = 1
3 and

β2 = 2
5 and (iii) β1 = 1

4 and β2 = 4
7 with β1 + β2 < 1. Thus, in all the above

cases S satisfies all the conditions of Corollary 2.1. Hence, S has a unique fixed
point in X , indeed, y = 0 is the required point.

Conclusion

In this paper, we establish some unique common fixed point theorems in the frame-
work of complete partial metric spaces involving auxiliary function and give some
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consequences of the established results as corollaries. We also give some examples
in support of the results. The results of findings in this paper extend and generalize
several results from the existing literature regarding partial metric spaces.
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