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Abstract

In this paper, we extend a class of Suzuki-generalized nonlinear contrac-

tions due to Pant (Appl. Gen. Topol. 19 (1) (2018), 163-172) to a class

of Suzuki-generalized Ćirić type nonlinear contractions employing a locally

T -transitive binary relation and utilized the same to prove some fixed point

results. Our newly proved results unify and generalize several fixed point the-

orems of the existing literature essentially due to Alam and Imdad, Agarwal

et al., and others.

Keywords and phrases: R-complete metric spaces, locally T -transitive binary relations,

completeness of a binary relation R.
2020 AMS Subject Classification: 47H10, 54H25



60 Mohammad Arif and Mohammad Imdad

1 Introduction

Banach contraction principle [1] (or, in short BCP) plays an important role in
nonlinear analysis. Several noted generalizations of BCP via ϕ-contraction are
available in the existing literature e.g [2, 3, 4, 5]. As usual a control function is
a mapping ϕ : [0,∞) → [0,∞) satisfying ϕ(t) < t for each t > 0. A self-
mapping T defined on a metric space (X, d) is said to be a nonlinear contraction
with respect to control function ϕ (or, in short, ϕ-contraction) if d(Tx, Ty) ≤
ϕ(d(x, y)) (for all x, y ∈ X). This principle has been generalized and ex-
tended in the several ways. Browder [2] extended Banach contraction principle
to a class of nonlinear contractions which was later improved by Boyd and Wong
[3], Mukherjea [4] and Jotić [5]. The class of control functions due to Boyd and
Wong [3] can be described as follows:

Ω =
{
ϕ : [0,∞) → [0,∞) : ϕ(t) < t for each t > 0

and lim sup
r→t+

ϕ(r) < t for each t > 0
}
.

The following fixed point result employing a control function is due to Pant
[6]:

Theorem 1.1. [6] Let (X, d) be a complete metric space. Assume that a mapping

T : X → X satisfies the following contractive condition:

(I) if there exists strictly increasing right continuous control function ϕ such that

1

2
d(x, Tx) ≤ d(x, y) =⇒ d(Tx, Ty) ≤ ϕ(N (x, y))∀x, y ∈ X,

(where N (x, y) := max
{
d(x, y), d(x, Tx), d(y, Ty)

}
). Then T has a unique

fixed point in X.

On the other hand, in the course of last several years, the BCP has been ex-
tended and generalized to ordered metric spaces by numerous researchers namely:
Ran and Reurings [7] and Nieto and Rodrı́guez-Loṕez [8], O’Regan and Petruşel
[9] and Agarwal et al. [10]. For the results of this kind one can be referred to
[12, 11, 13] and references cited therein.
The aim of this paper is to extend for Suzuki-generalized Ćirić type of nonlinear
contractions and utilized the same to prove fixed point results employing a locally
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T -transitive binary relation. Our newly proved results generalize several fixed point
theorems of the existing literature specially due to Pant [6], Alam and Imdad [22],
Agarwal et al. [10] and others. Finally, an example is given for the genuineness of
our newly proved result.

2 Preliminaries

Throughout this manuscript, N and N0 denote the sets of natural numbers and
whole numbers respectively (i.e., N0 = N ∪ {0}). Given a non empty set X , a
subset R of X2 is called a binary relation on X . For simplicity, we sometimes
write xRy instead of (x, y) ∈ R.

Out of various kind of binary relations, the following are relevant to our present
discussion:
A binary relation R defined on a nonempty set X is called

• “amorphous” if it has no specific property at all,

• “universal” if R = X2,

• “empty” if R = ∅,

• “reflexive” if (x, x) ∈ R ∀ x ∈ X ,

• “symmetric” if (x, y) ∈ R implies (y, x) ∈ R,

• “antisymmetric” if (x, y) ∈ R and (y, x) ∈ R imply x = y,

• “transitive” if whenever (x, y) ∈ R and (y, z) ∈ R imply (x, z) ∈ R,

• “complete” if (x, y) ∈ R or (y, x) ∈ R ∀ x, y ∈ X ,

• “partial order” if R is reflexive, antisymmetric and transitive.

Definition 2.1. [15, 16, 14] Let X be a nonempty set equipped with partial order

⪯, A self-mapping T defined on X is called increasing (or isotone or order-

preserving) if for any x, y ∈ X ,

x ⪯ y ⇒ T (x) ⪯ T (y).
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The following notion is formulated by using a suitable property with a view to relax
the continuity requirement of the underlying mapping especially in the hypotheses
of a fixed point theorem due to Nieto and Rodrı́guez-López [8].

Definition 2.2. [17] Let (X,d) be a metric space equipped with a partial order ⪯.

We say that the triplet (X, d,⪯) has “ICU (increasing-convergence-upper bound)

property” if every increasing convergent sequence in X is bounded above by its

limit (as an upper bound).

Inspired by Roldán-López-de-Hierro et al. [18], Alam and Imdad intoduced
the following: (i.e., a notion originated from T -transitive subset of X2 is essen-
tially due to [18]).

Definition 2.3. [19] Let X be a nonempty set and T a self-mapping on X . A

binary relation R defined on X is called “T -transitive” if for any x, y, z ∈ X ,

(Tx, Ty), (Ty, Tz) ∈ R ⇒ (Tx, Tz) ∈ R.

Inspired by Turinici [21, 20], Alam and Imdad [19] introduced the following
notions by localizing the transitivity condition.

Definition 2.4. [19] Let X be a nonempty set. A binary relation R defined on

X is called “locally transitive” if for each (effectively) R-preserving sequence

{xn} ⊂ X (with range E = {xn : n ∈ N}), such that R|E is transitive.

Clearly, the notions of “T -transitivity” and “locally transitivity” both are rel-
atively weaker than the notions of transitivity, but they are independent of each
other. In order to make them compatible, Alam and Imdad [19] introduced the
following notion of transitivity.

Definition 2.5. [19] Let X be a nonempty set and T a self-mapping on X . A binary

relation R defined on X is called locally T -transitive if for each (effectively) R-

preserving sequence {xn} ⊂ T (X) (with range E = {xn : n ∈ N}), such that

R|E is transitive.

Proposition 2.1. [19] Let X be a nonempty set, R a binary relation on X and T

a self-mapping on X . Then
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(i) R is T -transitive ⇔R|T (X) is transitive,

(ii) R is locally T -transitive ⇔R|T (X) is locally transitive,

(iii) R is transitive ⇒R is locally transitive ⇒R is locally T -transitive,

(iv) R is transitive ⇒R is T -transitive ⇒R is locally T -transitive.

3 Relevant Notions and Auxiliary Results

In this section, for the sake of completeness, we summarize some relevant defini-
tions and basic results for our subsequent discussion:

Definition 3.1. [22] Let R be a binary relation on a nonempty set X and x, y ∈ X .

We say that x and y are R-comparative if either (x, y) ∈ R or (y, x) ∈ R. We

denote it by [x, y] ∈ R.

Definition 3.2. [23] Let X be a nonempty set and R a binary relation on X .

(i) The inverse or transpose or dual relation of R, denoted by R−1, is defined

by R−1 = {(x, y) ∈ X2 : (y, x) ∈ R}.

(ii) The symmetric closure of R (denoted by Rs) is defined to be the set R∪R−1

(i.e., Rs := R∪R−1). Indeed, Rs is the smallest symmetric relation on X

containing R.

Proposition 3.1. [22] For a binary relation R defined on a nonempty set X ,

(x, y) ∈ Rs ⇐⇒ [x, y] ∈ R.

Definition 3.3. [22] Let R be a binary relation defined on a nonempty set X . A

sequence {xn} ⊂ X is called “R-preserving” if

(xn, xn+1) ∈ R ∀ n ∈ N0.
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Definition 3.4. [22] Let X be a nonempty set and T a self-mapping on X . A

binary relation R defined on X is called T -closed if for any x, y ∈ X ,

(x, y) ∈ R ⇒ (Tx, Ty) ∈ R.

Proposition 3.2. [24] Let X be a nonempty set endowed with a binary relation R

and T be a self-mapping on X such that R is T -closed, then Rs is also T -closed.

Proposition 3.3. [19] Let R be a binary relation defined on a nonempty set X

and T be a self-mapping on X . If R is T -closed, then for all n ∈ N0, R is also

Tn-closed, where Tn denotes nth iterate of T .

Definition 3.5. [24] Let R be a binary relation defined on a nonempty set X .

We say that (X, d) is R-complete if every R-preserving Cauchy sequence in X

converges.

Notice that every complete metric space is R-complete. Particularly, under the
universal relation the notion of R-completeness coincides with usual completeness.

Definition 3.6. [24] Let R be a binary relation defined on a nonempty set X with

x ∈ X . A mapping T : X → X is called R-continuous at x if for any R-

preserving sequence {xn} such that xn
d−→ x, we have T (xn)

d−→ T (x). More-

over, T is called R-continuous if it is R-continuous at each point of X .

Clearly, every continuous mapping is R-continuous, for any binary relation R.
Particularly, under the universal relation the notion of R-continuity coincides with
usual continuity.
The following notion is a generalization of d-self-closedness of a partial order re-
lation (⪯) contained in Turinici [25, 26]:

Definition 3.7. [22] A binary relation R defined on a metric space (X, d) is called

d-self-closed if for any R-preserving sequence {xn} such that xn
d−→ x, there ex-

ists a subsequence {xnk
} of {xn} with [xnk

, x] ∈ R ∀ k ∈ N0.
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Given a binary relation R and a self-mapping T on a nonempty set X , we use the
following notations:

(i) F (T ):=the set of all fixed points of T ,

(ii) X(T,R) := {x ∈ X : (x, Tx) ∈ R},

(iii) N (x, y) := max
{
d(x, y), d(x, Tx), d(y, Ty)

}
,

(iv) M(x, y) := max
{
d(x, y), d(x, Tx), d(y, Ty), 12{d(x, Ty) + d(y, Tx)}

}
.

Remark 3.1. Observe that N (x, y) ≤ M(x, y) (∀x, y ∈ X).

Proposition 3.4. [20] Let (X, d) be a metric space and {xn} a sequence in X .

If {xn} is not a Cauchy, then there exist ϵ > 0 and two subsequences {xnk
} and

{xmk
} of {xn} such that

(i) k ≤ mk < nk ∀ k ∈ N,

(ii) d(xmk
, xnk

) > ϵ ∀ k ∈ N,

(iii) d(xmk
, xnk−1

) ≤ ϵ ∀ k ∈ N.

Moreover, suppose that lim
n→∞

d(xn, xn+1) = 0, then

(iv) lim
k→∞

d(xmk
, xnk

) = ϵ,

(v) lim
k→∞

d(xmk+1, xnk+1) = ϵ.

Proposition 3.5. [17] Let ϕ ∈ Ω. If {tn} ⊂ (0,∞) is a sequence such that tn+1 ≤

ϕ(tn) ∀ n ∈ N0, then lim
n→∞

tn = 0.

Proposition 3.6. If (X, d) is a metric space, R is a binary relation on X , T is

a self-mapping on X and ϕ ∈ Ω, then the following contractivity conditions are

equivalent:

(I) 1
2d(x, Tx) ≤ d(x, y) =⇒ d(Tx, Ty) ≤ ϕ(M(x, y)) ∀ x, y ∈ X with(x, y) ∈

R,

(II) 1
2d(x, Tx) ≤ d(x, y) =⇒ d(Tx, Ty) ≤ ϕ(M(x, y)) ∀ x, y ∈ X with[x, y] ∈

R.
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4 Main Results

We begin this section with our main results as follows:

Theorem 4.1. Let (X, d) be a metric space equipped with a binary relation R and

T be a self-mapping on X . Suppose that following conditions hold:

(a) (X, d) is R-complete,

(b) X(T,R) is non-empty,

(c) R is T -closed and locally T -transitive,

(d) if there exists ϕ ∈ Ω along with ϕ enjoys the increasing property such that

1

2
d(x, Tx) ≤ d(x, y) =⇒ d(Tx, Ty) ≤ ϕ(M(x, y)) ∀ x, y ∈ X with(x, y) ∈ R,

(e) either T is R-continuous or R is d-self-closed.

Then T has a fixed point.

Proof. In view of (b), let x0 ∈ X(T,R), then (x0, Tx0) ∈ R. As R is T -closed

and using Proposition 3.2 ,we have

(xn, xn+1) ∈ R ∀n ∈ N0 (4.1)

where xn = Tnx0 = Txn−1.

Therefore the sequence {xn} is R-preserving. For, if d(xn0+1, xn0) = 0 for some

n0 ∈ N0, then, we have T (xn0) = xn0 so that xn0 is a fixed point of T and hence

we are through.

On the other hand, if d(xn+1, xn) > 0 ∀ n ∈ N0, implies 1
2d(xn, xn+1) <

d(xn, xn+1), then applying the contractivity condition (d) to (4.1), using triangle

inequality of d and increasingness of ϕ, we deduce, for all n ∈ N0,
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d(xn+1, xn+2) = d(Txn, Txn+1) ≤ ϕ(M(xn, xn+1))

= ϕ(max{d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),
1
2(d(xn, xn+2)+d(xn+1, xn+1)})

= ϕ(max{d(xn, xn+1), d(xn+1, xn+2),
1
2d(xn, xn+2)})

≤ ϕ(max{d(xn, xn+1), d(xn+1, xn+2),
1
2{d(xn, xn+1) + d(xn+1, xn+2))}})

≤ ϕ
(
max{d(xn, xn+1), d(xn+1, xn+2)}

)
so that

d(xn+1, xn+2) ≤ ϕ(max{d(xn, xn+1), d(xn+1, xn+2)}). (4.2)

In case if max{d(xn, xn+1), d(xn+1, xn+2)} = d(xn+1, xn+2) and using the prop-

erty of ϕ, then by (4.2), we obtain d(xn+1, xn+2) < d(xn+1, xn+2), which is con-

tradiction and hence (4.2) reduces to

d(xn+1, xn+2) ≤ ϕ(d(xn, xn+1)). (4.3)

In view of (4.3) and Proposition 3.5, we obtain

lim
n→∞

d(xn, xn+1) = 0. (4.4)

Now, we claim that {xn} is a Couchy sequence sequence. To do this, suppose

that {xn} is not a Couchy. Owing to Proposition 3.4, there exist ϵ > 0 and two

subsequences {xnk
} and {xmk

} of {xn} such that k ≤ mk < nk, d(xmk
, xnk

) ≥ ϵ

and d(xmk
, xnk−1) < ϵ. Further, in view of (4.4) and Proposition 3.4, we obtain

lim
k→∞

d(xmk
, xnk

) = ϵ. (4.5)

For a fixed ϵ > 0 and in view of (4.4), there exists some positive integer k ∈ N such

that 1
2d(xnk

, xnk+1
) ≤ d(xmk

, xnk
) for k ≤ mk < nk. In view of (4.1) and locally

T -transitivity of R, we have (xnk
, xmk

) ∈ R (for all k ∈ N). Now, utilizing the

contractive condition (d), we obtain

d(Txnk
, Txmk

) ≤ ϕ(M(xnk
, xmk

)).
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Denote δk := d(xnk
, xmk

) and ηnk
:= d(xnk

, xnk+1
), which on again utilizing the

triangular inequality, contractive condition (d) and increasing property of ϕ, we

have

d(xnk
, xmk

) ≤ d(xnk
, xnk+1) + d(xnk+1, xmk+1) + d(xmk+1, xmk

)

= d(xnk
, xnk+1) + d(Txnk

, Txmk
) + d(xmk+1, xmk

)

≤ ηnk
+ ϕ(M(xnk

, xmk
)) + ηmk

= ηnk
+ ϕ(max{d(xnk

, xmk
), ηnk

, ηmk
, 12{d(xnk

, xmk+1) + d(xmk
, xnk+1)}})

+ ηmk

≤ ηnk
+ ϕ(max{d(xnk

, xmk
), ηnk

, ηmk
, 12{d(xnk

, xmk
) + d(xmk

, xmk+1)

+ d(xmk
, xmk+1) + d(xmk+1, xnk+1)}}) + ηmk

≤ ηnk
+ ϕ(max{d(xnk

, xmk
), ηnk

, ηmk
, δk + ηmk

, δk+1 + ηmk
}) + ηmk

≤ ηnk
+ ϕ(max{δk + ηmk

, δk+1 + ηmk
}) + ηmk

so that

d(xnk
, xmk

) ≤ ηnk
+ ϕ(max{δk + ηmk

, δk+1 + ηmk
}) + ηmk

. (4.6)

Utilizing the fact that δk + ηmk
→ ϵ (in view of (4.4) and (4.5)) in the real line and

definition of Ω, yeilds that

lim sup
k→∞

ϕ(δk + ηmk
) = lim sup

δk+ηmk
→ϵ+

ϕ(δk + ηmk
) < ϵ. (4.7)

Letting k → ∞ in (4.6) and using (4.7), reduces to

ϵ = lim
k→∞

d(xnk
, xmk

) ≤ lim sup
k→∞

ϕ(δk + ηmk
) = lim sup

δk+ηmk
→ϵ+

ϕ(δk + ηmk
) < ϵ,

(4.8)

which is a contradiction. Hence {xn} is a Cauchy sequence. Similarly, in the other

case one can have that {xn} is a Cauchy sequence. Since (X, d) is R-complete,

there exists z ∈ X such that xn
d−→ z as n → ∞.
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Finally, we prove that z is a fixed point of T . To accomplish this, suppose that

T is R-continuous. As {xn} is R-preserving with xn
d−→ z, R-continuity of T

implies that xn+1 = T (xn)
d−→ T (z). Using the uniqueness of limit, we obtain

T (z) = z, i.e., z is a fixed point of T .

Alternately, assume that R is d-self-closed. As {xn} is R-preserving such that

xn
d−→ z, the d-self-closedness of R guarantees the existence of a subsequence

{xnk
} of {xn} with [xnk

, z] ∈ R (∀ k ∈ N0).

Now, we claim that (for all k ∈ N0)

1

2
d(xnk

, xnk+1) ≤ d(xnk
, z) or

1

2
d(xnK+1, xnk+2) ≤ d(xnk+1, z). (4.9)

Arguing by contradiction, we assume that (for some ko ∈ N0)

1

2
d(xnko

, xnko+1) > d(xnko
, z) and

1

2
d(xnko+1, xn0+2) > d(xnko+1, z)

Applying the triangle inequality, we obtain

d(xnko
, xnko+1) ≤ d(xnko

, z) + d(xnko+1, z)

<
1

2
d(xnko

, xnko+1) +
1

2
d(xnko+1, xnko+2)

<
1

2
{d(xnko

, xnko+1) + d(xnko
, xnko+1

)} = d(xnko
, xnko+1),

a contradiction. Therefore, ((4.9) for all k ∈ N0) holds immediately.

On using assumption (d) (in view of (4.9)), Proposition 3.6 and [xnk
, z] ∈ R (∀ k ∈

N0), we have

d(xnk+1, T z) = d(Txnk
, T z) ≤ ϕ(M(xnk

, z))

= ϕ
(
max

{
d(xnk

, z), d(z, Tz), d(xnk
, xnk+1),

1

2

{
d(xnk

, T z) + d(xnk+1, z)
}})

.(4.10)

We need to discus four cases:

Case (i): If max
{
d(xnk

, z), d(z, Tz), d(xnk
, xnk+1),

1
2

{
d(xnk

, T z)+d(xnk+1, z)
}}

=
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d(z, Tz). Taking k → ∞ in (4.10) and definition of Ω (i.e., ϕ(t) < t for all t > 0

and lim
s→t+

supϕ(s) < t for all t > 0), we obtain

d(z, Tz) = lim
k→∞

d(xnk+1, T z) ≤ lim sup
d(xnk+1,T z)→d(z,Tz)+

ϕ(d(xnk+1, T z)) < d(z, Tz),

which is a contradiction unless T (z) = z.

Case (ii): If max
{
d(xnk

, z), d(z, Tz), d(xnk
, xnk+1),

1
2

{
d(xnk

, T z)+d(xnk+1, z)
}}

= d(xnk
, xnk+1). Taking k → ∞ in (4.10), definition of Ω (i.e., ϕ(t) < t for all

t > 0 and lim
s→t+

supϕ(s) < t for all t > 0) and fact that (d(xn+1, xn) > 0

∀ n ∈ N0), we obtain

d(z, Tz) = lim
k→∞

d(xnk+1, T z) ≤ lim
k→∞

d(xnk
, xnk+1) = 0,

which is again a contradiction unless T (z) = z.

Case (iii): If max
{
d(xnk

, z), d(z, Tz), d(xnk
, xnk+1),

1
2

{
d(xnk

, T z)+d(xnk+1, z)
}}

= 1
2

{
d(xnk

, T z) + d(xnk+1, z)
}

. Set tk := 1
2{d(xnk

, T z) + d(xnk+1, z)} →
1
2d(z, Tz)

+, since tk → 1
2d(z, Tz), as k → ∞.

Taking k → ∞ in (4.10) and definition of Ω (i.e., ϕ(t) < t for all t > 0 and

lim
s→t+

supϕ(s) < t for all t > 0), we obtain

d(z, Tz) = lim
k→∞

d(xnk+1, T z) ≤ lim
k→∞

ϕ(
1

2

{
d(xnk

, T z) + d(xnk+1, z)
}
)

≤ lim sup
k→∞

ϕ(
1

2

{
d(xnk

, T z) + d(xnk+1, z)
}
)

= lim sup
tk→ 1

2
d(z,Tz)+

ϕ(tk) <
1

2
d(z, Tz),

which is a contradiction unless T (z) = z.

Case (iv): If max
{
d(xnk

, z), d(z, Tz), d(xnk
, xnk+1),

1
2

{
d(xnk

, T z)+d(xnk+1, z)
}}

= d(xnk
, z).

We assert that

d(xnk+1, T z) ≤ d(xnk
, z) ∀ k ∈ N. (4.11)
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On account of two different possibilities occurring here, we consider a partition of

N i.e., N0 ∪ N+ = N and N0 ∩ N+ = ∅ verifying that

(1) d(xnk
, z) = 0 ∀ k ∈ N0,

(2) d(xnk
, z) > 0 ∀ k ∈ N+.

In case (1), we have d(Txnk
, T z) = 0 ≤ d(xnk

, z) ∀ k ∈ N0. In case (2), and

definition of Ω, we have d(xnk+1, T z) ≤ ϕ(d(xnk
, z)) < d(xnk

, z) for all k ∈ N+.

Hence in both the cases, we get d(xnk+1, T z) ≤ d(xnk
, z) ∀ k ∈ N, which by

using the fact that xnk

d−→ z as k → ∞, yields that xnk+1
d−→ T (z). Again,

owing to the uniqueness of limit, we obtain T (z) = z so that z is a fixed point of

T .

Now, we deduce some corollaries, which are sharpened versions (in the context
of contractive conditions and binary relations) of Theorem 1.1 due to Pant [6].

Corollary 4.1. If in the hypotheses of Theorem 4.1, control function (utilized in the

assumption (d)) is replaced by strictly inceasing right continuous control function

besides retaining the rest of the hyotheses, then the conclusion of Theorem 4.1

remains true.

In view of Proposition 2.1, one can have the following:

Corollary 4.2. Theorem 4.1 remains true if locally T -transitivity of R (utilized in

assumption (c)) is replaced by any one of the following conditions besides retaining

rest of the hypotheses:

(i) R is transitive,

(ii) R is T -transitive,

(iii) R is locally transitive.
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Theorem 4.2. If in the hypotheses of Theorem 4.1, the completeness of R is added,

then T has a unique fixed point.

Proof. As F (T ) ̸= ∅ (in view of Theorem 4.1), choose x, y ∈ F (T ) (i.e., x =

T (x) and y = T (y)). We are required to show that x = y. Suppose that x ̸= y.

Since R is complete [x, y] ∈ R (∀x, y ∈ X) and x = T (x), y = T (y), we have

0 = 1
2d(x, Tx) < d(x, y). Now, applying the contractive condition (d) to this fact,

1
2d(x, Tx) < d(x, y), ([x, y] ∈ R ∀x, y ∈ X),

d(x, y) = d(Tx, Ty) ≤ ϕ(M(x, y))

≤ ϕ(max{d(x, y), d(x, Tx), d(y, Ty),
1

2
{d(x, Ty) + d(y, Tx)}})

< d(x, y),

a contradiction unless x = y. Hence T has a unique fixed point.

5 An Illustrative Example

In this section, we construct an example to demonstrate the utility of our newly
proved result over Theorem 1.1 due to Pant [6].

Example 5.1. Let X = [0, 4) equipped with usual metric d and a binary relation

R = {(0, 0), (0, 1), (1, 0), (1, 1), (3, 0)}. Notice that, R is not transitive but it is

T -transitive. Hence in view of Proposition 2.1, it is locally T -transitive. Define a

self-mapping T on X by

T (x) =

 0, x ∈ [0, 1],

1, x ∈ (1, 4),

Clearly, R is T -closed and (X, d) is R-complete. Define a function ϕ : [0,∞) →

[0,∞) by ϕ(t) = 1
2 t, then ϕ is increasing and also a member of Ω. It can be easily
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seen that contractive condition (d) of Theorem 4.1 are satisfied for all (x, y) ∈ R

except at (x, y) = (3, 0). This means we need to varify condition (d) at (3, 0) ∈ R.

If we take x = 3, then 1 = 1
2d(3, T3) < d(3, 0) = 3 implies that

1 = d(T3, T0) ≤ ϕ(max
{
d(3, 0), d(3, T3), d(0, T0),

1

2
{d(3, T0) + d(0, T3)}

}
)

= ϕ(3) =
3

2
for (3, 0) ∈ R.

Secondly, if we choose x = 0, then

0 = 1
2d(0, T0) ≤ d(0, 0) = 0 =⇒ 0 = d(T0, T0) ≤ ϕ(M(0, 0)) =

0, for (0, 0) ∈ R and

0 = 1
2d(0, T0) < d(0, 1) = 1 =⇒ 0 = d(T0, T1) ≤ ϕ(M(0, 1)) =

1
2 , for (0, 1) ∈ R.

Taking any R-preserving sequence {xn} such that xn
d−→ x. As (xn, xn+1) ∈ R,

for all n ∈ N, there exists N ∈ N such that xn = x ∈ {0, 1}, for all n ≥ N .

Hence R is d-self closed. Thus, all the conditions of Theorem 4.1 are satisfied and

hence T has a fixed point (namely x = 0). As (X, d) is not complete and R is not

partial order, therefore present example can not be covered by Theorem1.1 (due to

Pant [6]) and due to Agarwal et al. [Theorem 2.3, [10]] respectively, which shows

that utility our newly proved result.

Now, we deduce some special cases, which are sharpened versions of several
known fixed point theorems of the existing literature.

(1) Under the universal relation (i.e., R = X2), Theorem 4.2 deduces to gener-
alized form of Theorem 1.1 due to Pant [6].

(2) On choosing M(x, y) to be N (x, y), R to be a partial order relation ⪯ and
ϕ ∈ Ω to be a continuous control function (not necessarily increasing) in
Theorem 4.2, we obtain sharpened version of Theorem 2.3 due to Agarwal
et al. [10]. Observe that the class of continuous control mappings is properly
contained in the class of control mappings (i.e.,Ω) due to Boyd and Wong
[3].



74 Mohammad Arif and Mohammad Imdad

(3) Setting ϕ(t) = αt (where α ∈ [0, 1)) in Theorem 4.2, we obtain a sharpened
version of Theorem 3.1 due to Alam and Imdad [22]. Observe that under
this setting, the additional condition of locally T -transitivity on the involved
binary relation is not necessary, which is uniformity with Alam and Imdad
[22].

Acknowledgements: Both authors are thankful to anonymous learned referees for
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