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Abstract

In this study, we consider a class of linear fractional integro-differential

equations which consist of the same order of fractional differentiation and

fractional integration. The approximate solutions of such type of the equa-

tions are presented using the Galerkin and perturbed collocation analysis

method. In the Caputo sense, fractional differentiation and fractional inte-

gration are used. Finally, some illustrative examples are presented to demon-

strate the effectiveness of the methods. From the computational viewpoint,
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the Galerkin method is more efficient and easier than the perturbed colloca-

tion method.

1 Introduction

In the last three decades, the theory of fractional calculus has been the focus of
many studies due to it’s wide range of applications such as in biological sciences,
chemical sciences, chemical physics, optics, signal processing etc. Most often, the
equations arising from the mathematical modelling of fractional order integro dif-
ferential equations are difficult to solve analytically. This is because many of them
do not have solutions in closed form, and thus seeking an approximate solution by
numerical techniques becomes useful.

To achieve this, a lot of numerical methods have been used by many researchers.
[1] employed multiple perturbed collocation Tau method to solve higher order lin-
ear and nonlinear boundary value problems by employing Chebyshev basis func-
tions as the approximate solution. The authours concluded that as the degree of
approximant N increases the results obtained by the proposed method converges
rapidly to the exact solution. (Oyedepo et. al., 2019) [2], used the Legendre
Galerkin Method to solve fractional order Fredholm integro-differential equations
successfully and it was seen that the results obtained by the method employed con-
verge to the exact solution at lower values of N. (Ghasemi et. al., 2007) [3], applied
Wavelet- Galerkin method(WGM) with homotopy perturbation method(HPM) to
solve nonlinear fractional integro-differential equations. Conclusion was drawn
that HPM converge faster to exact solution than the Wavelet- Galerkin method.
(Rawashdeh, 2006) [4], presents the collocation method which need to be added
to solve the fractional integro-differential equation. The wavelet-Galerkin method
(WGM) which is used to solve the integro-differential equation can be found in [5].
A comparison between the wavelet-Galerkin method and the Adomain decompo-
sition method to solve the integro-differential equation is given by [6]. (Fakhar-
Izadi and Dehghan, 2012) [7] used an efficient pseudo-spectral Legendre Galerkin
method for solving a nonlinear partial integro-differential equation arising in pop-
ulation dynamics. A discrete Galerkin method for fractional integro-differential
equations is employed by [8]. (Olayiwola et. al., 2020) [9], successfully employed
the Legendre polynomial in solving Volterra integro-differential equations using
the collocation analysis method. The findings of the study show that, the solution
obtained by the means of the basis function used yielded the desired accuracy when
compared with the exact solution. (Samah, 2010) [10], applied the collocation
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method combined with the least square method and the Adomian decomposition
method to solve both linear and nonlinear fractional integro-differential equations.
Other methods used by many researchers are perturbation collocation method [11],
mixed interpolation collocation method [12], least square method and shifted poly-
nomials [13], He’s Homotopy perturbation method [14, 15]. Other studies which
apply novel methods for solving fractional integro-differential equation and other
forms of equation are found in (see for example, [16-25]). In this paper we con-
sidered the use of Galerkin method and perturbed collocation method to solve a
class of linear fractional integro-differential equations and comparisons are made
between the two methods. The class of the fractional integro-differential equation
is of the form:

Dpu (x) = g (x) + Jpu (x) , a ≤ x ≤ b. (1.1)

With the initial condition: u (0) = u0, where g(x) is a continuous function on
(x, u) for u∈ R, a > 0 and 0 < x < a, u0 is a real positive constant, Dp denotes
the Caputo fractional derivatives and Jp denotes the Caputo fractional integral op-
erator.

Some properties of the operator Dp and Jp may be found in [podulbny, 1999],
and we mention the following:

Dpxn =
Γ (n+ 1)

Γ (n+ 1− p)
xn−p (1.2)

Jpxn =
Γ (n+ 1)

Γ (n+ 1 + p)
xn+p for x > 0, p ≥ 0, n > −1 . (1.3)

2 Review of Legendre and shifted Legendre polynomials

The Legendre polynomials Lk (x) ; k = 0, 1, 2, 3, . . . are the eigenfunctions of the
singular Sturm-Liouville problem.

((
1− t2

)
L

′
k (t)

)′

k (k + 1)Lk (t) = 0 t ∈ [−1, 1] . (2.1)

The Legendre polynomials satisfy the recursive relation

Lk+1 (t) =
2k + 1

k + 1
tLk (t)−

k

k + 1
Lk−1 (t) , k = 1, 2, 3, . . . . (2.2)
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Where L0 (t) = 1 and L1 (t) = x which are thus generated by the Legendre
relation

Lk (t) =
1

2kk!

dk

dxk
(
t2 − 1

)k
; k = 0, 1, 2, . . . . (2.3)

In other to use these polynomials on the interval [0, 1], we define the so called
shifted Legendre polynomial by introducing the change of variable t, t = 2x −
1; let the shifted Legendre polynomial Lk (2x− 1) be denoted by L∗

k (x) . Then
L∗

k (x) can be obtained as follows.

L∗
k+1 (x) =

(2k + 1) (2x− 1)

k + 1
L∗

k (x)−
k

(k + 1)
L∗

k−1 (x) (2.4)

Where:

L∗
0 (x) = 1

L∗
1 (x) = 2x− 1

L∗
2 (x) = 6x2 − 6x+ 1

L∗
3 (x) = 20x3 − 30x2 + 12x− 1

L∗
4 (x) = 70x4 − 140x3 + 90x2 − 20x+ 1

L∗
5 (x) = 252x5 − 630x4 + 560x3 − 210x2 + 30x− 1.

2.1 Chebyshev and shifted Chebyshev polynomials

Chebyshev polynomials are sequence of orthogonal polynomials related to de-
Moivre’s formula and can be defined recursively. One usually distinguishes be-
tween chebyshev polynomials of first kind which are denoted by Tn and chebyshev
polynomials of second kind which are denoted by Un.

2.2 Chebyshev polynomials of first kind

Chebyshev polynomials of first kind Tr (x) is defined as:

Tn (x) = cos
(
ncos−1x

)
, −1 ≤ x ≤ 1. (2.5)

Or equivalently

Tn (x) = cosnθ, where θ = cos−1 x (2.6)

Tn (x) = cosnθ, where θ = cos−1 x. (2.7)
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The few chebyshev polynomials of the first kind are;

Tn (x)

T0 (x) = 1

T1 (x) = x

T2 (x) = 2x2 − 1

T3 (x) = 4x3 − 3x

T4 (x) = 8x4 − 8x2 + 1

T5 (x) = 16x5 − 20x3 + 5x.

2.3 The Shifted Chebyshev polynomials

For convenience and for the sake of problems that exist in intervals other than
−1 ≤ x ≤ 1, Tn (x) is in this subsection normalized to a general finite range
a ≤ x ≤ b as follows:

T ∗
N (x) = cos

(
Ncos−1x

)
; −1 ≤ x ≤ 1 . (2.8)

And the recurrence relation is given by

T ∗
N+1 (x) = 2xT ∗

N (x)− T ∗
N−1 (x) , N ≥ 1. (2.9)

Where N is the degree of the polynomial.
In general, Chebyshev polynomial valid in a ≤ x ≤ b is given as

T ∗
N (x) = cos

[
N cos−1

(
2x− b− a

b− a

)]
; −1 ≤ x ≤ 1. (2.10)

And the recurrence relation is given as

T ∗
N+1 (x) = 2

(
2x− b− a

b− a

)
T ∗

N (x)− T ∗
N−1 (x) .

Few terms of the shifted chebyshev polynomials valid in the interval [0, 1] are
given below:
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T ∗
0 (x) = 1

T ∗
1 (x) = 2x− 1

T ∗
2 (x) = 8x2 − 8x+ 1

T ∗
3 (x) = 32x3 − 48x2 + 18x− 1

T ∗
4 (x) = 128x4 − 256x3 + 100x2 − 32x+ 1

T ∗
5 (x) = 512x5 − 128x4 + 1120x3 − 400x2 + 50x− 1.

3 Construction of the methods

This section, we discussed the Numerical application of Legendre Polynomial Ba-
sis Function on the Solution of a class of linear fractional integro-differential Equa-
tion using the Galerkin Method and Perturbed Collocation method.

3.1 Galerkin Method (GM)

Here, this method will be used to solve linear fractional integro-differential equa-
tions of the form:

Dpu (x) = g (x) + Jpu (x) , ui (0) = ∅i(0) a ≤ x ≤ b. (3.1)

Where g(x) is a smooth known function and u(x) is a function to be deter-
mined.

We assumed a trial solution of the form:

u (x) = uN (x) =
N∑
k=0

ak L∗
k (x) . (3.2)

Where L∗
k (x) is the shifted Legendre polynomial and ak , k = 0(1)N are

unknown constants to be determined.
Substitute the assumed solution of equation (3.2) in to equation (3.1) to obtain:

Dp

(
N∑
k=0

ak L∗
k (x)

)
= g (x) + Jp

(
N∑
k=0

ak L∗
k (x)

)
. (3.3)

Applying (1.2) and (1.3) on (3.3) to obtain:
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N∑
k=0

ak
Γ (k + 1)

Γ (k + 1− p)
xk−p −

N∑
k=0

ak
Γ (k + 1)

Γ (k + 1 + p)
xk+p = g (x). (3.4)

And therefore, the residual R(u, x) will be:

R (u, x) =

N∑
k=0

ak
Γ (k + 1)

Γ (k + 1− p)
xk−p −

N∑
k=0

ak
Γ (k + 1)

Γ (k + 1 + p)
xk+p − g (x) = 0.

(3.5)
To determine the constant coefficients, ak , k = 0, 1, 2, 3, . . . we find the inner

product of (3.5) with the basis function L∗
k (x) , k = 0, 1, 2, 3, . . . to get:∫ b

a
(R (u, x)) ( L∗

k (x)) dx = 0 , a ≤ x ≤ b , k = 0, 1, 2, . . . N. (3.6)

Equation (3.6) is further simplified to give rise to N+1 linear algebraic system
of equations with N + 1 number of constants for L∗

k (x) , k = 0, 1, 2, . . . N .
The system of equations obtained from (3.6) is solved to get values for the un-

known constants. The values are now substituted in to the assumed solution given
in equation (3.2) to get the approximate solution. It is significant to mention that
when the problem contains some initial conditions, we first apply those conditions
before implementing the Galerkin procedure to obtain the remaining number of
required equations.

3.2 Perturbed collocation method (PCM)

Here, this method will be used to solve fractional integro-differential equations of
the form:

Dpy (x) = f (x) + Jpy (x) , yi (0) = ∅i(0) r ≤ x ≤ s. (3.7)

Where f(x) is a known smooth function and y(x) is a function to be deter-
mined.

y (x) = yN (x) =
N∑
k=0

akL
∗
k (x) . (3.8)

Where L∗
k (x) is shifted Legendre polynomial basis function and N is the de-

gree of the assumed approximant. Then equation (3.7) is slightly perturbed to
obtain:
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Dpy (x) = f (x) + Jpy (x) +Gn (x) (3.9)

Gn (x) =
n∑

v=1

τvT
∗
(n−v+1)(x) (3.10)

is called the perturbation term, T ∗(x) is shifted Chebyshev polynomial basis
function.

Now, substituting (3.8) and (3.10) into (3.9) we obtain;

Dp

(
N∑
k=0

akL
∗
k (x)

)
− Jp

(
N∑
k=0

akL
∗
k (x)

)
= f (x) +

n∑
v=1

τvT
∗
(n−v+1)(x).

(3.11)
Where τv(v = 1(1)n) are the free tau parameters to be determined and ak, k =

0, 1, 2, . . . N are the unknown constants also to be determined.
Applying (1.2) and (1.3) on (3.11) to obtain:

N∑
k=0

ak
Γ (k + 1)

Γ (k + 1− p)
xk−p −

N∑
k=0

ak
Γ (k + 1)

Γ (k + 1 + p)
xk+p

= f (x) +
n∑

v=1

τvT
∗
(n−v+1) (x). (3.12)

Equation (3.12) is further simplified and then collocated at equally spaced in-
terior points, x = xi on [r, s]; xi = r + (s−r)i

N ; i = 1, 2, 3, . . . . . . N to obtain
a system of linear algebraic equations, including those obtained from the use of
initial conditions.

The values are then substituted into the assumed solution given in equation
(3.8) to give the required approximate solution.

4 Numerical Applications

We solved the below examples for N = 4 as defined in equations (3.2) and (3.8).

Example 4.1. Consider the linear fractional order integro-differential equation:

Dpu (x) = g (x)− Jpu (x) , u (0) = 0, x ∈ [0, 1] . (4.1)
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Where

g (x) =
Γ(4)

Γ
(
7
2

)x 5
2 +

Γ (4)

Γ
(
9
2

)x 7
2 − Γ (3)

Γ
(
7
2

)x 5
2 − Γ (3)

Γ
(
5
2

)x 3
2 , p =

1

2
. (4.2)

The exact solution is u (x) = x3 − x2.

TABLE 1: Results for example 4.1

x

Exact

Galerkin Method

(GM)

Error

(GM)

Perturbed

collocation method

(PCM)

Error

(PCM)

0.0 0.00000000000000 0.00000000000238 2.377e-12 -0.00000000000315 3.149e-12

0.1 -0.00900000000000 -0.00899999997700 2.309e-11 -0.00900113112700 1.131e-06

0.2 -0.03200000000000 -0.03199999996000 4.424e-11 -0.03200188411000 1.884e-06

0.3 -0.06300000000000 -0.06299999994000 6.463e-11 -0.06300193559000 1.936e-06

0.4 -0.09600000000000 -0.09599999992000 8.344e-11 -0.09600117452000 1.175e-06

0.5 -0.12500000000000 -0.12499999990000 1.003e-10 -0.12499970230000 2.977e-07

0.6 -0.14400000000000 -0.14400000000000 1.151e-10 -0.14399783240000 2.168e-06

0.7 -0.14700000000000 -0.14700000000000 1.284e-10 -0.14699609110000 3.909e-06

0.8 -0.12800000000000 -0.12799999980000 1.409e-10 -0.12799521660000 4.783e-06

0.9 -0.08100000000000 -0.08099999979000 1.539e-10 -0.08099615948000 3.841e-06

1.0 0.00000000000000 0.00000000016641 1.688e-10 -0.00000008272043 8.292e-08

Example 4.2. Consider the fractional integro-differential

Dpu (x) =
1√
π

(
256

315
x

9
2 +

16

3
x

3
2 +

96

35
x

7
2 − 16

15
x

5
2

)
− JPu (x) ,

p =
1

2
, u (0) = 0. (4.3)

Where the exact solution u (x) = x4 − x3 + 2x2.
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TABLE 2: Results for example 4.2

x

Exact

Galerkin Method

(GM)

Error

(GM)

Perturbed

collocation method

(PCM)

Error

(PCM)

0.0 0.00000000000000 0.00000000005000 5.000e-11 -0.00000000005000 5.000e-11

0.1 0.01910000000000 0.019099999930000 6.804e-11 0.01909934378000 6.562e-07

0.2 0.07360000000000 0.0735999998900000000 1.146e-10 0.07359903895000 9.610e-07

0.3 0.16110000000000 0.1610999998000000000 1.792e-10 0.16109929210000 7.080e-07

0.4 0.28160000000000 0.2815999997000000000 2.522e-10 0.28160014100000 1.410e-07

0.5 0.43750000000000 0.4374999996000000000 3.250e-10 0.43750145580000 1.456e-06

0.6 0.63360000000000 0.6335999995000000000 3.898e-10 0.63360293770000 2.938e-06

0.7 0.87710000000000 0.8770999996000000000 4.400e-10 0.87710411970000 4.120e-06

0.8 1.17760000000000 1.1776000000000000000 4.698e-10 1.17760436700000 4.366e-06

0.9 1.54710000000000 1.5470999990000000000 4.744e-10 1.54710287400000 2.874e-06

1.0 2.00000000000000 2.0000000000000000000 4.500e-10 1.99999867100000 1.330e-06

Example 4.3. Consider the fractional integro-differential equation:

Dpu (x) =
1√
π

(
16

5
x

5
2 − 32

35
x

7
2

)
− JPu (x) , p =

1

2
, u (0) = 0 0 ≤ x ≤ 1.

(4.4)
Where the exact solution u (x) = x3.

TABLE 3: Results for example 3

x

Exact

Galerkin Method

(GM)

Error

(GM)

Perturbed

collocation method

(PCM)

Error

(PCM)

0.0 0.00000000000000 -0.00000000009511 9.511e-11 0.0000000000129 1.292e-11

0.1 0.00100000000000 0.00099999999590 4.141e-12 0.00099902635130 9.736e-07

0.2 0.00800000000000 0.00800000007200 7.232e-11 0.00799766408300 2.336e-06

0.3 0.02700000000000 0.02700000014000 1.390e-10 0.02699607997000 3.920e-06

0.4 0.06400000000000 0.06400000019000 1.997e-10 0.06399446133000 5.539e-06

0.5 0.12500000000000 0.12500000030000 2.576e-10 0.12499301600000 6.984e-06

0.6 0.21600000000000 0.21600000030000 3.146e-10 0.21599197220000 8.028e-06

0.7 0.34300000000000 0.34300000030000 3.721e-10 0.34299157910000 8.421e-06

0.8 0.51200000000000 0.51200000050000 4.305e-10 0.51199210590000 7.894e-06

0.9 0.72900000000000 0.72900000050000 4.894e-10 0.72899384250000 6.157e-06

1.0 1.00000000000000 1.00000000100000 5.475e-10 0.99999709950000 2.900e-06
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5 conclusion

In this paper, we applied the Galerkin method combined with the perturbed col-
location method to solve a class of linear fractional integro-differential equation
consisting of the same order fractional differentiation and fractional integration
with the aid of shifted Legendre basis function. This study showed that Galerkin
method is more efficient and gives better results than those from perturbed collo-
cation method.

Acknowledgment: The authors are greatly indebted to the referee/s for his/her
valuable comments which have improved the paper immensely.
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