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Abstract

Let R be a ring with involution ∗. An additive mapping d : R → R is said
to a derivation of R if d(xy) = d(x)y + xd(y) for all x, y ∈ R. The aim of
this paper is to study the ∗-identities involving a pair of derivations on prime
ideals of rings with involution. Precisely, we prove that if a ring R with
involution ∗ admits two derivations d1 and d2 such that [d1(x), d2(x∗)] −
d1(x)◦x∗−x◦d2(x∗) ∈ P for all x ∈ R, where P is a prime ideal of R and
char(R/P ) ̸= 2, then d1(R) ⊆ P or d2(R) ⊆ P . Moreover, some related
results are also discussed.
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1 Introduction

Throughout the paper, R will denote an associative ring with center Z(R). Recall
that an ideal P of R is said to be prime if P ̸= R and for x, y ∈ R, xRy ⊆ P
implies that x ∈ P or y ∈ P . Therefore, R is called a prime ring if and only if
(0) is the prime ideal of R. For any x, y ∈ R, the symbol [x, y] will denote the
commutator xy − yx; while the symbol x ◦ y will stand for the anticommutator
xy + yx. An additive mapping x 7→ x∗ satisfying (xy)∗ = y∗x∗ and (x∗)∗ = x
is called an involution. A ring equipped with an involution is known as ring with
involution or ∗-ring. An element x in a ring with involution ∗ is said to be hermitian
if x∗ = x and skew-hermitian if x∗ = −x. The sets of all hermitian and skew-
hermitian elements of R will be denoted by H(R) and S(R), respectively. If R is
2-torsion free then every x ∈ R can be uniquely represented in the form 2x = h+k
where h ∈ H(R) and k ∈ S(R). The involution is said to be of the first kind if
H(R) ⊆ Z(R), otherwise it is said to be of the second kind. We refer the reader
to [2] for justification and amplification for the above mentioned notations and key
definitions.

A map d : R → R is a derivation of a ring R if d is additive and satisfies
d(xy) = d(x)y + xd(y) for all x, y ∈ R. Recently, many authors have ob-
tained commutativity of prime and semiprime rings admitting suitably constrained
additive mappings, as automorphisms, derivations, skew derivations and general-
ized derivations acting on appropriate subsets of the rings. We first recall that
for a nonempty subset S of R, a mapping f : S → R is called centralizing if
[f(x), x] ∈ Z(R) for all x ∈ S, in the special case where [f(x), x] = 0 for all
x ∈ S, the mapping f is said to be commuting on S. In [9], Posner proved that
if a prime ring R admits a nonzero derivation d such that [d(x), x] ∈ Z(R) for all
x ∈ R, then R is commutative. Over the last few decades, several authors have
subsequently refined and extended this classical theorem in various directions (see
[1], [4], [5] and [8] where further references can be found).

The objective of the present paper is to study the various ∗-differential identities
involving pair of derivations on prime ideals of rings with involution.

2 The Results

We shall do a great deal of calculation with commutators and anti-commutators,
routinely using the following basic identities: For all s, t, w ∈ R;

[st, w] = s[t, w] + [s, w]t and [s, tw] = t[s, w] + [s, t]w
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s ◦ (tw) = (s ◦ t)w − t[s, w] = t(s ◦ w) + [s, t]w

(st) ◦ w = s(t ◦ w)− [s, w]t = (s ◦ w)t+ s[t, w].

We start our investigation with the following lemmas which will be used fre-
quently throughout the discussions.

Lemma 2.1. [3, Lemma 2.3] Let R be a ring with involution ∗ of the second kind,

P a prime ideal of R such that S(R) ∩ Z(R) ̸⊆ P and char(R/P ) ̸= 2. If

[x, x∗] ∈ P for all x ∈ R, then R/P is a commutative integral domain.

Lemma 2.2. [6, Lemma 1] Let R be a ring, P be a prime ideal of R. If d is a

derivation of R satisfies the condition [d(x), x] ∈ P for all x ∈ R, then d(R) ⊆ P

or R/P is a commutative integral domain.

The first main result of this paper is the following:

Theorem 2.1. Let R be a ring with involution ∗ of the second kind, P a prime ideal

of R such that S(R)∩Z(R) ̸⊆ P and char(R/P ) ̸= 2. If d1 and d2 are derivations

of R satisfying the condition [d1(x), d2(x
∗)]− d1(x) ◦ x∗ − x ◦ d2(x∗) ∈ P for all

x ∈ R, then d1(R) ⊆ P and d2(R) ⊆ P .

Proof. By the hypothesis, we have

[d1(x), d2(x
∗)]− d1(x) ◦ x∗ − x ◦ d2(x∗) ∈ P (2.1)

for all x ∈ R. A direct linearization yields

[d1(x), d2(y
∗)]+[d1(y), d2(x

∗)]−d1(x)◦y∗−d1(y)◦x∗−x◦d2(y∗)−y◦d2(x∗) ∈ P

(2.2)
for all x, y ∈ R. Writing xh instead of x in (2.2), where h ∈ H(R) ∩ Z(R), we
may obtain

d1(h)[x, d2(y
∗)] + d2(h)[d1(y), x

∗]− d1(h)(x ◦ y∗)− d2(h)(y ◦ x∗) ∈ P (2.3)

for all x, y ∈ R. Replacing x by xk in (2.3), where k ∈ S(R) ∩ Z(R), and using
the condition S(R) ∩ Z(R) ⊈ P , we find that

d1(h)[x, d2(y
∗)]− d2(h)[d1(y), x

∗]− d1(h)(x ◦ y∗) + d2(h)(y ◦ x∗) ∈ P (2.4)
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for all x, y ∈ R. Combining (2.3) and (2.4), we get

2d1(h)([x, d2(y
∗)]− x ◦ y∗) ∈ P

for all x, y ∈ R. This further implies

d1(h)([x, d2(y)]− x ◦ y) ∈ P

for all x, y ∈ R. Primeness of P yields d1(h) ∈ P or [x, d2(y)] − x ◦ y ∈ P .
Consider the case [x, d2(y)] − x ◦ y ∈ P for all x, y ∈ R. In particular, for
x = k, we have 2ky ∈ P for all y ∈ R. Using the conditions char(R/P ) ̸= 2 and
S(R) ∩ Z(R) ⊈ P , we can obtain R ⊆ P , which is not possible. Thus we are left
with the only case d1(h) ∈ P for all h ∈ H(R) ∩ Z(R), which yields d1(k) ∈ P

for all k ∈ S(R)∩Z(R). In the similar manner we can also find d2(k) ∈ P for all
k ∈ S(R) ∩ Z(R). Now, substituting xk in place of x in (2.2) and using the fact
that d1(k), d2(k) ∈ P , we get

k([d1(x), d2(y
∗)]−[d1(y), d2(x

∗)]−d1(x)◦y∗+d1(y)◦x∗−x◦d2(y∗)+y◦d2(x∗)) ∈ P

for all x, y ∈ R. Since S(R) ∩ Z(R) ⊈ P , it follows that

[d1(x), d2(y
∗)]−[d1(y), d2(x

∗)]−d1(x)◦y∗+d1(y)◦x∗−x◦d2(y∗)+y◦d2(x∗) ∈ P

(2.5)
for all x, y ∈ R. Adding (2.2) and (2.5), we obtain

2([d1(x), d2(y
∗)]− d1(x) ◦ y∗ − x ◦ d2(y∗)) ∈ P

for all x, y ∈ R. This implies

[d1(x), d2(y)]− d1(x) ◦ y − x ◦ d2(y) ∈ P (2.6)

for all x, y ∈ R. For y = k (2.6) reduces to 2kd1(x) ∈ P for all x ∈ R. This gives
d1(R) ⊆ P. Similarly, for x = k (2.6) reduces to 2kd2(y) ∈ P for all y ∈ R and
hence d2(R) ⊆ P. Thereby the proof is completed.
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Corollary 2.1. Let R be a ring with involution ∗ of the second kind, P a prime

ideal of R such that S(R) ∩ Z(R) ̸⊆ P and char(R/P ) ̸= 2. If d is a derivation

of R satisfying the condition [d(x), d(x∗)] − d(x ◦ x∗) ∈ P for all x ∈ R, then

d(R) ⊆ P .

Corollary 2.2. Let R be a prime ring with involution ∗ of the second kind such that

char(R) ̸= 2. Then there are no nonzero derivations d1 and d2 of R satisfying the

condition [d1(x), d2(x
∗)]− d1(x) ◦ x∗ − x ◦ d2(x∗) = 0 for all x ∈ R.

Corollary 2.3. Let R be a prime ring with involution ∗ of the second kind such that

char(R) ̸= 2. Then there is no nonzero derivation d of R satisfying the condition

[d(x), d(x∗)] = d(x ◦ x∗) for all x ∈ R.

Theorem 2.2. Let R be a ring with involution ∗ of the second kind, P a prime ideal

of R such that S(R) ∩ Z(R) ̸⊆ P and char(R/P ) ̸= 2. If R admits derivations

d1 and d2 such that d1(x) ◦x∗+x ◦d2(x∗)− [x, x∗] ∈ P for all x ∈ R, then R/P

is a commutative integral domain.

Proof. By the hypothesis, we have

d1(x) ◦ x∗ + x ◦ d2(x∗)− [x, x∗] ∈ P for all x ∈ R. (2.7)

A linearizing (2.7) and using it, we get

d1(x) ◦ y∗ + d1(y) ◦ x∗ + x ◦ d2(y∗) + y ◦ d2(x∗)− [x, y∗]− [y, x∗] ∈ P (2.8)

for all x, y ∈ R. Replacing x by xh in (2.8) and using it, we get

d1(h)(x ◦ y∗) + d2(h)(y ◦ x∗) ∈ P

for all x, y ∈ R, which gives

d1(k)(x ◦ y∗) + d2(k)(y ◦ x∗) ∈ P (2.9)

for all x, y ∈ R. Replacing x by xk in (2.9), we have

d1(k)(x ◦ y∗)− d2(k)(y ◦ x∗) ∈ P (2.10)
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for all x, y ∈ R. Combining (2.9) and (2.10), we obtain

2d1(k)(x ◦ y∗) ∈ P for all x, y ∈ R.

This implies
d1(k)(x ◦ y) ∈ P for all x, y ∈ R.

Application of primeness of P yields d1(k) ∈ P or x ◦ y ∈ P . If x ◦ y ∈ P

for all x, y ∈ R, then for y = k, we get 2xk ∈ P for all x ∈ R. Using the
hypotheses of theorem, we arrive at R ⊆ P , which is not possible. Thus, we have
d1(k) ∈ P. Similarly, d2(k) also in P . Now replacing x by xk in (2.8) and using
d1(k), d2(k) ∈ P and S(R) ∩ Z(R) ⊈ P , we can find

d1(x) ◦ y∗ − d1(y) ◦ x∗ + x ◦ d2(y∗)− y ◦ d2(x∗)− [x, y∗] + [y, x∗] ∈ P. (2.11)

From (2.8) and (2.11), we have

2d1(x) ◦ y∗ + 2x ◦ d2(y∗)− 2[x, y∗] ∈ P for all x, y ∈ R.

This implies that

d1(x) ◦ y + x ◦ d2(y)− [x, y] ∈ P for all x, y ∈ R. (2.12)

Putting y = k in (2.12) and using d1(k) ∈ P , we get

2kd1(x) ∈ P for all x ∈ R,

which gives us d1(R) ⊆ P. Hence (2.12) reduces to

x ◦ d2(y)− [x, y] ∈ P for all x, y ∈ R.

Again for x = k in the above, we can get d2(R) ⊆ P. Therefore, (2.7) becomes
[x, x∗] ∈ P for all x ∈ R. Application of Lemma 2.1 yields R/P is a commutative
integral domain.
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Corollary 2.4. Let R be a ring with involution ∗ of the second kind, P a prime

ideal of R such that S(R) ∩ Z(R) ̸⊆ P and char(R/P ) ̸= 2. If R admits a

derivation d such that d(x ◦ x∗) − [x, x∗] ∈ P for all x ∈ R, then R/P is a

commutative integral domain.

Corollary 2.5. Let R be a prime ring with involution ∗ of the second kind such

that char(R) ̸= 2. If d1 and d2 are derivations of R satisfying the condition

d1(x) ◦ x∗ + x ◦ d2(x
∗) − [x, x∗] = 0 for all x ∈ R, then R is a commutative

integral domain.

Corollary 2.6. Let R be a prime ring with involution ∗ of the second kind such that

char(R) ̸= 2. If d is a derivation of R satisfying the condition d(x◦x∗)−[x, x∗] =

0 for all x ∈ R, then R is a commutative integral domain.

Theorem 2.3. Let R be a ring with involution ∗ of the second kind, P a prime

ideal of R such that S(R) ∩ Z(R) ̸⊆ P and char(R/P ) ̸= 2. If d1 and d2 are

derivations of R satisfying d1(x)d2(x
∗)− [x, x∗] ∈ P for all x ∈ R, then R/P is

a commutative integral domain.

Proof. We have
d1(x)d2(x

∗)− [x, x∗] ∈ P (2.13)

for all x ∈ R. If d1(R) ⊆ P or d2(R) ⊆ P , then result follows from Lemma 2.1.
Next, we may now assume that d1(R) ⊈ P and d2(R) ⊈ P . Linearizing (2.13),
we obtain

d1(x)d2(y
∗) + d1(y)d2(x

∗)− [x, y∗]− [y, x∗] ∈ P (2.14)

for all x, y ∈ R. Replacing x by xh in (2.14), where h ∈ H(R) ∩ Z(R), we get

d1(h)xd2(y
∗) + d1(y)x

∗d2(h) ∈ P (2.15)

for all x, y ∈ R. Replacing x by xk in (2.15), where k ∈ S(R) ∩ Z(R) ̸⊆ P , then

d1(h)xd2(y
∗)− d1(y)x

∗d2(h) ∈ P (2.16)
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for all x, y ∈ R. Combining (2.15) and (2.16), we obtain

2d1(h)xd2(y
∗) ∈ P

for all x, y ∈ R. This implies that

d1(h)Rd2(R) ⊆ P.

Since d2(R) ⊈ P , primeness of P yields d1(h) ∈ P for all h ∈ H(R)∩Z(R) and
hence d1(k) ∈ P for all k ∈ S(R) ∩ Z(R). Similarly, we can find that d2(k) ∈ P

for all k ∈ S(R)∩Z(R). Replacing x by xk in (2.14) and using d1(k), d2(k) ∈ P,

one can get

d1(x)d2(y
∗)− d1(y)d2(x

∗)− [x, y∗] + [y, x∗] ∈ P (2.17)

for all x, y ∈ R. Addition of (2.14) and (2.17) gives

2d1(x)d2(y
∗)− 2[x, y∗] ∈ P.

That implies that
d1(x)d2(y)− [x, y] ∈ P (2.18)

for all x, y ∈ R. Thus, in view of [7, Theorem 1(2)], R/P is a commutative
integral domain.

Corollary 2.7. Let R be a prime ring with involution ∗ of the second kind such

that char(R) ̸= 2. If d1 and d2 are derivations of R satisfying the condition

d1(x)d2(x
∗)− [x, x∗] = 0 for all x ∈ R, then R is a commutative integral domain.

Theorem 2.4. Let R be a ring with involution ∗ of the second kind, P a prime ideal

of R such that S(R)∩Z(R) ̸⊆ P and char(R/P ) ̸= 2. If R admits derivations d1
and d2 such that [d1(x) ◦ x∗, d2(x∗)] ∈ P for all x ∈ R, then one of the following

holds:

(i) d1(R) ⊆ P
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(ii) d2(R) ⊆ P

(iii) R/P is a commutative integral domain.

Proof. By the hypothesis, we have

[d1(x) ◦ x∗, d2(x∗)] ∈ P for all x ∈ R. (2.19)

A linearization of (2.19) gives

[d1(x) ◦ x∗, d2(y∗)] + [d1(x) ◦ y∗, d2(x∗)] + [d1(x) ◦ y∗, d2(y∗)] (2.20)

+ [d1(y) ◦ x∗, d2(x∗)] + [d1(y) ◦ x∗, d2(y∗)] + [d1(y) ◦ y∗, d2(x∗)] ∈ P

for all x, y ∈ R. Replacing x by −x in (2.20), we get

[d1(x) ◦ x∗, d2(y∗)] + [d1(x) ◦ y∗, d2(x∗)]− [d1(x) ◦ y∗, d2(y∗)] (2.21)

+ [d1(y) ◦ x∗, d2(x∗)]− [d1(y) ◦ x∗, d2(y∗)]− [d1(y) ◦ y∗, d2(x∗)] ∈ P

for all x, y ∈ R. Combining (2.20) and (2.21) and using the hypothesis of theorem,
we obtain

[d1(x) ◦ x∗, d2(y∗)] + [d1(x) ◦ y∗, d2(x∗)] + [d1(y) ◦ x∗, d2(x∗)] ∈ P (2.22)

for all x, y ∈ R. Replacing y by yh in (2.22), we find that

d2(h)[d1(x) ◦ x∗, y∗] + d1(h)[y ◦ x∗, d2(x∗)] ∈ P for all x, y ∈ R.

In particular for y = k, we have

2kd1(h)[x
∗, d2(x

∗)] ∈ P for all x ∈ R,

which gives that
d1(h)[x, d2(x)] ∈ P for all x ∈ R.

Primeness of P yields d1(h) ∈ P or [x, d2(x)] ∈ P . In view of Lemma 2.2, the
latter case gives that d2(R) ⊆ P or R/P is a commutative integral domain. On
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the other hand, d1(h) ∈ P for all h ∈ H(R) ∩ Z(R) implies d1(k) ∈ P for all
k ∈ S(R) ∩ Z(R). Now, taking y = k in (2.22), we conclude that

−2k[d1(x), d2(x
∗)] ∈ P for all x ∈ R.

Using the hypotheses of theorem, we obtain

[d1(x), d2(x
∗)] ∈ P for all x ∈ R. (2.23)

Linearization of (2.23) yields that

[d1(x), d2(y
∗)] + [d1(y), d2(x

∗)] ∈ P for all x, y ∈ R. (2.24)

Substituting xh for x in (2.24), where 0 ̸= h ∈ S(R) ∩ Z(R), we get

d1(h)[x, d2(y
∗)] + d2(h)[d1(y), x

∗] ∈ P for all x, y ∈ R.

Taking h = k2 in the last relation and using the given hypotheses of theorem, we
obtain

d1(k)[x, d2(y
∗)] + d2(k)[d1(y), x

∗] ∈ P for all x, y ∈ R.

Replacing x by xk in the last expression and using the condition S(R)∩Z(R) ̸⊆ P ,
we get

d1(k)[x, d2(y
∗)]− d2(k)[d1(y), x

∗] ∈ P for all x, y ∈ R. (2.25)

Substituting xk in place of x in (2.24), where 0 ̸= k ∈ S(R) ∩ Z(R), we find that

d1(k)[x, d2(y
∗)] + k[d1(x), d2(y

∗)]− k[d1(y), d2(x
∗)]− d2(k)[d1(y), x

∗] ∈ P

(2.26)
for all x, y ∈ R. Using (2.25) and the condition S(R) ∩ Z(R)) ̸⊆ P in the above
relation, we conclude that

[d1(x), d2(y
∗)]− [d1(y), d2(x

∗)] ∈ P for all x, y ∈ R. (2.27)
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Addition of (2.24) and (2.27) yields that

2([d1(x), d2(y
∗)]) ∈ P for all x, y ∈ R.

That implies that
[d1(x), d2(y)] ∈ P for all x, y ∈ R.

Hence, in view of [6, Theorem 1], we get the required results. Thereby the proof is
completed now.

Corollary 2.8. Let R be a ring with involution ∗ of the second kind, P a prime

ideal of R such that S(R) ∩ Z(R) ̸⊆ P and char(R/P ) ̸= 2. If R admits a

derivation d such that [d(x) ◦ x∗, d(x∗)] ∈ P for all x ∈ R, then d(R) ⊆ P or

R/P is a commutative integral domain.

Corollary 2.9. Let R be a prime ring with involution ∗ of the second kind such that

char(R) ̸= 2. If R admits derivations d1 and d2 such that [d1(x)◦x∗, d2(x∗)] = 0

for all x ∈ R, then one of the following holds:

(i) d1 = 0

(ii) d2 = 0

(iii) R is a commutative integral domain.

Corollary 2.10. Let R be a prime ring with involution ∗ of the second kind such

that char(R) ̸= 2. If R admits a derivation d such that [d(x) ◦ x∗, d(x∗)] = 0 for

all x ∈ R, then R is a commutative integral domain or d = 0.
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