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Abstract

In this paper we introduce the idea of generalized Nevanlinna type (α, β)
and generalized Nevanlinna weak type (α, β) of an analytic function in the
unit disc. Hence we study some growth properties of Nevanlinna’s charac-
teristic function relating to the composition of two analytic functions in the
unit disc on the basis of generalized Nevanlinna type (α, β) and generalized
Nevanlinna weak type (α, β) as compared to the growth of their correspond-
ing left and right factors, where α, β are continuous non-negative functions
defined on (−∞,+∞).
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1 Introduction, Definitions and Notations

A function f , analytic in the unit disc U = {z : |z| < 1} is said to be of
finite Nevanlinna order [1] if there exists a number µ such that the Nevanlinna
characteristic function of f denoted by

T (r, f) =
1

2π

2π∫
0

log+
∣∣∣f (

reiθ
)∣∣∣ dθ

satisfies Tf (r) < (1− r)−µ for all r in 0 < r0 (µ) < r < 1. The greatest lower
bound of all such numbers µ is called the Nevanlinna order of f . Thus the Nevan-
linna order ρ(f) of f is given by

ρ(f) = lim sup
r→1

log Tf (r)

− log (1− r)
.

Similarly, the Nevanlinna lower order λ(f) of f is given by

λ(f) = lim inf
r→1

log Tf (r)

− log (1− r)
.

Now let L be a class of continuous non-negative functions α defined on
(−∞,+∞) such that α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x) ↑ +∞ as x →
+∞. Further we assume that throughout the present paper α, α1, α2, α3, β ∈ L.
Now considering this, Biswas et al. [2] have introduced the definitions of the gen-
eralized Nevanlinna order (α, β) and generalized Nevanlinna lower order (α, β) of
an analytic function f in the unit disc U which are as follows:

Definition 1.1. [2] The generalized Nevanlinna order (α, β) denoted by ρ(α,β)[f ]

and generalized Nevanlinna lower order (α, β) denoted by λ(α,β)[f ] of an analytic
function f in the unit disc U are defined as:

ρ(α,β)[f ] = lim sup
r→1

α(exp(Tf (r)))

β
(

1
1−r

) and λ(α,β)[f ] = lim inf
r→1

α(exp(Tf (r)))

β
(

1
1−r

) .

Clearly ρ(log log r,log r)[f ] = ρ (f) and λ(log log r,log r)[f ] = λ (f) .
Now in order to refine the growth scale namely the generalized Nevan-

linna order (α, β), we introduce the definitions of another growth indicators, called
generalized Nevanlinna type (α, β) and generalized Nevanlinna lower type (α, β)
respectively of an analytic function f in the unit disc U which are as follows:
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Definition 1.2. The generalized Nevanlinna type (α, β) denoted by σ(α,β)[f ] and
generalized Nevanlinna lower type (α, β) denoted by σ(α,β)[f ] of an analytic func-
tion f in the unit disc U having finite positive generalized Nevanlinna order (α, β)(
0 < ρ(α,β)[f ] < ∞

)
are defined as :

σ(α,β)[f ] = lim sup
r→1

exp (α (exp(Tf (r))))(
exp

(
β
(

1
1−r

)))ρ(α,β)[f ]

and σ(α,β)[f ] = lim inf
r→1

exp (α (exp(Tf (r))))(
exp

(
β
(

1
1−r

)))ρ(α,β)[f ]
.

It is obvious that 0 ≤ σ(α,β)[f ] ≤ σ(α,β)[f ] ≤ ∞.

Analogously, to determine the relative growth of two analytic functions
in the unit disc U having same non zero finite generalized Nevanlinna lower or-
der (α, β), one can introduce the definitions of generalized Nevanlinna weak type
(α, β) and generalized Nevanlinna upper weak type (α, β) of an analytic function
f in the unit disc U of finite positive generalized lower order (α, β) , λ(α,β)[f ] in
the following way:

Definition 1.3. The generalized Nevanlinna upper weak type (α, β) denoted by
τ (α,β)[f ] and generalized Nevanlinna weak type (α, β) denoted by τ (α,β)[f ] of an
analytic function f in the unit disc U having finite positive generalized Nevanlinna
lower order (α, β)

(
0 < λ(α,β)[f ] < ∞

)
are defined as :

τ (α,β)[f ] = lim sup
r→1

exp (α (exp(Tf (r))))(
exp

(
β
(

1
1−r

)))λ(α,β)[f ]

and τ (α,β)[f ] = lim inf
r→1

exp (α (exp(Tf (r))))(
exp

(
β
(

1
1−r

)))λ(α,β)[f ]
.

It is obvious that 0 ≤ τ (α,β)[f ] ≤ τ (α,β)[f ] ≤ ∞.

However some works about the Nevanlinna theory in the field of unit disc
are done in different directions, e.g., one may see [6, 7, 8]. The concept of gener-
alized order (α, β) of entire function was first introduced by Sheremeta [9] where
α, β ∈ L. Several authors made close investigations on the properties of entire
functions related to generalized order (α, β) in some different directions. For the
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purpose of further applications, Biswas et al. [2] introduced the definitions of
the generalized Nevanlinna order (α, β) and generalized Nevanlinna lower order
(α, β) of an analytic function f in the unit disc U . In this paper the authors stud-
ied about some growth properties of Nevanlinna’s characteristic function relating
to the composition of two analytic functions in the unit disc on the basis of gen-
eralized Nevanlinna type (α, β) and generalized Nevanlinna weak type (α, β) as
compared to the growth of their corresponding left and right factors. This paper is
a continuous part of the previous paper [2] of this present authors. The standard
definitions and notations in the theory of entire functions are not explained here, as
those are available in [1, 3, 4, 5].

2 The main results

In this section we present the main results of the paper.

Theorem 2.1. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < σ(α1,β)[f ◦ g] ≤ σ(α1,β)[f ◦ g] < ∞, 0 < σ(α2,β)[f ] ≤
σ(α2,β)[f ] < ∞ and ρ(α1,β)[f ◦ g] = ρ(α2,β)[f ]. Then

σ(α1,β)[f ◦ g]
σ(α2,β)[f ]

≤ lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ σ(α1,β)[f ◦ g]

σ(α2,β)[f ]

≤ lim sup
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ σ(α1,β)[f ◦ g]

σ(α2,β)[f ]
.

Proof. From the definition of σ(α2,β)[f ] and σ(α1,β)[f ◦ g], we have for arbitrary
positive ε and for all sufficiently large values of 1

1−r that

exp(α1(exp(Tf◦g(r)))) ≥
(
σ(α1,β)[f ◦ g]− ε

)(
exp

(
β

(
1

1− r

)))ρ(α1,β)[f◦g]
,

(2.1)
and

exp(α2(exp(Tf (r)))) ≤
(
σ(α2,β)[f ] + ε

)(
exp

(
β

(
1

1− r

)))ρ(α2,β)[f ]

.

(2.2)
Now from (2.1), (2.2) and the condition ρ(α1,β)[f ◦ g] = ρ(α2,β)[f ], it follows for
all sufficiently large values of 1

1−r that

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
⩾

σ(α1,β)[f ◦ g]− ε

σ(α2,β)[f ] + ε
.
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As ε (> 0) is arbitrary , we obtain from above that

lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
⩾

σ(α1,β)[f ◦ g]
σ(α2,β)[f ]

. (2.3)

Again for a sequence of values of 1
1−r tending to infinity, we get that

exp(α1(exp(Tf◦g(r)))) ≤
(
σ(α1,β)[f ◦ g] + ε

)(
exp

(
β

(
1

1− r

)))ρ(α1,β)[f◦g]

(2.4)
and for all sufficiently large values of 1

1−r ,

exp(α2(exp(Tf (r)))) ≥
(
σ(α2,β)[f ]− ε

)(
exp

(
β

(
1

1− r

)))ρ(α2,β)[f ]

.

(2.5)
Combining (2.4) and (2.5) and the condition ρ(α1,β)[f ◦g] = ρ(α2,β)[f ], we get for
a sequence of values of 1

1−r tending to infinity that

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ σ(α1,β)[f ◦ g] + ε

σ(α2,β)[f ]− ε
.

Since ε (> 0) is arbitrary, it follows from above that

lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ σ(α1,β)[f ◦ g]

σ(α2,β)[f ]
. (2.6)

Also for a sequence of values of r tending to infinity, it follows that

exp(α2(exp(Tf (r)))) ≤
(
σ(α2,β)[f ] + ε

)(
exp

(
β

(
1

1− r

)))ρ(α2,β)[f ]

.

(2.7)
Now from (2.1), (2.7) and the condition ρ(α1,β)[f ◦ g] = ρ(α2,β)[f ], we obtain for
a sequence of values of 1

1−r tending to infinity that

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≥ σ(α1,β)[f ◦ g]− ε

σ(α2,β)[f ] + ε
.

As ε (> 0) is arbitrary, we get from above that

lim sup
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≥ σ(α1,β)[f ◦ g]

σ(α2,β)[f ]
. (2.8)
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Also for all sufficiently large values of 1
1−r ,

exp(α1(exp(Tf◦g(r)))) ≤
(
σ(α1,β)[f ◦ g] + ε

)(
exp

(
β

(
1

1− r

)))ρ(α1,β)[f◦g]
.

(2.9)
In view of the condition ρ(α1,β)[f ◦ g] = ρ(α2,β)[f ], it follows from (2.5) and (2.9)

for all sufficiently large values of 1
1−r that

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ σ(α1,β)[f ◦ g] + ε

σ(α2,β)[f ]− ε
.

Since ε (> 0) is arbitrary, we obtain that

lim sup
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ σ(α1,β)[f ◦ g]

σ(α2,β)[f ]
. (2.10)

Thus the theorem follows from (2.3) , (2.6) , (2.8) and (2.10) .

The following theorem can be proved in the line of Theorem 2.1 and so
its proof is omitted.

Theorem 2.2. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < σ(α1,β)[f ◦ g] ≤ σ(α1,β)[f ◦ g] < ∞, 0 < σ(α3,β)[g] ≤
σ(α3,β)[g] < ∞ and ρ(α1,β)[f ◦ g] = ρ(α3,β)[g]. Then

σ(α1,β)[f ◦ g]
σ(α3,β)[g]

≤ lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
≤ σ(α1,β)[f ◦ g]

σ(α3,β)[g]

≤ lim sup
r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
≤ σ(α1,β)[f ◦ g]

σ(α3,β)[g]
.

Theorem 2.3. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < σ(α1,β)[f ◦ g] < ∞, 0 < σ(α2,β)[f ] < ∞ and ρ(α1,β)[f ◦ g]
= ρ(α2,β)[f ]. Then

lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ σ(α1,β)[f ◦ g]

σ(α2,β)[f ]
≤ lim sup

r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
.

Proof. From the definition of σ(α2,β)[f ], we get for a sequence of values of 1
1−r

tending to infinity that

exp(α2(exp(Tf (r)))) ≥
(
σ(α2,β)[f ]− ε

)(
exp

(
β

(
1

1− r

)))ρ(α2,β)[f ]

.

(2.11)
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Now from (2.9), (2.11) and the condition ρ(α1,β)[f ◦ g] = ρ(α2,β)[f ], it follows for
a sequence of values of 1

1−r tending to infinity that

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ σ(α1,β)[f ◦ g] + ε

σ(α2,β)[f ]− ε
.

As ε (> 0) is arbitrary, we obtain that

lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ σ(α1,β)[f ◦ g]

σ(α2,β)[f ]
. (2.12)

Again for a sequence of values of 1
1−r tending to infinity that

exp(α1(exp(Tf◦g(r)))) ⩾
(
σ(α1,β)[f ◦ g]− ε

)(
exp

(
β

(
1

1− r

)))ρ(α1,β)[f◦g]
.

(2.13)
So combining (2.2) and (2.13) and in view of the condition ρ(α1,β)[f ◦ g] =

ρ(α2,β)[f ], we get for a sequence of values of 1
1−r tending to infinity that

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
⩾

σ(α1,β)[f ◦ g]− ε

σ(α2,β)[f ] + ε
.

Since ε (> 0) is arbitrary, it follows that

lim sup
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
⩾

σ(α1,β)[f ◦ g]
σ(α2,β)[f ]

. (2.14)

Thus the theorem follows from (2.12) and (2.14) .

The following theorem can be carried out in the line of Theorem 2.3 and
therefore we omit its proof.

Theorem 2.4. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < σ(α1,β)[f ◦ g] < ∞, 0 < σ(α3,β)[g] < ∞ and ρ(α1,β)[f ◦ g] =
ρ(α3,β)[g]. Then

lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
≤ σ(α1,β)[f ◦ g]

σ(α3,β)[g]
≤ lim sup

r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
.

The following theorem is a natural consequence of Theorem 2.1 and The-
orem 2.3:
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Theorem 2.5. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < σ(α1,β)[f ◦ g] ≤ σ(α1,β)[f ◦ g] < ∞, 0 < σ(α2,β)[f ] ≤
σ(α2,β)[f ] < ∞ and ρ(α1,β)[f ◦ g] = ρ(α2,β)[f ]. Then

lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ min

{
σ(α1,β)[f ◦ g]
σ(α2,β)[f ]

,
σ(α1,β)[f ◦ g]
σ(α2,β)[f ]

}

≤ max

{
σ(α1,β)[f ◦ g]
σ(α2,β)[f ]

,
σ(α1,β)[f ◦ g]
σ(α2,β)[f ]

}
≤ lim sup

r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
.

Analogously one may state the following theorem without its proof:

Theorem 2.6. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < σ(α1,β)[f ◦ g] ≤ σ(α1,β)[f ◦ g] < ∞, 0 < σ(α3,β)[g] ≤
σ(α3,β)[g] < ∞ and ρ(α1,β)[f ◦ g] = ρ(α3,β)[g]. Then

lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
≤ min

{
σ(α1,β)[f ◦ g]
σ(α3,β)[g]

,
σ(α1,β)[f ◦ g]
σ(α3,β)[g]

}

≤ max

{
σ(α1,β)[f ◦ g]
σ(α3,β)[g]

,
σ(α1,β)[f ◦ g]
σ(α3,β)[g]

}
≤ lim sup

r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
.

Now in the line of Theorem 2.1, Theorem 2.3, Theorem 2.5 and Theorem
2.2, Theorem 2.4, Theorem 2.6 respectively one can easily prove the following six
theorems using the notion of generalized Nevanlinna weak type and therefore their
proofs are omitted.

Theorem 2.7. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < τ (α1,β)[f ◦ g] ≤ τ (α1,β)[f ◦ g] < ∞, 0 < τ (α2,β)[f ] ≤
τ (α2,β)[f ] < ∞ and λ(α1,β)[f ◦ g] = λ(α2,β)[f ]. Then

τ (α1,β)[f ◦ g]
τ (α2,β)[f ]

≤ lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ τ (α1,β)[f ◦ g]

τ (α2,β)[f ]

≤ lim sup
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ τ (α1,β)[f ◦ g]

τ (α2,β)[f ]
.

Theorem 2.8. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < τ (α1,β)[f ◦ g] < ∞, 0 < τ (α2,β)[f ] < ∞ and λ(α1,β)[f ◦ g] =
λ(α2,β)[f ]. Then

lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ τ (α1,β)[f ◦ g]

τ (α2,β)[f ]
≤ lim sup

r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
.
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Theorem 2.9. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < τ (α1,β)[f ◦ g] ≤ τ (α1,β)[f ◦ g] < ∞, 0 < τ (α2,β)[f ] ≤
τ (α2,β)[f ] < ∞ and λ(α1,β)[f ◦ g] = λ(α2,β)[f ]. Then

lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ min

{
τ (α1,β)[f ◦ g]
τ (α2,β)[f ]

,
τ (α1,β)[f ◦ g]
τ (α2,β)[f ]

}

≤ max

{
τ (α1,β)[f ◦ g]
τ (α2,β)[f ]

,
τ (α1,β)[f ◦ g]
τ (α2,β)[f ]

}
≤ lim sup

r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
.

Theorem 2.10. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < τ (α1,β)[f◦g]≤ τ (α1,β)[f◦g]< ∞, 0 < τ (α3,β)[g]≤ τ (α3,β)[g]

< ∞ and λ(α1,β)[f ◦ g] = λ(α3,β)[g]. Then

τ (α1,β)[f ◦ g]
τ (α3,β)[g]

≤ lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
≤ τ (α1,β)[f ◦ g]

τ (α3,β)[g]

≤ lim sup
r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
≤ τ (α1,β)[f ◦ g]

τ (α3,β)[g]
.

Theorem 2.11. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < τ (α1,β)[f ◦ g] < ∞, 0 < τ (α3,β)[g] < ∞ and λ(α1,β)[f ◦ g] =
λ(α3,β)[g]. Then

lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
≤ τ (α1,β)[f ◦ g]

τ (α3,β)[g]
≤ lim sup

r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
.

Theorem 2.12. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < τ (α1,β)[f◦g]≤ τ (α1,β)[f◦g]< ∞, 0 < τ (α3,β)[g]≤ τ (α3,β)[g]

< ∞ and λ(α1,β)[f ◦ g] = λ(α3,β)[g]. Then

lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
≤ min

{
τ (α1,β)[f ◦ g]
τ (α3,β)[g]

,
τ (α1,β)[f ◦ g]
τ (α3,β)[g]

}

≤ max

{
τ (α1,β)[f ◦ g]
τ (α3,β)[g]

,
τ (α1,β)[f ◦ g]
τ (α3,β)[g]

}
≤ lim sup

r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
.

We may now state the following theorems without their proofs based on
generalized Nevanlinna type (α, β) and generalized Nevanlinna weak type (α, β):
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Theorem 2.13. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < σ(α1,β)[f ◦ g] ≤ σ(α1,β)[f ◦ g] < ∞, 0 < τ (α2,β)[f ] ≤
τ (α2,β)[f ] < ∞ and ρ(α1,β)[f ◦ g] = λ(α2,β)[f ]. Then

σ(α1,β)[f ◦ g]
τ (α2,β)[f ]

≤ lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ σ(α1,β)[f ◦ g]

τ (α2,β)[f ]

≤ lim sup
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ σ(α1,β)[f ◦ g]

τ (α2,β)[f ]
.

Theorem 2.14. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < σ(α1,β)[f ◦ g] < ∞, 0 < τ (α2,β)[f ] < ∞ and ρ(α1,β)[f ◦ g] =
λ(α2,β)[f ]. Then

lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ σ(α1,β)[f ◦ g]

τ (α2,β)[f ]
≤ lim sup

r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
.

Theorem 2.15. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < σ(α1,β)[f ◦ g] ≤ σ(α1,β)[f ◦ g] < ∞, 0 < τ (α2,β)[f ] ≤
τ (α2,β)[f ] < ∞ and ρ(α1,β)[f ◦ g] = λ(α2,β)[f ]. Then

lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ min

{
σ(α1,β)[f ◦ g]
τ (α2,β)[f ]

,
σ(α1,β)[f ◦ g]
τ (α2,β)[f ]

}

≤ max

{
σ(α1,β)[f ◦ g]
τ (α2,β)[f ]

,
σ(α1,β)[f ◦ g]
τ (α2,β)[f ]

}
≤ lim sup

r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
.

Theorem 2.16. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < τ (α1,β)[f ◦ g] ≤ τ (α1,β)[f ◦ g] < ∞, 0 < σ(α2,β)[f ] ≤
σ(α2,β)[f ] < ∞ and λ(α1,β)[f ◦ g] = ρ(α2,β)[f ]. Then

τ (α1,β)[f ◦ g]
σ(α2,β)[f ]

≤ lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ τ (α1,β)[f ◦ g]

σ(α2,β)[f ]

≤ lim sup
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ τ (α1,β)[f ◦ g]

σ(α2,β)[f ]
.

Theorem 2.17. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < τ (α1,β)[f ◦ g] < ∞, 0 < σ(α2,β)[f ] < ∞ and λ(α1,β)[f ◦ g]
= ρ(α2,β)[f ]. Then

lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ τ (α1,β)[f ◦ g]

σ(α2,β)[f ]
≤ lim sup

r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
.
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Theorem 2.18. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < τ (α1,β)[f ◦ g] ≤ τ (α1,β)[f ◦ g] < ∞, 0 < σ(α2,β)[f ] ≤
σ(α2,β)[f ] < ∞ and λ(α1,β)[f ◦ g] = ρ(α2,β)[f ]. Then

lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
≤ min

{
τ (α1,β)[f ◦ g]
σ(α2,β)[f ]

,
τ (α1,β)[f ◦ g]
σ(α2,β)[f ]

}

≤ max

{
τ (α1,β)[f ◦ g]
σ(α2,β)[f ]

,
τ (α1,β)[f ◦ g]
σ(α2,β)[f ]

}
≤ lim sup

r→1

exp(α1(exp(Tf◦g(r))))

exp(α2(exp(Tf (r))))
.

Theorem 2.19. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 <σ(α1,β)[f◦g]≤ σ(α1,β)[f◦g]< ∞, 0 < τ (α3,β)[g]≤ τ (α3,β)[g]

< ∞ and ρ(α1,β)[f ◦ g] = λ(α3,β)[g]. Then

σ(α1,β)[f ◦ g]
τ (α3,β)[g]

≤ lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
≤ σ(α1,β)[f ◦ g]

τ (α3,β)[g]

≤ lim sup
r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
≤ σ(α1,β)[f ◦ g]

τ (α3,β)[g]
.

Theorem 2.20. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < σ(α1,β)[f ◦ g] < ∞, 0 < τ (α3,β)[g] < ∞ and ρ(α1,β)[f ◦ g] =
λ(α3,β)[g]. Then

lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
≤ σ(α1,β)[f ◦ g]

τ (α3,β)[g]
≤ lim sup

r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
.

Theorem 2.21. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 <σ(α1,β)[f◦g]≤ σ(α1,β)[f◦g]< ∞, 0 < τ (α3,β)[g]≤ τ (α3,β)[g]

< ∞ and ρ(α1,β)[f ◦ g] = λ(α3,β)[g]. Then

lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
≤ min

{
σ(α1,β)[f ◦ g]
τ (α3,β)[g]

,
σ(α1,β)[f ◦ g]
τ (α3,β)[g]

}

≤ max

{
σ(α1,β)[f ◦ g]
τ (α3,β)[g]

,
σ(α1,β)[f ◦ g]
τ (α3,β)[g]

}
≤ lim sup

r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
.

Theorem 2.22. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < τ (α1,β)[f◦g]≤ τ (α1,β)[f◦g]< ∞, 0 <σ(α3,β)[g]≤ σ(α3,β)[g]
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< ∞ and λ(α1,β)[f ◦ g] = ρ(α3,β)[g]. Then

τ (α1,β)[f ◦ g]
σ(α3,β)[g]

≤ lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
≤ τ (α1,β)[f ◦ g]

σ(α3,β)[g]

≤ lim sup
r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
≤ τ (α1,β)[f ◦ g]

σ(α3,β)[g]
.

Theorem 2.23. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < τ (α1,β)[f ◦ g] < ∞, 0 < σ(α3,β)[g] < ∞ and λ(α1,β)[f ◦ g] =
ρ(α3,β)[g]. Then

lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
≤ τ (α1,β)[f ◦ g]

σ(α3,β)[g]
≤ lim sup

r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
.

Theorem 2.24. Let f and g be any two non-constant analytic functions in the unit
disc U such that 0 < τ (α1,β)[f◦g]≤ τ (α1,β)[f◦g]< ∞, 0 <σ(α3,β)[g]≤ σ(α3,β)[g]

< ∞ and λ(α1,β)[f ◦ g] = ρ(α3,β)[g]. Then

lim inf
r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
≤ min

{
τ (α1,β)[f ◦ g]
σ(α3,β)[g]

,
τ (α1,β)[f ◦ g]
σ(α3,β)[g]

}

≤ max

{
τ (α1,β)[f ◦ g]
σ(α3,β)[g]

,
τ (α1,β)[f ◦ g]
σ(α3,β)[g]

}
≤ lim sup

r→1

exp(α1(exp(Tf◦g(r))))

exp(α3(exp(Tg(r))))
.
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