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Abstract

We consider generalized weighted Morrey spaces MP«:I'” (R™) and a
general function w(z,r) defining the Morrey-type norm. We proe the Riesz
potential I, is bounded from the weighted Morrey space MP“tI'1" (R™) to
Mo PR 1T <p<n L —a ny pnoy<n(p-1), p= %.

a’ p q no

1 Introduction

Morrey spaces were introduced by C.B. Morrey in 1938 in connection with certain
problems in elliptic partial differential equations and calculus of variations (see
[21]), they are defined by the norm

2
I fllze-x == sup r # || fllL,(B(zr))>

z,r>0

where 0 < A < n, 1 < p < oo. In the theory of partial differential equations, to-
gether with weighted Lebesgue spaces, Morrey spaces ﬁp')‘(ﬂ) play an important
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role. Later, Morrey spaces found important applications to Navier-Stokes ([20],
[32]) and Schrodinger ([24]), [26], [27], [30], [31]) equations, elliptic problems
with dicountinuous coefficients ([4], [6]) and potential theory ([1], [2]). An expo-
sition of the Morrey spaces can be found in the books [7] and [18].

Generalized Morrey spaces of such a kind in the case of contant p were studied
in [3], [19], [22], [23]. In [10] there was proved the boundedness of the maxi-
mal operator, singular integral operator and the potential operators in generalized
variable exponent Morrey spaces.

The results on the boundedness of potential operators and classical Calderon-
Zygmund singular operators go back to [1] and [25], respectively, while the bound-
edness of the maximal operator in the Eucliean setting was proved in [5].

Hardy-Littlewood-Stein-Weiss inequality in the Lebesgue spaces was proved
in H. G. Hardy and J. E. Littlewood [16] in the one-dimensional case and to E. M.
Stein and G. Weiss [29] in the case n > 1.

One of the most important variants of the Hardy-Littlewood maximal function
is the so-called fractional maximal function defined by the formula

Maf(z) = sup | Bz, £)] -/ / FW)ldy, 0<a<n,
t>0 B(z,t)

where | B(x, t)| is the Lebesgue measure of the ball B(z,t).
It coincides with the Hardy-Littlewood maximal function M f = M, f and is
intimately related to the Riesz potential

Iaf(a?):/Rf(y)dy 0<a<n.

n |z =yl

The paper is organized as follows. In Section 2 we provide necessary prelim-
inaries on variable exponent Lebesgue and Morrey spaces. In Section 3 we treat
Riesz potentials.

The main results are given in Theorems 3.1, 3.2, 3.3, 3.4.

2 Preliminaries on Lebesgue and Morrey spaces

L, = L,(R™) is the space of all classes of measurable functions f with finite norm

P

1]z, = / f@Pdz | . 1<p<oo
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and also wL,(R™), the weak L,, space defined as the set of all measurable function
f on R™ with the following finite norms

HwaLp:sngr]{xE]R":|f(ac)|>r}]1/p, 1<p<oo.
r>

For p = oo the space L, (R™) is defined by means of the usual modification
[/l Zoe = esssup|f ()],
reR”™

Let L, ,(R™) be the space of measurable functions on R™ with finite norm
1/p
1|2y = I1f ]|z, (RT) = /If(fv)lpw(fc)d:v 1<p <o

and for p = oo the space Lo ,,(R") = Lo (R™),

Definition 2.1. The weight function w belongs to the class A,(R"™), for1 < p <

o0, if the following statement
p—1
1 1 _ 1
2 e | 0 | ey [ T
B(z,r) B(z,r)
is finite and w belongs to A1 (R™), if there exists a positive constant C such that for

anyx € R andr > 0

|B(z, )™ / w(y)dy < Cesssup——
yeB(x,r)w(y)
B(z,r)

The following theorem was proved in [29].

Theorem 2.1. Let 0 < a < mn, 1 <p < 7, %_%:Ei ap—n < v <

n(p—1), p= %. Then the operator I is bounded from L,, | |»(R") to L | |« (R").

Let M7 be the sharp maximal function defined by

M# f(2) = sup | B(z, )| / @) — i dy.
r>0 B(x,r)

where fB(:):,t) ({L’) = |B(33, t)‘_l fB(ac,t) f(y)dy
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Definition 2.2. We define the BM O(R™) space as the set of all locally integrable
functions f with finite norm
flaaio = _swp (Bl [ 15) = Fogunldy
z€R™,r>0 B(z,r)

or

Iflmo=iuf sw Bl [ 15) - Clay
B(z,r

zeR™,r>0

where fB(a:,t) (:E) = ‘B(xa t)|71 fB(gg’t) f(y)dy

Definition 2.3. We define the BMO,, ,(R™) (1 < p < 00) space as the set of all

locally integrable functions f with finite norm

NGO = Tt )XBG ) Ly (B
N [V PXO D

Theorem 2.2 (17, Theorem 4.4). Let 1 < p < oo and w be a Lebesgue mea-

I fllBmo,,., =

surable function. If w € Ap(R™), then the norms | - || Bno,,, and | - | Bymo are

mutually equivalent.

We find it convenient to define the generalized Morrey spaces in the form as
follows

Definition 2.4. Let 1 < p < oco. The generalized Morrey space MP“(R"™) and
generalized weighted Morrey space MP*!' (R™) are defined by the norms

_n
r op
[ fllarp = xeﬂzggmefHLp(B(w))’
_n
r o p
[ fll pgporr = meiggwmHfHLp,\vw(B(r,r))’

Everywhere in the sequel we assume that

inf  w(z,r)>0
zeR™ r>0

which makes the space MP*“R™ nontrivial. Note that when p is constant, in the

case of w(z,r) = const > 0, we have the space L>°(R™).
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3 Riesz potential operator in the spaces 1/7< " (R")

=% ap—n<7y<

1
Theorem 3.1. Let 0 < o < n, 1 <p < Z 7= m

n o1
a’ p
n(p—1), p= L. Then

nyy [ _n_xy_
\IafHLq,.u(B(x,t))Sth+”/t sT0 7 fllL, p (Basyds, >0 (3.1)
where C' does not depend on f, x and t,

Proof. We represent f as

f=h+f2 Liy) = fFWrB@2n(¥), f2(4) = F(Y) xrm\B(220)(¥), t >0,
(3.2)
and have

I°f(z) = I fi(x) + I fo(x)

By Theorem 2.1 we obtain

1% fille, w By < I fille, w@ny < CllfllL, @ = ClAllL,, y(B@2t)-

Then
1% filln, Bt < CUfllL,, (B2
where the constant C' is independent of f.

Taking into account that

nyy [ _n_v g
1, ey < CEF [T, ey ds
we get
nya [ _n_a gy
I fill L, (Bt < Cta p/t s 0 v [ flle, p(Baspds  (3:3)
When |z — z| < t,|z — y| > 2t, we have %]z —yl <z -yl < %|z — yl, and
therefore

1% fo()| < /

|z —y|* " f(y)ldy < C lz —y|* " f(y)ldy.
R\ B(z,2t)

R\ B(z,2t)
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We choose [ > % and obtain

[ ey

R\ B(z,2t)

=6 el ( / sﬁlds> dy
R\ B(z,2¢) oy

= B/ ts—P-1 (/ |z — yl"‘"”\f(y)\dy) ds
2 {yeRn:2t<|z—y|<s}

é C(/2 tS—B_IHfHLqJ|’Y(B(3?,S))|||:E - y|a_n+6||L /(A)y‘,"Y/(l_p)(B(J,’,S))ds

P

Hence
119 fl| N
Lo inB@nSC for s 7 lfllL, | 1y (B a1 XB,n Il u@n)

Therefore

n_ 7o

n_y [ _n_xy_
||Iaf2||Lq7Hp.(B(x7t)) S th P /2 2t8 q p 1||f”LpYI,"\/(B(I78))dS (34)
which together (3.3) yields (3.1). ]

%z%,ap—n<7<

Theorem 3.2. Let 0 < a < n, 1 <p <2, —

1
P
nip—1), p= % and the function wi(x,r) and wa(x, 1) fulfill the condition
/ ta_%wl(x,t)% < C'r_%wz(x,r).

Then the operators M® and I are bounded from Mp’“’l(')vHv(R”) to
Maw2()l 1 (R,

Proof. Let f € MP«ul1”(R™). As usual, when estimating the norm

t «a
If || v jaws 14 (pny = SUP IO‘/ L (R™). 3.6
H ”M 2:11# (Rn) xelR",t>0w2(1‘)t) H XB(a) HLQJ ‘7”‘( ) ( )

)
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We estimate |19 fX B(x,?)|r, .. (&) in (3.6) by means of Theorem 3.1 and ob-
tain

||Iaf||Mq,w2ﬁI~I”(Rn)
t,l
P n_y_q
< C sup /MP flln B(xz,r))dr
o @) ), 1Nz, (Blz,r))

X o
tr o0 ra_gwl(x’r)
< CHfHMwalvl-IV(Rn) sup ) /
t

zER" t>0W2 (l‘» t

dr.

r
It remains to make use of condition (3.5).

and let w(x,t) satisfy condition

rw(z,r) < C,
Then the operators M is bounded from MP<C):" (R™) to Lo j.u(R™)

Proof. Letz € R™ and r > 0. By the Holder inequality we get successively
[ Il
B(z,r)

< Cro "rew(z,r)r rw N (a, P FNLp o (B, r))IXB(@, )| Ly | pyra-m
_ . -1
< Crfa, el PO < Ol F |l

O]

Theorem 3.4. Let 0 < a < mn, 1 <p < 7, %—% =2, ap—n <<
n(p — 1), v, psatisfy condition (3.7), 0 < a < n and let w(x, t) satisfy condition
(3.8).

Then the operators I® is bounded from MP<()I'1" (R™) to BMO(R™),



8 Aygun N. Huseynova

Proof. Let f € MP~C) 1" (R™). In [1] was proved
MU(T ) () < CM f(2). (3.9)

The proof Theorem 3.4, by the Theorem 3.3 and inequality (3.9). O
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