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Abstract

This paper deals with the solution of Fractional Integro-differential E-
quations of Fredholm type using Legendre Galerkin Method. The concept of
Legendre Galerkin Method was implemented on some examples of fractional
integro-differential equations of Fredholm type to illustrate the practicability
of the method. Fractional derivatives of Caputo sense were used throughout
the paper. The results obtained show that the method is reliable and accurate
for the kind of problems considered when compared to the exact solutions.

1 Introduction

In recent times, fractional order integro-differential equations have been studied
by many researchers in the field of science and engineering technology because of
their usefulness in the discription of properties of various real materials. The use
of mathematical models in the field of science and technology, mechanics, banking
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and finance etc to represent the concept and idea of fractional order differential
and integro-differential equations have been very helpful and useful in the area
of numerical analysis [1-3]. The challenges have been that the equations arising
from the modeling of such problems are difficult to solve analytically and this is
largely so because most of the problems of fractional integro-differential equation-
s do not have solutions in the closed form. So, numerical methods are required
to solve them [4-5]. Many researchers have proposed and applied numerous nu-
merical methods which includes, and not limited to, Collocation Method (CM),
Variational Iteration Method (VTM), Homotopy Analysis Method (HAM), Ado-
mian Decomposition Method (ADM), Laplace Transform Method (LTM), Iterative
Decomposition Method (IDM), Successive Substitution Method (SSM), Galerkin
Method (GM) to mention but a few.

According to [6], Galerkin Method which is credited to the Russian mathe-
matician, Boris Grigoryvich Galerkin belongs to a wide class of methods called
the weighted residual methods. Galerkin weighted residual method is one of the
numerical methods for solving differential and integro-differential equations. It
provides approximation results to problems with a high degree of accuracy. It
is a method used in mathematics and especially in the field of numerical analy-
sis to convert continuous operator problems to discrete ones which then makes it
easier to be solved. The system of equations obtained using this method occur
in terms of arbitrary constant coefficients which are usually solved for and sub-
stituted back into the assumed solution to get the required approximate solution.
[7] used Chebychev Galerkin method to solve integro-differential equations of the
second kind. The study noted that the method is an effective and powerful method
for solving many kinds of such equations. [8] applied Discrete Galerkin method
to fractional integro-differential equations. The work considered the generalized
Jacobi polynomials as basis functions for the approximate solution of fractional
integro-differential equations. The article presented some convergence analysis to
approximate solutions under some general assumptions on exact solution and the
method produced results which were in good agreement with the exact solution.
[9] and [10] solved fractional integro-differential equations by least squares method
using shifted Chebyshev polynomials as basis functions and obtained results which
converge to the exact solution. [11] solved singular multi-order fractional differ-
ential equations by perturbed collocation method of Lane-Emden type. The paper
presented an algorithm to transform the problems to a system of linear algebra-
ic equations using collocation method. From the numerical results, the proposed
method produced accurate estimate for the class of differential equations consid-
ered. [12] provided numerical solution of nonlinear Fredholm integral equation and
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Fredholm integro-differential equation of second kind using Chebyshev wavelets
with satisfactory results. While [13] applied Wavelet-Galerkin method combined
with Homotopy Perturbation method to solve nonlinear integro-differential equa-
tions, [14] used Psudo-spectral Legendre Galerkin method to solve nonlinear par-
tial integro-differential equation that arise in population dynamics.

In this work, we present the Legendre Galerkin Method for solving fraction-
al order integro-differential equations of Fredholm type. The advantage of our
proposed method is that the method is able to solve both linear and nonlinear frac-
tional integro-differential equations without first applying any method to linearize
the nonlinear part of the equations.

The recurrent formula for the Legendre polynomial of degree n is given as

Pn+1(s) =
(2n+ 1)

n+ 1
sPn(s)−

n

n+ 1
Pn−1(s), n = 2, 3, 4, · · · , (1.1)

with P0(s) = 1 and P1(s) = s for n = 0, 1 and for the shifted version in the
interval [0,1] when we set s = 2t− 1 is

Ln+1(t) =
(2n+ 1)(2t− 1)

n+ 1
Ln(t)−

n

n+ 1
Ln−1(t), n = 2, 3, · · · , (1.2)

where t ∈ [0, 1] and we have few terms as

L0(t) = 1

L1(t) = (2t− 1)

L2(t) = (6t2 − 6t+ 1)

L3(t) = (20t3 − 30t2 + 12t− 1)

L4(t) = (70t4 − 140t3 + 90t2 − 20t+ 1)

(1.3)

and the orthogonality conditions for Legendre polynomials is:

∫ 1

−1
Pi(s)Pj(s)ds =

{
0 for i ̸= j;

2
2i+1 for i = j.

(1.4)

2 Definition of terms

Definition 2.1. Fractional derivative: Fractional derivative is a non-integer deriva-
tive of a function. [15], while discussing the advantages and usefulness of
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fractional derivatives said that it provides a very good instrument for the descrip-
tion of memory and hereditary properties of many materials and processes. [16]
corroborated and said that the most important properties of any fractional deriva-
tive in applications is its non-local character and correspondingly its memory ef-
fect on materials.
Riemann-Liouvilles differential operator of fractional order, α is given as:

(Dα
a f) (x) =

1

Γ(n− α)

dn

dxn

∫ x

0
(x− t)n−α−1f(t)dt. (2.1)

The Caputo differential operator, Dα
∗ is defined by

(Dα
∗ f) (x) =

1

Γ(n− α)

∫ x

0
(x− t)n−α−1 d

dt

n

f(t)dt (2.2)

for 0 ≤ x ≤ 1.
It is noted that Caputo differential operator and the Riemann-Liouvilles integral
operator are similar but the order of application of the differentiation and integra-
tion are interchanged [16].

Definition 2.2. Fractional integro-differential equations: A differential equation is
called an integro-differential equation, Fredholm or Volterra if the unknown func-
tion y(x) appears both inside and outside of the integral sign. It is known as frac-
tional integro-differential equation if the equation contains a fractional derivative
Dα. The general form of fractional integro-differential equation is:

Dαy(x) = f(x) + λ

∫ p(x)

l(x)
K(x, t)y(t)dt (2.3)

subject to the conditions: Dαyk(0) = ϕk, and k(x, t) is a given smooth function.

Definition 2.3. A Fredholm fractional integro-differential equation: A fractional
integro-differential equation is called a Fredholm fractional integro-differential e-
quation if the upper and the lower limits of the equation, (l(x) and p(x)), as in
(2.3), are both constants. For instance

Dαy(x) = f(x) + λ

∫ 1

0
K(x, t)y(t)dt (2.4)
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Definition 4. A Volterra fractional integro-differential equation: When the limits
of such equation, as in (2.3) are not both constants but one a constant and the
other a variable, then the equation is called Volterra fractional integro-differential
equation.

Dαy(x) = f(x) + λ

∫ x

0
K(x, t)y(t)dt. (2.5)

3 Methodology

Consider the general class of fractional order Fredholm integro-differential equa-
tion of the form

Dαy(x) = f(x) + λ

∫ 1

0
K(x, t)y(t)dt (3.1)

subject to the conditions: y(0) = ϕi

where k(x, t) is a given smooth function, f(x) is a known function, λ is a real
known constant parameter and y(x) is a function to be determined.

Let’s assume an approximate solution whose general form

yN (x) =
N∑
j=0

ajLj(x) (3.2)

where Lj(x) is the shifted Legendre polynomial as defined in (3).
Substituting (3.2) into (3.1), we have

Dα

 N∑
j=0

ajLj(x)

 = f(t) + λ

∫ 1

0
(K(x, t)

N∑
j=0

(ajLj(t)) dt. (3.3)

Equation (3.3) is re-arranged as

N∑
j=0

[Dα (ajLj(x))] = f(t) + λ

∫ 1

0
(K(x, t)

N∑
j=0

(ajLj(t)) dt (3.4)
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The fractional operator, Dα is applied on equation (3.4) to give

N∑
j=0

aj
Γ(j + 1)

Γ(j − α+ 1)
xj−α = f(t) + λ

∫ 1

0
K(x, t)

N∑
j=0

ajLj(t)dt (3.5)

Equation (3.5) written as

N∑
j=0

aj
Γ(j + 1)

Γ(j − α+ 1)
xj−α − λ

∫ 1

0
K(x, t)

N∑
j=0

ajLj(t)dt = f(t) (3.6)

To determine the constant coefficients, aj , j = 0, 1, 2..N , we find the inner
product of both sides of (3.6) with the Lj(x) j = 0, 1, 2..N

∫ 1

0

 N∑
j=0

aj
Γ(j + 1)

Γ(j − α+ 1)
xj−α − λ

∫ 1

0
K(x, t)

N∑
j=0

ajLj(t)dt

 (Lj(x)) dx =

∫ 1

0
(f(t)) (Lj(x)) dx (j = 0, 1, ..N) (3.7)

Equation (3.7) is collocated to give N + 1 system of linear equations with N + 1
number of constants for Lj(x), j = 0, 1, 2, ...N (which can be put in matrix form
as Ax = b, if necessary). The system of equations then obtained is solved to get
values for the unknown constants. The values are substituted back into equation
(3.2) to get the approximate solution. It is noteworthy to mention that when the
problem contains some initial conditions, we first apply those conditions before
implementing the Galerkin procedure to obtain the remaining number of required
equations.

4 Numerical Examples

Here, we apply the proposed method to some examples to demonstrate the practi-
cability and accuracy of the method

Example 4.1. Consider the fractional order integro-differential equation

D
5
6 y(x) = f(x) +

∫ 1

0
y(t)dt (4.1)
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where

f(x) = − 3

91

Γ(56)(−91 + 216x2)x6

π
+ (5− 2e)x

Subject to the condition y(0) = 0 and the exact solution is yN (x) = x− x3

Solving equation (4.1) using the assumed solution as defined in equation (3.2) for
N = 3, and 4, we get the approximate solutions:

y3(x) = 7.850× 10−8 + .9999992398x+ 0.1688e−5x2 − 1.000001030x3

y4(x) = 1.070104270× 10−7 + 0.9999983275x+ 0.6250e−5x2

− 1.000008329x3 + 0.3649334660e−5x4

Example 4.2. Consider the fractional order integro-differential equation

D
5
3 y(x) = f(x) +

∫ 1

0
(xt+ x2t2)y(t)dt (4.2)

where

f(x) = 3
√
3
Γ(23)x

1
3

π
− x2

5
− x

4

Subject to the condition y(0) = 0 and the exact solution is yN (x) = x2 − x
Solving equation (4.2) for N = 3, and 4, we get the approximate solutions:

y3(x) = 7.697460619× 10−9 +5.62× 10−8x+0.9999999775x2

+ 1.288126019× 10−8x3

y4(x) = −3.726978372× 10−8x4 − 1.313321962× 10−7x3

+ 1.000000300x2 − 6.842× 10−7x− 5.69× 10−8

Example 4.3. Consider the fractional order integro-differential equation

D
1
2 y(x) = f(x)−

∫ 1

0
xty(t)dt (4.3)

where

f(x) =
8x

3
2

3 − 2x
1
2

√
π

+
x

12
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Subject to the condition y(0) = 0 and the exact solution is yN (x)= x2 − x
Solving equation (4.3) for N = 2, and 3, we get the approximate solutions:

y2(x) = 1.× 10−10 − 1.000000000x+ 1.000000000x2

y3(x) = 9.684484625×10−11−1.000000000x+0.9999999998x2

+ 1.009649201× 10−10x3

Table 1: Error of Results for Example 1

x Exact N = 3 ( Appx) Error N = 4 (Appx) Error
0.0 0.0000000 0.0000001 7.8500e-08 0.0000001 1.0701e-07
0.1 0.0990000 0.0990000 1.8330e-08 0.0990000 5.7036e-09
0.2 0.1920000 0.1920000 1.4260e-08 0.1920000 3.8283e-08
0.3 0.2730000 0.2730000 2.5450e-08 0.2730000 2.7563e-08
0.4 0.3360000 0.3360000 2.1420e-08 0.3360000 1.6226e-09
0.5 0.3750000 0.3750000 8.3500e-09 0.3750000 2.0219e-08
0.6 0.3840000 0.3840000 7.5800e-09 0.3840000 2.7400e-08
0.7 0.3570000 0.3570000 2.0190e-08 0.3570000 1.8119e-08
0.8 0.2880000 0.2880000 2.3300e-08 0.2880000 6.7010e-10
0.9 0.1710000 0.1710000 1.0730e-08 0.1710000 1.3252e-08
1.0 0.0000000 0.0000000 2.3700e-08 0.0000000 4.8451e-09
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Table 2: Error of Results for Example 2

x Exact N = 3 ( Appx) Error N = 4 (Appx) Error
0.0 0.0000000000 0.0000000077 7.6975e-09 0.0000000569 5.6900e-08
0.1 0.0100000000 0.0100000131 1.3105e-08 0.0099998775 1.2246e-07
0.2 0.0400000000 0.0400000181 1.8141e-08 0.0399998172 1.8285e-07
0.3 0.0900000000 0.0900000229 2.2880e-08 0.0899997610 2.3901e-07
0.4 0.1600000000 0.1600000274 2.7402e-08 0.1599997080 2.9194e-07
0.5 0.2500000000 0.2500000318 3.1783e-08 0.2499996573 3.4275e-07
0.6 0.3600000000 0.3600000361 3.6100e-08 0.3599996074 3.9262e-07
0.7 0.4900000000 0.4900000404 4.0431e-08 0.4899995572 4.4284e-07
0.8 0.6400000000 0.6400000449 4.4853e-08 0.6399995052 4.9477e-07
0.9 0.8100000000 0.8100000495 4.9443e-08 0.8099994501 5.4987e-07
1.0 1.0000000000 1.0000000540 5.4279e-08 0.9999993899 6.0970e-07

Table 3: Error of Results for Example 3

x Exact N = 2 ( Appx) Error N = 3 (Appx) Error
0.0 0.0000000 0.0000000 1.0000e-10 0.0000000 9.6845e-11
0.1 -0.0900000 -0.0900000 1.0000e-10 0.0899999 9.4946e-11
0.2 -0.1600000 -0.1600000 1.0000e-10 0.1599999 8.9653e-11
0.3 -0.2100000 -0.2100000 1.0000e-10 0.2099999 8.1571e-11
0.4 -0.2400000 -0.2400000 1.0000e-10 0.2399999 7.1307e-11
0.5 -0.2500000 -0.2500000 1.0000e-10 0.2499999 5.9465e-11
0.6 -0.2400000 -0.2400000 1.0000e-10 0.2400000 4.6653e-11
0.7 -0.2100000 -0.2100000 1.0000e-10 0.2100000 3.3476e-11
0.8 -0.1600000 -0.1600000 1.0000e-10 0.1599999 2.0539e-11
0.9 -0.0900000 -0.0900000 1.0000e-10 0.0900000 8.4483e-12
1.0 0.0000000 0.0000000 1.0000e-10 0.0000000 2.1902e-12
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Figure 1: Graphical Representation of Error in Table 1

Figure 2: Graphical Representation of Error in Table 2
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Figure 3: Graphical Representation of Error in Table 3

5 Conclusion

In this paper, the Legendre Galerkin Method was presented and used to solve
fractional order integro-differential equations of Fredholm type successfully. The
method was demonstrated on three examples and the results on each of the exam-
ples converged to the exact solution at lower values of N. The results are presented
in Tables 1, 2, 3 and Figures 1, 2, 3 respectively.
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