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Abstract

In this work, we deal with a Petrovsky equation with delay term and

variable exponents. We obtain the decay results by applying an integral in-

equality due to Komornik. These results improve and extend earlier results

in the literature.

1 Introduction

In this work, we study the following nonlinear Petrovsky equation with delay term
and variable exponents:

utt + ∆2u−∆ut + µ1ut (x, t) |ut|m(x)−2 (x, t)

+µ2ut (x, t− τ) |ut|m(x)−2 (x, t− τ) = 0 in Ω×R+

u (x, t) = ∂u(x,t)
∂υ = 0 on x ∈ ∂Ω, t ∈ [0,∞) ,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) in Ω,
ut (x, t− τ) = f0 (x, t− τ) in Ω× (0, τ) ,

(1.1)
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where Ω is a bounded domain with smooth boundary ∂Ω in Rn, n ≥ 1. τ > 0 is
a time delay term, µ1 is a positive constant, µ2 is a real number and ν is the unit
outward normal vector on ∂Ω. The functions u0, u1, f0 are the initial data to be
specified later.

The variable exponent m (·) is given as measurable functions on Ω satisfying:

2 ≤ m− ≤ m (x) ≤ m+ ≤ m∗, (1.2)

where
m− = ess inf m (x)

x∈Ω

, m+ = ess supm (x)
x∈Ω

,

and

2 < m∗ <∞ if n ≤ 4,

2 < m∗ <
2n

n− 4
if n > 4.

There has been published much work concerning the wave equation with vari-
able exponents or time delay. Our goal is to study both delay term (µ2ut (x, t− τ)
and variable exponents for Petrovsky equation.

• The problems with variable exponents arises in many branches in sciences
such as nonlinear elasticity theory, electrorheological fluids and image pro-
cessing [4, 5, 22].

• Time delay often appears in many practical problems such as thermal, bio-
logical, chemical, physical and economic phenomena [7].

In [11], Messaoudi studied the following Petrovsky equation with initial-boundary
values

utt + ∆2u+ g (ut) = β |u|r−1 u, (1.3)

where g (ut) = α |ut|p−1 ut and he proved the blow up of solutions in finite time
if r > p and the energy is negative. In [24], for when g (ut) = α |ut|p−1 ut, Wu
and Tsai looked into that the solution is global without any relation between p and
r for equation (1.3). Moreover, they established that the solution blows up in finite
time for the nonnegative initial energy.

Messaoudi and Kafini [13] studied the following wave equation

utt −∆u+ µ1ut (x, t) |ut|m(x)−2 (x, t)

+µ2ut (x, t− τ) |ut|m(x)−2 (x, t− τ) = bu |u|p(x)−2 (1.4)
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with delay term and variable exponents. They proved the global nonexistence and
decay estimates of the equation (1.4). In recent years, some authors investigate
hyperbolic type equation with delay or variable exponents (see [3, 8, 12, 15, 16,
18, 19, 20, 21, 23]). To our best knowledge, there is no research about Petrovsky
equation with delay term (µ2ut (x, t− τ)) and variable exponents, hence, our pa-
per is generalization of the previous ones. This work is organized as follows. In
Sect. 2, the definition of the variable exponent Sobolev and Lebesgue spaces are
introduced. In Sect. 3, we obtain the decay results.

2 Preliminaries

In this part, we state some results about LebesgueLp(·) (Ω) and SobolevW 1,p(·) (Ω)
spaces with variable exponents (see [2, 5, 6, 10, 20]). Let p : Ω→ [1,∞) be a mea-
surable function. We define the variable exponent Lebesgue space with a variable
exponent p (·) by

Lp(·) (Ω) =

{
u : Ω→ R; measurable in Ω :

∫
Ω
|u|p(·) dx <∞

}
,

with a Luxemburg-type norm

‖u‖p(·) = inf

{
λ > 0 :

∫
Ω

∣∣∣u
λ

∣∣∣p(x)
dx ≤ 1

}
.

Equipped with this norm, Lp(·) (Ω) is a Banach space. (see [5]) We next, define the
variable-exponent Sobolev space W 1,p(·) (Ω) as following:

W 1,p(·) (Ω) =
{
u ∈ Lp(·) (Ω) : ∇u exists and |∇u| ∈ Lp(·) (Ω)

}
.

Variable exponent Sobolev space with respect to the norm

‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·)

is a Banach space. The space W 1,p(·)
0 (Ω) is defined as the closure of C∞0 (Ω) in

W 1,p(·) (Ω). For u ∈W 1,p(·)
0 (Ω), we can define an equivalent norm

‖u‖1,p(·) = ‖∇u‖p(·) .

The dual of W 1,p(·)
0 (Ω) is defined as W−1,p′(·)

0 (Ω), as the usual Sobolev spaces,
where 1

p(·) + 1
p′(·) = 1. We also assume that:

|m (x)−m (y)| ≤ − B

log |x− y|
for all x, y ∈ Ω, (2.1)
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A,B > 0 and 0 < δ < 1 with |x− y| < δ. (log-Hölder condition)

Lemma 2.1. [2] (Poincare inequality) Suppose that p (·) satisfies (2.1) and let Ω

be a bounded domain of Rn. Then,

‖u‖p(·) ≤ c ‖∇u‖p(·) for all u ∈W 1,p(·)
0 (Ω) ,

where c = c (p−, p+, |Ω|) > 0.

Lemma 2.2. [2] If p : Ω→ [1,∞) is continuous,

2 ≤ p− ≤ p (x) ≤ p+ ≤ 2n

n− 2
, n ≥ 3, (2.2)

satisfies, then the embedding H1
0 (Ω)→ Lp(·) (Ω) is continuous.

Lemma 2.3. [1] (Hölder’ inequality) Let p, q, s ≥ 1 be measurable functions

defined on Ω and
1

s (y)
=

1

p (y)
+

1

q (y)
, for a.e. y ∈ Ω,

satisfies. If f ∈ Lp(·) (Ω) and g ∈ Lq(·) (Ω), then fg ∈ Ls(·) (Ω) and

‖fg‖s(·) ≤ 2 ‖f‖p(·) ‖g‖q(·) .

Remark 2.1. Let c be various positive constants which may be different from line

to line. Then, we use the embedding

H2
0 (Ω) ↪→ H1

0 (Ω) ↪→ Lp (Ω)

which satisfies

‖u‖p ≤ c ‖∇u‖ ≤ c ‖∆u‖ ,

where 2 ≤ p <∞ (n = 1, 2), 2 ≤ p ≤ 2n
n−2 (n ≥ 3). Moreover,

‖u‖p ≤ c ‖∆u‖ ,

p =



∞ if n < 4,

any number in [1,∞) if n = 4,

2n
n−4 if n > 4.
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3 Decay Results

In this part, we obtain the decay results for the problem (1.1) with the exponent
m(·). Firstly, as in [14], we introduce a new variable

z (x, ρ, t) = ut (x, t− τρ) , x ∈ Ω, ρ ∈ (0, 1) , t > 0;

thus, it is easy to see that

τzt (x, ρ, t) + zρ (x, ρ, t) = 0, x ∈ Ω, ρ ∈ (0, 1) , t > 0.

Consequently, problem (1.1) is equivalent to:

utt + ∆2u−∆ut + µ1ut (x, t) |ut (x, t)|m(x)−2

+µ2z (x, 1, t) |z (x, 1, t)|m(x)−2 = 0 in Ω× (0,∞) ,
τzt (x, ρ, t) + zρ (x, ρ, t) = 0 in Ω× (0, 1)× (0,∞) ,
z (x, ρ, 0) = f0 (x,−ρτ) in Ω× (0, 1) ,
u (x, t) = ∂u(x,t)

∂υ = 0 on x ∈ ∂Ω, t ∈ [0,∞) ,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) in Ω.

(3.1)
The ”modified” energy functional of (3.1) is given by

E (t) =
1

2
‖ut‖2 +

1

2
‖∆u‖2 +

∫ 1

0

∫
Ω

ξ (x) |z (x, ρ, t)|m(x)

m (x)
dxdρ, (3.2)

for t ≥ 0, where ξ is a continuous function satisfies

τ |µ2| (m (x)− 1) < ξ (x) < τ (µ1m (x)− |µ2|) , x ∈ Ω. (3.3)

The following lemma indicates that the associate energy of the problem (3.1) is
nonincreasing under the condition µ1 > |µ2| .

Lemma 3.1. Let (u, z) be a solution of (3.1). Then there exists some C0 > 0 such

that

E′ (t) ≤ −C0

∫
Ω

(
|ut|m(x) + |z (x, 1, t)|m(x)

)
dx ≤ 0. (3.4)

Proof. Multiplying the first eq. in (3.1) by ut, integrating over Ω, then multiply-

ing the second eq. of (3.1) by 1
τ ξ (x) |z|m(x)−2 z and integrating over Ω × (0, 1),
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summing up, we obtain

d
dt

[
1
2 ‖ut‖

2 + 1
2 ‖∆u‖

2 +
∫ 1

0

∫
Ω
ξ(x)|z(x,ρ,t)|m(x)

m(x) dxdρ
]

= −‖∇ut‖2 − µ1

∫
Ω |ut|

m(x) dx

− 1
τ

∫
Ω

∫ 1
0 ξ (x) |z (x, ρ, t)|m(x)−2 zzρ (x, ρ, t) dρdx

−µ2

∫
Ω utz (x, 1, t) |z (x, 1, t)|m(x)−2 dx.

(3.5)

The last two terms of the right-hand side of (3.5) can be estimated as follows,

−1

τ

∫
Ω

∫ 1

0
ξ (x) |z (x, ρ, t)|m(x)−2 zzρ (x, ρ, t) dρdx

= −1

τ

∫
Ω

∫ 1

0

∂

∂ρ

(
ξ (x) |z (x, ρ, t)|m(x)

m (x)

)
dρdx

=
1

τ

∫
Ω

ξ (x)

m (x)

(
|z (x, 0, t)|m(x) − |z (x, 1, t)|m(x)

)
dx

=

∫
Ω

ξ (x)

τm (x)
|ut|m(x) dx−

∫
Ω

ξ (x)

τm (x)
|z (x, 1, t)|m(x) .

Using the Young’s inequality, q = m(x)
m(x)−1 and q′ = m (x) for the last term to

obtain

|ut| |z (x, 1, t)|m(x)−1 ≤ 1

m (x)
|ut|m(x) +

m (x)− 1

m (x)
|z (x, 1, t)|m(x) .

Consequently, we deduce

−µ2

∫
Ω
utz |z (x, 1, t)|m(x)−2 dx

≤ |µ2|
(∫

Ω

1

m (x)
|ut (t)|m(x) dx+

∫
Ω

m (x)− 1

m (x)
|z (x, 1, t)|m(x) dx

)
.

So,

dE (t)

dt
≤ −

∫
Ω

[
µ1 −

(
ξ (x)

τm (x)
+
|µ2|
m (x)

)]
|ut (t)|m(x) dx

−
∫

Ω

(
ξ (x)

τm (x)
− |µ2| (m (x)− 1)

m (x)

)
|z (x, 1, t)|m(x) dx.
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As a result, for all x ∈ Ω, the relation (3.3) satisfies,

f1 (x) = µ1 −
(

ξ (x)

τm (x)
+
|µ2|
m (x)

)
> 0,

f2 (x) =
ξ (x)

τm (x)
− |µ2| (m (x)− 1)

m (x)
> 0.

Since m (x), and hence ξ (x), is bounded, we infer that f1 (x) and f2 (x) are also

bounded. So, if we define

C0 (x) = min {f1 (x) , f2 (x)} > 0 for any x ∈ Ω

and take C0 (x) = infΩC0 (x), so C0 (x) ≥ C0 > 0. Hence,

E′ (t) ≤ −C0

[∫
Ω
|ut (t)|m(x) dx+

∫
Ω
|z (x, 1, t)|m(x) dx

]
≤ 0.

We need the following technical lemmas before we obtain our main decay re-
sults.

Lemma 3.2. (Komornik, [9]) Let E : R+ → R+ be a nonincreasing function and

suppose that there are constants σ, ω > 0 such that∫ ∞
s

E1+σ (t) dt ≤ 1

Ω
Eσ (0)E (s) = cE (s) , ∀s > 0.

Then, we have {
E (t) ≤ cE (0) / (1 + t)1/σ if σ > 0,

E (t) ≤ cE (0) e−ωt if σ = 0,

for all t ≥ 0.

Lemma 3.3. [13] The functional

F (t) = τ

∫ 1

0

∫
Ω
e−ρτξ (x) |z (x, ρ, t)|m(x) dxdρ

satisfies

F ′ (t) ≤
∫

Ω
ξ (x) |ut|m(x) dx− τe−τ

∫ 1

0

∫
Ω
ξ (x) |z (x, ρ, t)|m(x) dxdρ

along the solution of (3.1).
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Now, we are ready to give our main decay results for the problem (3.1).

Theorem 3.1. Assume that conditions (1.2) and (2.1) are satisfied. Then there

exist two constants c, α > 0 independent of t such that any global solution of (3.1)

satisfies, {
E (t) ≤ ce−αt if m (x) = 2,

E (t) ≤ cE (0) / (1 + t)2/(m+−2) if m+ > 2.

Proof. We multiply the first equation of (3.1) by uEq (t), for q > 0 to be specified

later, and integrate over Ω× (s, T ), s < T , to obtain

∫ T
s Eq (t)

∫
Ω

[
uutt + u∆2u− u∆ut + µ1uut |ut|m(x)−2

+µ2uz (x, 1, t) |z (x, 1, t)|m(x)−2
]
dxdt = 0,

which implies that

∫ T

s
Eq (t)

∫
Ω

(
d
dt (uut)− u2

t + |∆u|2 +∇u∇ut

+µ1uut (x, t) |ut (x, t)|m(x)−2
+ µ2uz (x, 1, t) |z (x, 1, t)|m(x)−2

)
dxdt = 0.

(3.6)

Recalling the definition of E (t), given in (3.2) adding and subtracting some terms

and using the relation

d

dt

(
Eq (t)

∫
Ω
uutdx

)
= qEq−1 (t)E′ (t)

∫
Ω
uutdx+ Eq (t)

d

dt

∫
Ω
uutdx,

the equation (3.6) satisfies
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2
∫ T
s Eq+1 (t) dt = −

∫ T
s

d
dt

(
Eq (t)

∫
Ω uutdx

)
dt

+q
∫ T
s Eq−1 (t)E′ (t)

∫
Ω uutdxdt

+2
∫ T
s Eq (t)

∫
Ω u

2
tdxdt

−1
2

∫ T
s

d
dt

(
Eq (t)

∫
Ω |∇u|

2 dx
)
dt

+ q
2

∫ T
s Eq−1 (t)E′ (t)

∫
Ω |∇u|

2 dxdt

−µ1

∫ T
s Eq (t)

∫
Ω uut |ut|

m(x)−2 dxdt

−µ2

∫ T
s Eq (t)

∫
Ω uz (x, 1, t) |z (x, 1, t)|m(x)−2 dxdt

+2
∫ T
s Eq (t)

∫ 1
0

∫
Ω
ξ(x)|z(x,ρ,t)|m(x)

m(x) dxdρdt.

(3.7)

Next, we estimate the parts of the right side in inequality (3.7), respectively. The

first term is estimated as following:∣∣∣∣−∫ T

s

d

dt

(
Eq (t)

∫
Ω
uutdx

)
dt

∣∣∣∣
=

∣∣∣∣Eq (s)

∫
Ω
uut (x, s) dx− Eq (T )

∫
Ω
uut (x, T ) dx

∣∣∣∣
≤ 1

2
Eq (s)

[∫
Ω
u2 (x, s) dx+

∫
Ω
u2
t (x, s) dx

]
+

1

2
Eq (T )

[∫
Ω
u2 (x, T ) dx+

∫
Ω
u2
t (x, T ) dx

]
≤ 1

2
Eq (s)

[
Cp ‖∆u (s)‖22 + 2E (s)

]
+

1

2
Eq (T )

[
Cp ‖∆u (T )‖22 + 2E (T )

]
≤ Eq (s) [CpE (s) + E (s)] + Eq (T ) [CpE (T ) + E (T )] ,
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where Cp is the Poincare’s constant. Because of E (t) is nonincreasing, we infer

that ∣∣∣− ∫ Ts d
dt

(
Eq (t)

∫
Ω uutdx

)
dt
∣∣∣ ≤ cEq+1 (s)

≤ cEq (0)E (s) ≤ cE (s) .

(3.8)

In similar way, we handle the term∣∣∣q ∫ Ts Eq−1 (t)E′ (t)
∫

Ω uutdxdt
∣∣∣ ≤ −q ∫ Ts Eq−1 (t)E′ (t) [CpE (T ) + E (T )] dt

≤ −c
∫ T
s Eq (t)E′ (t)

≤ cEq+1 (s) ≤ cE (s) .
(3.9)

To treat the other term, we set

Ω+ = {x ∈ Ω, |ut (x, t)| ≥ 1} and Ω− = {x ∈ Ω, |ut (x, t)| < 1} .

Then, by using the Hölder’s and Young’s inequalities, we get∣∣∣∫ Ts Eq (t)
∫

Ω u
2
tdxdt

∣∣∣ =
∣∣∣∫ Ts Eq (t)

[∫
Ω+

u2
tdx+

∫
Ω−

u2
tdx
]
dt
∣∣∣

≤ c
∫ T
s Eq (t)

[(∫
Ω+
|ut|m

−
dx
)2/m−

+
(∫

Ω−
|ut|m

+

dx
)2/m+

]
dt

≤ c
∫ T
s Eq (t)

[(∫
Ω |ut|

m(x) dx
)2/m−

+
(∫

Ω |ut|
m(x) dx

)2/m+
]
dt

≤ c
∫ T
s Eq (t)

[
(−E′ (t))2/m− + (−E′ (t))2/m+

]
dt

≤ cε
∫ T
s [E (t)]qm

−/(m−−2) dt+ c (ε)
∫ T
s (−E′ (t)) dt

+cε
∫ T
s E (t)q+1 dt+ c (ε)

∫ T
s (−E′ (t))2(q+1)/m+

dt.
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For m− > 2 and the choice of q = m+/2− 1 will give qm−

m−−2
= q+ 1 + m+−m−

m−−2
.

Therefore,

∣∣∣∫ Ts Eq (t)
∫

Ω u
2
tdxdt

∣∣∣
≤ cε

∫ T
s E (t)q+1 dt+ cε [E (0)]

m+−m−
m−−2

∫ T
s [E (t)]q+1 dt+ c (ε)E (s)

≤ cε
∫ T
s E (t)q+1 dt+ c (ε)E (s) .

(3.10)

For the case m− = 2 and the choice of q = m+/2− 1 will give the similar result.

The other term can be estimated as follows

∣∣∣∣−1

2

∫ T

s

d

dt

(
Eq (t)

∫
Ω
|∇u|2 dx

)
dt

∣∣∣∣
≤ 1

2
Eq (s)

∫
Ω
|∆u (s)|2 dx+

1

2
Eq (T )

∫
Ω
|∆u (T )|2 dx

≤ cEq+2/m+
(s)

≤ c
(
Eq−1+2/m+

(0)
)
E (s)

≤ λE (s) , (3.11)

where c and λ are positive constants. Similarly,

∫ T

s
Eq−1 (t)E′ (t)

∫
Ω
|∇u|2 dxdt ≤ cEq+2/m+

(s)

≤ c
(
Eq−1+2/m+

(0)
)
E (s)

≤ λ1E (s) , (3.12)

where c and λ1 are positive constants. For the other term, by using Young’s in-

equality we conclude
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∣∣∣∣−µ1

∫ T

s
Eq (t)

∫
Ω
u |ut|m(x)−1 dxdt

∣∣∣∣
≤ ε

∫ T

s
Eq (t)

∫
Ω
|u (t)|m(x) dxdt+ c

∫ T

s
Eq (t)

∫
Ω
cε (x) |ut (t)|m(x) dxdt

≤ ε

∫ T

s
Eq (t)

[∫
Ω+

|u (t)|m
−
dx+

∫
Ω−

|u (t)|m
+

dx

]
dt

+c

∫ T

s
Eq (t)

∫
Ω
cε (x) |ut (t)|m(x) dxdt,

where we have used Young’s inequality with

p (x) =
m (x)

m (x)− 1
, p′ (x) = m (x)

and hence

cε (x) = (m (x)− 1)m (x)m(x)/(1−m(x)) ε1/(1−m(x)).

That’s why, by using the embeddingsH2
0 (Ω) ↪→ Lm

−
(Ω) andH2

0 (Ω) ↪→ Lm
+

(Ω),

we obtain∣∣∣−µ1

∫ T

s
Eq (t)

∫
Ω
u |ut|m(x)−1

dxdt
∣∣∣

≤ ε
∫ T

s
Eq (t)

[
c ‖∆u (s)‖m

−

2 + c ‖∆u (s)‖m
+

2

]
dt

+c
∫ T

s
Eq (t)

∫
Ω
cε (x) |ut (t)|m(x)

dxdt

≤ ε
∫ T

s
Eq (t)

[
cE(m−−2)/2 (0)E (t) + cE(m+−2)/2 (0)E (t)

]
dt

+c
∫ T

s
Eq (t)

∫
Ω
cε (x) |ut (t)|m(x)

dxdt

≤ cε
∫ T

s
Eq+1 (t) dt+

∫ T

s
Eq (t)

∫
Ω
cε (x) |ut (t)|m(x)

dxdt.

(3.13)

The next term of (3.7) can be estimated in a similar attitude to get
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∣∣∣−µ2

∫ T
s Eq (t)

∫
Ω u |z (x, 1, t)|m(x)−1 dxdt

∣∣∣
≤ ε

∫ T
s Eq (t)

[
c ‖∆u (s)‖m

−

2 + c ‖∆u (s)‖m
+

2

]
dt

+c
∫ T
s Eq (t)

∫
Ω cε (x) |z (x, 1, t)|m(x) dxdt

≤ cε
∫ T
s Eq+1 (t) dt+

∫ T
s Eq (t)

∫
Ω cε (x) |z (x, 1, t)|m(x) dxdt.

(3.14)

For the last term of (3.7), from Lemma 3.3, we obtain

2
∫ T
s Eq (t)

∫ 1
0

∫
Ω
ξ(x)|z(x,ρ,t)|m(x)

m(x) dxdρdt

≤ 2
m−

∫ T
s Eq (t)

∫ 1
0

∫
Ω ξ (x) |z (x, ρ, t)|m(x) dxdρdt

≤ − 2τ
m−

∫ T
s Eq (t) d

dt

(∫ 1
0

∫
Ω e
−ρτξ (x) |z|m(x) dxdρ

)
dt

+ 2
m−

∫ T
s Eq (t)

∫
Ω ξ (x) |ut|m(x) dxdt

≤ − 2τ
m−

[
Eq (t)

∫ 1
0

∫
Ω e
−ρτξ (x) |z|m(x) dxdρ

]t=T
t=s

+ 2
m−

∫ T
s Eq (t)

∫
Ω ξ (x) |ut|m(x) dxdt.

As ξ (x) is bounded, by (3.2) we have

2
∫ T
s Eq (t)

∫ 1
0

∫
Ω
ξ(x)|z(x,ρ,t)|m(x)

m(x) dxdρdt

≤ 2τe−τ

m− Eq (s)E (s) + 2c
m−E

q+1 (T )

≤ 2τe−τ

m− Eq (0)E (s) + 2c
m−E

q (T )E (s) ≤ cE (s) ,

(3.15)
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for some c > 0. By combining (3.7)-(3.15), we conclude that∫ T
s Eq+1 (t) dt ≤ ε

∫ T
s Eq+1 (t) dt+ cE (s)

+c
∫ T
s Eq (t)

∫
Ω cε (x) |z (x, 1, t)|m(x) dxdt.

(3.16)

Choosing ε so small such that∫ T

s
Eq+1 (t) dt ≤ cE (s) + c

∫ T

s
Eq (t)

∫
Ω
cε (x) |z (x, 1, t)|m(x) dxdt.

Once ε is fixed, then cε (x) ≤M , since m (x) is bounded. Therefore, we infer that∫ T
s Eq+1 (t) dt ≤ cE (s) + cM

∫ T
s Eq (t)

∫
Ω |z (x, 1, t)|m(x) dxdt

≤ cE (s)− C0M
∫ T
s Eq (t)E′ (t) dt

≤ cE (s) + C0M
q+1

[
Eq+1 (s)− Eq+1 (T )

]
≤ cE (s) .

(3.17)

By taking T →∞, we obtain∫ ∞
s

Eq+1 (t) dt ≤ cE (s) .

Thus, Komornik’s Lemma (with σ = q = m+/2 − 1) implies the desired result.

4 Conclusion

In recent years, there has been published much work concerning the wave equation
with constant delay or time-varying delay. However, to the best of our knowledge,
there was no decay result for the nonlinear Petrovsky equation with delay term
and variable-exponents. We have been obtained the decay results by applying an
integral inequality due to Komornik. Also, the decay result can be studied with
different methods or the same equation can be investigated for other mathematical
behaviors.
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