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Abstract

In this paper, we have analyzed the validation of the tuberculosis model
for its transmission dynamics. Here, we have seen the existence and unique-
ness of solution, invariant region, positivity of solution, equilibrium points
and basic reproduction number. We have calculated disease free equilibrium
points and R.

1 Introduction

Tuberculosis (TB) is one of the top 10 causes of death worldwide. It is caused
by bacteria (Mycobacterium tuberculosis) that most often affects the lungs. TB is
curable and preventable. TB is spread from person to person through the air. When
people with lungs TB cough, sneeze or spit, they propel the TB germs into the air.
A person needs to inhale only a few of these germs to become infected. About
one-third of the world population has latent TB, which means people have been
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infected by TB bacteria but are not (yet) ill with the disease and cannot transmit
the disease. People infected with TB bacteria have a 10% lifetime risk of falling
ill with TB. However, persons with compromised immune systems, such as people
living with HIV, malnutrition or diabetes or people who use tobacco, have a much
higher risk of falling ill. When a person develops active TB disease the symptoms
may be mild for many months. This can lead to delays in seeking care and results
in transmission of the bacteria to other [1]. Today, this disease ranks as the second
leading cause of morbidity and mortality in the world from a single infectious
agent, after the human immunodeficiency virus (HIV) [8]. Interestingly, about
one-third of the world’s population is infected with Mtb with approximately nine
million people developing active tuberculosis and up to nearly two million people
worldwide die from the disease every year.

In 2013, approximately nine million people contracted active tuberculosis and
this included 1.1 million cases among people living with HIV and 550,000 chil-
dren. Out of these nine million cases 1.5 million people succumbed to the disease
and this included 360,000 among people who were HIV-positive, 510,000 were
women out of which 180,000 were HIV-positive. Africa recorded the highest tu-
berculosis/HIV burden with three out of four Tuberculosis patients knowing their
HIV status. Approximately 480,000 people developed multidrug-resistant (MDR)
tuberculosis globally with 210,000 of those who developed MDR tuberculosis suc-
cumbing to it [8]. Figure 1 showed the global incidence of tuberculosis in 2008
[9]. Figure 1. Global distribution of tuberculosis.[9], Figure 2. A Compartmental
Diagram for the Tuberculosis transmission Dynamics.

2 Model Formulation and Description

The human population is categorized into six classes such that at time t ≥ 0 there
are V, vaccinated humans S, susceptible humans, E, exposed human to tuberculosis,
I, infected humans with active tuberculosis, Res, resistant humans to the first line
of treatment, R, recovered humans. Thus the size of the human population is given
as N=V+S+E+I+Res+R. In our model, the recruitment into the susceptible human
population is by birth λ. The size of the human population is further increased
by the partially immune humans in R after they lose their immunity at the rate σ.
The size of the human population is decreased by natural deaths (µ) and exposure
to (Mtb) mycobacterium tuberculosis. The exposed susceptible to Mtb move to
the exposed classes E with the force of infection being β resulting in an increase
in the exposed class. The exposed class is further decreased by natural deaths
(µ), and the proportion who moves to the infected class I after developing active
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Table 1: Description of state Variables
Variable Description

V(t) Vaccinated humans

S(t) Susceptible humans

E(t) Exposed humans

I(t) Infected humans

Res(t) Resistant to the first line of treatment

R(t) Recovered humans

tuberculosis. The infected class I is also reduced by natural deaths (µ), disease
induced deaths (φ), those recover (α) and also by those resistant to the first line
of treatment (θ). Thus both the infected class (I) and the resistant class (Res)
gain partial immunity at the rates (α) and (γ) respectively. Thus moving to the
recovered class R thus reducing their respective classes and also increasing the
recovered class. The resistant class (Res) is also reduced by natural death (µ) and
disease induced deaths (φ1) while the recovered class is reduced by natural deaths
(µ) and those who lose their partial immunity at the rate σ. Let δ be the rate of
waning of vaccines.

2.1 The model Equations :

dv

dt
= pπ − (δ + µ)V (2.1)

ds

dt
= (1− p)π + δs+ σR− βI − µs (2.2)

dE

dt
= βI − (µ+ ε)E (2.3)

dI

dt
= εE − (µ+ ϕ+ θ + α) I (2.4)

dRes
dt

= θI − (µ+ ϕ1 + γ)Res (2.5)

dR

dt
= αI + γRes − (µ+ σ)R (2.6)

with initial condition S (0) = S , V (0) = V0 , E (0) = E0 , I (0) = I0 ,
Res (0) = Res0 , R (0) = R0
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Parameters Description

β Rate at which the susceptible become exposed to Mtb

ε Infection rate

Φ Disease induced death rate

α Recovery rate due to prompt treatment

γ Recovery rate after second line of resistance treatment

θ Resistance rate due to treatment

σ Rate at which the recovered lose their immunity

φ1 Disease induced death rate after resistance

pπ The proportion of new births that is passively immune

(1− p)π Remaining proportion without passive immunity

µ Rate of natural death

Table 2: Description of Parameters

3 Model Analysis :

3.1 Existence and uniqueness of solution :

The validity and authenticity of any mathematical model depends on whether the
given system of equations has a solution or not and we will check for our equations
(1.1) to (1.6)

Theorem 3.1. Derrick and Grossman, 1976)

Let Ω denotes the region |t− t0| ≤ a, ||x− x0|| ≤ b, x = (x1, x2.....xn), satisfies

the Lipschitz condition. ||f(t, x1)− f(t, x2)|| ≤ K||x1 − x2||

Proof. The pairs (t, x1) and (t, x2) belongs to Ω and K is the positive constant,
hence there is a constant δ > 0 such that there exists a unique continuous vector
solution x(t) of the system in the interval |t− t0|≤δ. It is important to note that the
condition is satisfied by δfi

δxi
, i, j,= 1, 2... be continuous and bounded in Ω . Let

the system of equation (1.1) to (1.6) be as follows.

F 1 = Pπ − (δ + µ)V (3.1)

F 2 = (1− P ) π + δs+ σR− βI − µs (3.2)
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F 3 = βI − (µ+ ε)E (3.3)

F 4 = εE − (µ+ ϕ+ θ + α) (3.4)

F 5 = θI − (µ+ ϕ1 + γ)Res (3.5)

F 6 = αI + γRes − (µ+ σ)R (3.6)

we are interested in the region 0 ≤ χ ≤ R & bounded solution in the region and
whose partial derivatives satisfy f ≤ χ ≤ 0 where δ and χ are positive constant.

Theorem 3.2. Let Ω denote the region 0 ≤ χ ≤ R , then the eqution (2.1) to (2.6)

has a unique solution if δfi
δxj

i, j = 1, 2, .... 6 are continuous and bounded in Ω

The equation from (2.1) to (2.6) we obtain the following partial derivatives

|dF1

dv
| = | − (δ + µ) | <∞ (3.7)

|dF2

ds
| = |δ − µ| <∞; |dF2

dI
| = | − β| <∞ (3.8)

|dF2

dR
| = |σ| <∞; |dF3

dE
| = | − (µ+ ε) | <∞ (3.9)

|dF3

dI
| = |β| <∞; |dF4

dI
| = | − (µ+ ϕ+ θ + α) | <∞ (3.10)

|dF4

dE
| = |ε| <∞; | dF5

dRes
| = | − (µ+ ϕ1 + γ) | <∞ (3.11)

|dF5

dI
| = |θ| <∞; |dF6

dR
| = | − (µ+ σ) | <∞ (3.12)

|dF6

dI
| = |α| <∞; | dF6

dRes
| = |γ| <∞ (3.13)

These partial derivates exists, continuous and are bounded. Hence the model (2.7)

to (2.13) has a unique solution.

Theorem 3.3. Invariant Region : To obtain the invariant region in which the

model solution is bounded. Consider the total human population (N) where N =

V+S+E++I+Res+R. Differentiating N both sides with respect to t gives
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dN

dt
=
dV

dt
+
dS

dt
+
dE

dt
+
dI

dt
+
dRes
dt

+
dR

dt
(3.14)

=⇒ dN

dt
= π − µN − ϕI − ϕ1Res ≤ π − µN (3.15)

In the absence of mortality due to tuberculosis (2.15) becomes,

dN

dt
≤ π − µN (3.16)

By the separation of variable, equation (2.16) becomes

dN

π − µN
≤ dt (3.17)

Integrating equation (2.17) give∫
dN

π − µN
≤
∫
dt. (3.18)

⇐⇒ − 1

µ
ln (π − µN) ≤ t+ c (3.19)

=⇒ π − µN ≥ Ae−µt (3.20)

(−µN) ≥ (π − µN0) e
−µt (3.21)

=⇒ N ≤ π

µ
−
(
π − µN0

µ

)
e−µt (3.22)

as t→ ∞ the population size N→ π
µ . which shows that 0 ≤ N ≤ π

µ . Hence the

feasible solution set of the system equation of the model enters & remains in the

region.

Ω =

{
(V, S,C, I, Res, R) εR6

+ : N ≤ π

µ

}
(3.23)

This shows that N(t) is bounded and we can study the dynamics of the model in Ω .

Theorem 3.4. Positivity of the Solution :

LetΩ =
{

(V, S,C, I, Res, R) εR6
+ : V0 > 0, S0 > 0, C0 > 0, I0 > 0, Res0 > 0, R0 > 0

}
,

then the solutions of {V,S,C,I,Res, R} are positive for t ≥ 0
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Proof. We take first equation (1.1) of the system

dv

dt
= pπ − (δ + µ)V

=⇒ dv (t)

dt
≥ − (δ + µ)V

=⇒
∫

dv (t)

v (t)
≥
∫
− (δ + µ) d (t)

solving by separation of variable and applying condition, we obtain

V (t) ≥ V0 e−(δ+µ) t ≥ 0 (3.24)

Similarly taking second, third, fourth, fifth and sixth equations of the system and
solving by variable separable method, we get,

S(t) ≥ S0 e(δ−µ)t ≥ 0 (3.25)

E(t) ≥ E0 e
−(µ+ε)t ≥ 0 (3.26)

I(t) ≥ I0 e−(µ+ϕ+θ+α)t ≥ 0 (3.27)

Res(t) ≥ Res0 e−(µ+ϕ1+γ)t ≥ 0 (3.28)

R(t) ≥ R0e
−(µ+σ)t ≥ 0 (3.29)

Thus the solution of (V,S,C,I,Res, R) are positive for t ≥ 0

3.2 Equilibrium states of the model the disease free equilibrium (DFE):

The disease free equilibrium of model (1.1) to (1.6) is obtained by equating it to
zero.

i.e.
dV

dt
=
dS

dt
=
dC

dt
=
dI

dt
=
dRes
dt

=
dR

dt
= 0 (3.30)

i.e.
dv

dt
= pπ − (δ + µ) v = 0 (3.31)

ds

dt
= (1− p)π + δs+ σR− βI − µs = 0 (3.32)

dE

dt
= βI − (µ+ ε)E = 0 (3.33)
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dI

dt
= εE − (µ+ ϕ+ θ + α) I = 0 (3.34)

dRes
dt

= θI − (µ+ ϕ1 + γ)Res = 0 (3.35)

dR

dt
= αI + γRes − (µ+ σ)R = 0 (3.36)

Calculation results in two equilibrium points, one being the disease free equilib-
rium while the other being the endemic equilibrium. Disease free equilibrium
points (V, S, E, I, Res, R) is expressed as follows:

(V, S,E, I,Res, R) =

(
πp

δ + µ
,
π

µ

(δ + µ (1− p))
(δ + µ)

, 0, 0, 0, 0
)

(3.37)

3.3 Reproduction Number (R0) :

The reproduction numbers R0 is defined as the average number of secondary cases
arising from an average primary case in an entirely susceptible population over
the period of infection. The reproduction number is used to predict whether the
epidemic will spread or die out. Any epidemiological model has a disease free
equilibrium (DFE) at which the population remains in the absence of the disease.
According to Diekmann and Heesterbeek (2000) [7], we call FV -1 the next gener-
ation matrix for the model and set the reproduction number, R0 = ρ(FV -1)
where

F =

[
δFi (x0)

dxj

]
andV =

[
δVi (x0)

dxj

]
for i ≥ 1 for the number of compartments, and 1 ≤ j ≤ m for the infected
compartment only ρ(FV -1) denotes the spectral radius of a matrix A. F and V
are m ×m matrices, where m is the number of infected class. Let us take at the
following system of differential equations.

dE

dt
= βI − (µ+ ε)E

dI

dt
= εE − (µ+ ϕ+ θ + α) I

dRes
dt

= θI − (µ+ ϕ1 + γ)Res



44 Khan Sana Rahman, Shivshankar R. Mitkari and Sadikali Shaikh

The above system can be represented in matrix form as shown below where F is
the jacobian of the matrix of infection rates and V is the Jacobian of the matrix of
transition rates at (

πp

δ + µ
,
π

µ

(δ + µ (1− p))
δ + µ

0, 0, 0, 0
)

F =

0 βπ
(

1
µ −

p
δ+µ

)
0

0 0 0
0 0 0



V =

µ+ ε 0 0
−ε µ+ ϕ+ θ + α 0
0 −θ µ+ ϕ1 + γ


The inverse of V is obtained and given by

V -1 =


1
µ+ε 0 0
ε

(µ+ϕ+θ+α)(µ+ε)
1

µ+ϕ+θ+α 0
εθ

(µ+ε)(µ+ϕ+θ+α)(µ+θ)
θ

(µ+ϕ+θ+α)(µ+θ)
1

µ+ϕ1+γ


We then obtain the spectral radius of FV -1, p(FV -1) which is define as the largest
eigenvalue of FV -1 and the spectral radius for the above system is the basic repro-
duction number R0, and its expression is given by

R0 =
βπε (δ + µ− µρ)

µ (δ + µ) (δ + ϕ+ θ + α) (µ+ ε)
(3.38)

Conclusion:
Here we have proved the existence and uniqueness of the solution, invariant re-
gion is shown and positivity of the solution is proved. The model is analyzed and
disease free equilibrium points are derived and the basic reproduction number is
calculated. The model is in complete agreement with the basic properties of the
epidemiological models and is suitable to study transmission dynamics of tuber-
culosis disease. We have derived a basic tuberculosis model considering the most
probable drug resistant effects and found the basic characteristics mentioned above.
We hope more research can be done using this model as it takes into account more
realization of the disease and its predicament.
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