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Abstract

We define generalized φ−ψ quasi-contractive mappings in this paper and

prove the existence and uniqueness of fixed point theorem in modular metric

spaces for φ−ψ quasi-contractive mappings. The result of Cho et al. [4] was

generalized by our result.

1 Introduction

The definition of modular metric spaces was proposed by Chistyakov [1, 2, 3] and
proved the presence and uniqueness of a fixed point in a modular metric space.
Fixed point findings in modular metric spaces were subsequently reviewed by sev-
eral scholars.
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Cho et al. [4] as well as Rahimpoor et al. [6] proved the presence and unique-
ness of the fixed point for quasi-contractive mappings in modular metric spaces,
proposed by ḈiriḈ [5] has been demonstrated.

2 Basic definition and preliminaries

Let X be a nonempty set. Throughout this paper for a function ω : (0,∞)×X ×
X → [0,∞] will be written as ωλ(x, y) = ω(λ, x, y) for all λ > 0 and x, y ∈ X .

Definition 2.1. [1, 2] LetX be a non-empty set. A function ω : (0,∞)×X×X →
[0,∞] is said to be a modular metric onX if it satisfies the following three axioms:

(i) given x, y ∈ X,ωλ(x, y) = 0 for all λ > 0 if and only if x = y;

(ii) ωλ(x, y) = ωλ(y, x) for all λ > 0 and x, y ∈ X;

(iii) ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y) for all λ, µ > 0 and x, y, z ∈ X .

Definition 2.2. [4] Let Xω be a modular metric space.

(i) The sequence (xn)n∈N in Xω is said to be convergent to x ∈ Xω if

ωλ(xn, x)→ 0 as n→∞ for all λ > 0.

(ii) The sequence (xn)n∈N in Xω is said to be Cauchy if

ωλ(xm, xn)→ 0 as m,n→∞ for all λ > 0.

(iii) A subset C of Xω is said to be closed if the limit of the convergent sequence
of C always belong to C.

(iv) A subset C of Xω is said to be complete if any Cauchy sequence in C is a
convergent sequence and its limit in C.

(v) A subset C of Xω is said to be bounded if for all λ > 0

δω(C) = sup{ωλ(x, y);x, y ∈ C} <∞.
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Definition 2.3. [4] The metric modular ω is said to have the Fatou property if

ωλ(x, y) ≤ lim
n→∞

inf ωλ(xn, y) (2.1)

for all y ∈ Xω and λ ∈ (0,∞), where {xn} ω-converges to x.

Definition 2.4. Let (X,ω) be a modular metric space and let C be a nonempty
subset of Xω. The self-mapping T : C → C is said to be a generalized φ − ψ

quasi-contraction if there exist 0 < k < 1 such that
ωλ(Tx, Ty)

≤ k
(
φmax

(
ωλ(x, y), ωλ(x, T (x)), ωλ(y, T (y)), ωλ(x, T (y)), ωλ(T (x), y)

)
− ψmax

(
ωλ(x, y), ωλ(x, T (x)), ωλ(y, T (y)), ωλ(x, T (y)), ωλ(T (x), y)

))
(2.2)

for any x, y ∈ X and λ ∈ (0,∞). Notice that the Φ and Ψ be the family of
non decreasing function φ, ψ : [0,∞) → [0,∞) such that

∑
φn(t) < ∞ and

φ(0) = 0, ψ(0) = 0 with φ(t) < t, ψ(t) < t for all φ ∈ Φ, ψ ∈ Ψ.

Example 2.1. Let X = {0, 1, 2}. Define ωλ : X ×X → R+ as follows:

ωλ(0, 0) = 0, ωλ(1, 1) = 3, ωλ(2, 2) = 1

ωλ(0, 1) = ωλ(1, 0) = 7,

ωλ(0, 2) = ωλ(2, 0) = 0,

ωλ(1, 2) = ωλ(2, 1) = 4.

Then (X,ωλ) is a complete modular metric space. Mapping T : C → C is defined
by T (0) = 0, T (1) = 2. Then, T is an ∅ − ψ Quasi-Contractive mappings with
ψ(t) = t

1+t , where φ ∈ Φ, ψ ∈ Ψ. Also note that 0 is a fixed point of the mapping
T .

Definition 2.5. Let T : C → C be a mapping and let C be a nonempty subset of
Xω. For any x ∈ C, define the orbit

O(x) = {x, T (x), T 2(x), . . .} (2.3)

and its ω-diameter by

δω(x) = diam
(
O(x)

)
= sup

{
ωλ
(
Tn(x), Tm(x)

)
: n,m ∈ N

}
. (2.4)



84 Aklesh Pariya and Prerna Pathak

Lemma 2.1. Let (X,ω) be a metric modular space and let C be a ω-complete
nonempty subset of Xω. Let T : C → C be a generalized φ − ψ quasi-contractive
mapping and let x ∈ C be such that δω(x) <∞. Then for any n ≥ 1, one has

δω
(
T (x)

)
≤ knδω(x) (2.5)

where k is the constant associated with the mapping of T . Moreover, one has

ωλ

(
Tn(x), Tn+m(x)

)
≤ knδω(x) (2.6)

for any n,m ≥ 1 and λ ∈ (0,∞). Then
{
Tn(x)

}
ω-converges to a point v ∈ C.

Moreover, one has

ωλ

(
Tn(x), v

)
≤ knδω(x)

for any n ≥ 1, and λ ∈ (0,∞).

Proof. For any n,m ≥ 1, we have
ωλ

(
Tn(x), Tm(y)

)
= ωλ

(
T
(
Tn−1(x)

)
, T
(
Tm−1(y)

))
≤ k

(
φmax

(
ωλ
(
Tn−1(x), Tm−1(y)

)
, ωλ
(
Tn−1(x), Tn(x)

)
,

ωλ
(
Tm−1(y), Tm(y)

)
, ωλ
(
Tn−1(x), Tm(y)

)
, ωλ
(
Tn(x), Tm−1(y)

))
− ψmax

(
ωλ
(
Tn−1(x), Tm−1(y)

)
, ωλ
(
Tn−1(x), Tn(x)

)
,

ωλ
(
Tm−1(y), Tm(y)

)
, ωλ
(
Tn−1(x), Tm(y)

)
ωλ
(
Tn(x), Tm−1(y)

)))

for any x, y ∈ C and λ ∈ (0,∞).

This obviously implies that

δω

(
Tn(x)

)
≤ k

(
φ
(
δω
(
Tn−1(x)

))
− ψ

(
δω
(
Tn−1(x)

)))
.

Hence, for any n ≥ 1, we have

δω
(
Tn(x)

)
≤ kn

{
φn
(
δω(x)

)
− ψn

(
δω(x)

)}
.
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Moreover, for any n,m ≥ 1, we have

ωλ

(
Tn(x), Tn+m(x)

)
≤ δω

(
Tn(x)

)
≤ knδω(x).

We know that {Tn(x)} ω-Cauchy sequence in C. Since C is ω-complete, there
exists v ∈ C such that {Tn(x)} ω-converges to v. Since

ωλ

(
Tn(x), Tn+m(x)

)
≤ knδω(x) (2.7)

for any n,m ≥ 1, and ω satisfies the Fatou property and letting m→∞, we have
ωλ

(
Tn(x), v

)
≤ limn→∞ inf ωλ

(
Tn(x), Tn+m(x)

)
≤ knδω(x).

3 Main result

The main result of the present paper is the following:

Theorem 3.1. Let (X,ω) be a modular metric space and let C be a ω-complete
nonempty subset of Xω. Let T : C → C be a generalized φ − ψ quasi-contractive
mapping. Suppose that ωλ

(
v, T (v)

)
< ∞ and ωλ

(
x, T (x)

)
< ∞ for all λ ∈

(0,∞). Then the ω-limit of
{
Tn(x)

}
is a fixed point of T , that is T (v) = v.

Moreover, if v∗ is any fixed point of T in C such that ωλ(v, v∗) < ∞ for all λ ∈
(0,∞), then one has v = v∗.

Proof. We have

ωλ

(
T (x), T (v)

)
≤ k

(
φmax

(
ωλ(x, v), ωλ

(
x, T (x)

)
, ωλ
(
v, T (v)

)
,

ωλ
(
x, T (v)

)
, ωλ(Tx, v)

)
−ψmax

(
ωλ(x, v), ωλ

(
x, T (x)

)
,

ωλ
(
v, T (v)

)
, ωλ
(
x, T (v)

)
, ωλ(Tx, v)

))
. (3.1)

From Lemma 2.1, it follows that

ωλ
(
T (x), T (v)

)
≤ k

(
φmax

(
δω(x), ωλ

(
v, T (v)

)
, ωλ
(
x, T (v)

)))
. (3.2)
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Suppose that for each n ≥ 1,

ωλ

(
Tn(x), T (v)

)
≤ k

(
φmax

(
knδω(x), kωλ

(
v, T (v)

)
, knωλ

(
x, T (v)

))
− ψmax

(
knδω(x), kωλ

(
v, T (v)

)
, knωλ

(
x, T (v)

)))
. (3.3)

Then we have
ωλ

(
Tn+1(x), T (v)

)
≤ k

(
φmax

(
ωλ
(
Tn(x), v

)
, ωλ
(
Tn(x), Tn+1(x)

)
, ωλ
(
v, T (v)

)
,

ωλ
(
Tn(x), T (v)

)
, ωλ
(
Tn+1(x), v

))
− ψmax

(
ωλ
(
Tn(x), v

)
, ωλ
(
Tn(x), Tn+1(x)

)
, ωλ
(
v, T (v)

)
,

ωλ
(
Tn(x), T (v)

)
, ωλ
(
Tn+1(x), v

)))
.

Hence, we have

ωλ

(
Tn+1(x), T (v)

)
≤ k

(
φmax

(
knδω(x), kωλ

(
v, T (v)

)
, ωλ
(
Tn(x), T (v)

))
− ψmax

(
knδω(x), kωλ

(
v, T (v)

)
, ωλ
(
Tn(x), T (v)

)))
.

Using our previous assumption, we get

ωλ

(
Tn+1(x), T (v)

)
≤ φmax

(
kn+1δω(x), kωλ

(
v, T (v)

)
, kn+1ωλ

(
x, T (v)

))
− ψmax

(
kn+1δω(x), kωλ

(
v, T (v)

)
, kn+1ωλ

(
x, T (v)

))
.

Thus by induction, we have

ωλ

(
Tn(x), T (v)

)
≤ φmax

(
knδω(x), kωλ

(
v, T (v)

)
, knωλ

(
x, T (v)

))
− ψmax

(
knδω(x), kωλ

(
v, T (v)

)
, knωλ

(
x, T (v)

))
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for any n ≥ 1 and λ ∈ (0,∞). Therefore, we have

lim
n→∞

supωλ

(
Tn(x), T (x)

)
≤ φ

(
ωλ
(
v, T (v)

))
− ψ

(
ωλ
(
v, T (v)

))
for all λ ∈ (0,∞). Using Fatou property, for the modular metric ω, we get
ωλ
(
v, T (v)

)
= limn→∞ supωλ

(
Tn(x), T (v)

)
≤ k

(
φ
(
ωλ
(
v, T (v)

))
−ψ

(
ωλ
(
v, T (v)

)))
for all λ ∈ (0,∞). Since k < 1, we get ωλ

(
v, T (v)

)
= 0 for all λ ∈ (0,∞) and

so T (v) = v.
Let v∗ be another fixed point of T such that ωλ(v, v∗) <∞ for all λ ∈ (0,∞).
Then we have for all

ωλ(v, v∗) = ωλ

(
T (v), T (v∗)

)
≤ k

(
φ
(
ωλ(v, v∗)

)
− ψ

(
ωλ(v, v∗)

))
.

This implies that
ωλ(v, v∗) = 0

for all λ ∈ (0,∞). Hence v = v∗.

4 Conclusion

In modular metric spaces, a fixed-point theorem for ∅ − ψ quasi-contractive map-
pings satisfying Fatou property has been established that strengthens and extends
similar recognized outcomes in the current fixed-point theory literature.
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