Fixed point theorem for generalized $\phi - \psi$ quasi-contractive mappings in modular metric spaces

Aklesh Pariya¹ & Prerna Pathak²

¹Department of Mathematics Sardar Vallabh Bhai Patel Government College, Kukshi, India ²Department of Mathematics, SAGE University, Indore, India. Emails: pariya.aklesh3@gmail.com, prernapathak1988@gmail.com

(Received December 16, 2020)

Abstract

We define generalized $\phi - \psi$ quasi-contractive mappings in this paper and prove the existence and uniqueness of fixed point theorem in modular metric spaces for $\phi - \psi$ quasi-contractive mappings. The result of Cho et al. [4] was generalized by our result.

1 Introduction

The definition of modular metric spaces was proposed by Chistyakov [1, 2, 3] and proved the presence and uniqueness of a fixed point in a modular metric space. Fixed point findings in modular metric spaces were subsequently reviewed by several scholars.

Keywords and phrases: common fixed point, modular metric space, contractive condition, quasi-contractive

²⁰¹⁰ AMS Subject Classification: Primary 47H10, 47H17, Secondary 54H25.

Cho et al. [4] as well as Rahimpoor et al. [6] proved the presence and uniqueness of the fixed point for quasi-contractive mappings in modular metric spaces, proposed by ÇiriÇ [5] has been demonstrated.

2 Basic definition and preliminaries

Let X be a nonempty set. Throughout this paper for a function $\omega : (0, \infty) \times X \times X \to [0, \infty]$ will be written as $\omega_{\lambda}(x, y) = \omega(\lambda, x, y)$ for all $\lambda > 0$ and $x, y \in X$.

Definition 2.1. [1, 2] Let X be a non-empty set. A function $\omega : (0, \infty) \times X \times X \rightarrow [0, \infty]$ is said to be a modular metric on X if it satisfies the following three axioms:

- (i) given $x, y \in X, \omega_{\lambda}(x, y) = 0$ for all $\lambda > 0$ if and only if x = y;
- (ii) $\omega_{\lambda}(x,y) = \omega_{\lambda}(y,x)$ for all $\lambda > 0$ and $x, y \in X$;
- (iii) $\omega_{\lambda+\mu}(x,y) \leq \omega_{\lambda}(x,z) + \omega_{\mu}(z,y)$ for all $\lambda, \mu > 0$ and $x, y, z \in X$.

Definition 2.2. [4] Let X_{ω} be a modular metric space.

(i) The sequence $(x_n)_{n \in N}$ in X_{ω} is said to be convergent to $x \in X_{\omega}$ if

 $\omega_{\lambda}(x_n, x) \to 0 \text{ as } n \to \infty \text{ for all } \lambda > 0.$

(ii) The sequence $(x_n)_{n \in N}$ in X_{ω} is said to be Cauchy if

 $\omega_{\lambda}(x_m, x_n) \to 0 \text{ as } m, n \to \infty \text{ for all } \lambda > 0.$

- (iii) A subset C of X_{ω} is said to be closed if the limit of the convergent sequence of C always belong to C.
- (iv) A subset C of X_{ω} is said to be complete if any Cauchy sequence in C is a convergent sequence and its limit in C.
- (v) A subset C of X_{ω} is said to be bounded if for all $\lambda > 0$

$$\delta_{\omega}(C) = \sup\{\omega_{\lambda}(x, y); x, y \in C\} < \infty.$$

Definition 2.3. [4] The metric modular ω is said to have the Fatou property if

$$\omega_{\lambda}(x,y) \le \lim_{n \to \infty} \inf \omega_{\lambda}(x_n,y) \tag{2.1}$$

for all $y \in X_{\omega}$ and $\lambda \in (0, \infty)$, where $\{x_n\} \omega$ -converges to x.

Definition 2.4. Let (X, ω) be a modular metric space and let C be a nonempty subset of X_{ω} . The self-mapping $T : C \to C$ is said to be a generalized $\phi - \psi$ quasi-contraction if there exist 0 < k < 1 such that $\omega_{\lambda}(Tx, Ty)$

$$\leq k \Big(\phi \max \big(\omega_{\lambda}(x,y), \omega_{\lambda}(x,T(x)), \omega_{\lambda}(y,T(y)), \omega_{\lambda}(x,T(y)), \omega_{\lambda}(T(x),y) \big) \\ - \psi \max \big(\omega_{\lambda}(x,y), \omega_{\lambda}(x,T(x)), \omega_{\lambda}(y,T(y)), \omega_{\lambda}(x,T(y)), \omega_{\lambda}(T(x),y) \big) \Big)$$
(2.2)

for any $x, y \in X$ and $\lambda \in (0, \infty)$. Notice that the Φ and Ψ be the family of non decreasing function $\phi, \psi : [0, \infty) \to [0, \infty)$ such that $\sum \phi^n(t) < \infty$ and $\phi(0) = 0, \psi(0) = 0$ with $\phi(t) < t, \psi(t) < t$ for all $\phi \in \Phi, \psi \in \Psi$.

Example 2.1. Let $X = \{0, 1, 2\}$. Define $\omega_{\lambda} : X \times X \to R^+$ as follows:

$$\begin{split} \omega_{\lambda}(0,0) &= 0, \ \omega_{\lambda}(1,1) = 3, \ \omega_{\lambda}(2,2) = 1\\ \omega_{\lambda}(0,1) &= \omega_{\lambda}(1,0) = 7,\\ \omega_{\lambda}(0,2) &= \omega_{\lambda}(2,0) = 0,\\ \omega_{\lambda}(1,2) &= \omega_{\lambda}(2,1) = 4. \end{split}$$

Then (X, ω_{λ}) is a complete modular metric space. Mapping $T : C \to C$ is defined by T(0) = 0, T(1) = 2. Then, T is an $\emptyset - \psi$ Quasi-Contractive mappings with $\psi(t) = \frac{t}{1+t}$, where $\phi \in \Phi$, $\psi \in \Psi$. Also note that 0 is a fixed point of the mapping T.

Definition 2.5. Let $T : C \to C$ be a mapping and let C be a nonempty subset of X_{ω} . For any $x \in C$, define the orbit

$$\mathcal{O}(x) = \{x, T(x), T^2(x), \ldots\}$$
 (2.3)

and its ω -diameter by

$$\delta_{\omega}(x) = diam(\mathcal{O}(x)) = \sup\left\{\omega_{\lambda}(T^{n}(x), T^{m}(x)) : n, m \in N\right\}.$$
 (2.4)

Lemma 2.1. Let (X, ω) be a metric modular space and let C be a ω -complete nonempty subset of X_{ω} . Let $T : C \to C$ be a generalized $\phi - \psi$ quasi-contractive mapping and let $x \in C$ be such that $\delta_{\omega}(x) < \infty$. Then for any $n \ge 1$, one has

$$\delta_{\omega}(T(x)) \le k^n \delta_{\omega}(x) \tag{2.5}$$

where k is the constant associated with the mapping of T. Moreover, one has

$$\omega_{\lambda}\Big(T^{n}(x), T^{n+m}(x)\Big) \le k^{n}\delta_{\omega}(x) \tag{2.6}$$

for any $n, m \ge 1$ and $\lambda \in (0, \infty)$. Then $\{T^n(x)\}$ ω -converges to a point $v \in C$. Moreover, one has

$$\omega_{\lambda}\Big(T^n(x),v\Big) \le k^n \delta_{\omega}(x)$$

for any $n \ge 1$, and $\lambda \in (0, \infty)$.

Proof. For any
$$n, m \ge 1$$
, we have

$$\omega_{\lambda} \Big(T^{n}(x), T^{m}(y) \Big) = \omega_{\lambda} \Big(T \big(T^{n-1}(x) \big), T \big(T^{m-1}(y) \big) \Big)$$

$$\leq k \Big(\phi \max \Big(\omega_{\lambda} \big(T^{n-1}(x), T^{m-1}(y) \big), \omega_{\lambda} \big(T^{n-1}(x), T^{n}(x) \big), \omega_{\lambda} \big(T^{n-1}(y), T^{m}(y) \big), \omega_{\lambda} \big(T^{n-1}(x), T^{m}(y) \big), \omega_{\lambda} \big(T^{n}(x), T^{m-1}(y) \big) \Big)$$

$$- \psi \max \Big(\omega_{\lambda} \big(T^{n-1}(x), T^{m-1}(y) \big), \omega_{\lambda} \big(T^{n-1}(x), T^{n}(x) \big), \omega_{\lambda} \big(T^{m-1}(y), T^{m}(y) \big), \omega_{\lambda} \big(T^{n-1}(x), T^{m}(y) \big) \omega_{\lambda} \big(T^{n}(x), T^{m-1}(y) \big) \Big) \Big)$$

for any $x, y \in \mathcal{C}$ and $\lambda \in (0, \infty)$.

This obviously implies that

$$\delta_{\omega}\Big(T^{n}(x)\Big) \leq k\left(\phi\Big(\delta_{\omega}\big(T^{n-1}(x)\big)\Big) - \psi\Big(\delta_{\omega}\big(T^{n-1}(x)\big)\Big)\right).$$

Hence, for any $n \ge 1$, we have

$$\delta_{\omega}(T^{n}(x)) \leq k^{n} \Big\{ \phi^{n}(\delta_{\omega}(x)) - \psi^{n}(\delta_{\omega}(x)) \Big\}.$$

Moreover, for any $n, m \ge 1$, we have

$$\omega_{\lambda}\Big(T^{n}(x), T^{n+m}(x)\Big) \leq \delta_{\omega}\Big(T^{n}(x)\Big) \leq k^{n}\delta_{\omega}(x).$$

We know that $\{T^n(x)\}\ \omega$ -Cauchy sequence in \mathcal{C} . Since \mathcal{C} is ω -complete, there exists $v \in \mathcal{C}$ such that $\{T^n(x)\}\ \omega$ -converges to v. Since

$$\omega_{\lambda}\Big(T^{n}(x), T^{n+m}(x)\Big) \le k^{n}\delta_{\omega}(x) \tag{2.7}$$

for any $n, m \ge 1$, and ω satisfies the Fatou property and letting $m \to \infty$, we have $\omega_{\lambda} \Big(T^n(x), v \Big) \le \lim_{n \to \infty} \inf \omega_{\lambda} \Big(T^n(x), T^{n+m}(x) \Big) \le k^n \delta_{\omega}(x).$

3 Main result

The main result of the present paper is the following:

Theorem 3.1. Let (X, ω) be a modular metric space and let C be a ω -complete nonempty subset of X_{ω} . Let $T : C \to C$ be a generalized $\phi - \psi$ quasi-contractive mapping. Suppose that $\omega_{\lambda}(v, T(v)) < \infty$ and $\omega_{\lambda}(x, T(x)) < \infty$ for all $\lambda \in$ $(0, \infty)$. Then the ω -limit of $\{T^n(x)\}$ is a fixed point of T, that is T(v) = v. Moreover, if v^* is any fixed point of T in C such that $\omega_{\lambda}(v, v^*) < \infty$ for all $\lambda \in$ $(0, \infty)$, then one has $v = v^*$.

Proof. We have

$$\omega_{\lambda}\Big(T(x), T(v)\Big) \leq k \bigg(\phi \max\Big(\omega_{\lambda}(x, v), \omega_{\lambda}\big(x, T(x)\big), \omega_{\lambda}\big(v, T(v)\big), \\ \omega_{\lambda}\big(x, T(v)\big), \omega_{\lambda}(Tx, v)\Big) - \psi \max\Big(\omega_{\lambda}(x, v), \omega_{\lambda}\big(x, T(x)\big) \\ \omega_{\lambda}\big(v, T(v)\big), \omega_{\lambda}\big(x, T(v)\big), \omega_{\lambda}(Tx, v)\Big)\bigg).$$
(3.1)

From Lemma 2.1, it follows that

$$\omega_{\lambda}(T(x), T(v)) \le k \left(\phi \max\left(\delta_{\omega}(x), \omega_{\lambda}(v, T(v)), \omega_{\lambda}(x, T(v)) \right) \right).$$
(3.2)

Suppose that for each $n \ge 1$,

$$\omega_{\lambda}\Big(T^{n}(x), T(v)\Big) \leq k \bigg(\phi \max\Big(k^{n}\delta_{\omega}(x), k\omega_{\lambda}\big(v, T(v)\big), k^{n}\omega_{\lambda}\big(x, T(v)\big)\Big) - \psi \max\Big(k^{n}\delta_{\omega}(x), k\omega_{\lambda}\big(v, T(v)\big), k^{n}\omega_{\lambda}\big(x, T(v)\big)\Big)\bigg).$$
(3.3)

Then we have

$$\begin{split} & \underset{\omega_{\lambda}\left(T^{n+1}(x), T(v)\right)}{\leq k \left(\phi \max\left(\omega_{\lambda}\left(T^{n}(x), v\right), \omega_{\lambda}\left(T^{n}(x), T^{n+1}(x)\right), \omega_{\lambda}\left(v, T(v)\right)\right), \\ & \omega_{\lambda}\left(T^{n}(x), T(v)\right), \omega_{\lambda}\left(T^{n+1}(x), v\right)\right) \\ & -\psi \max\left(\omega_{\lambda}\left(T^{n}(x), v\right), \omega_{\lambda}\left(T^{n}(x), T^{n+1}(x)\right), \omega_{\lambda}\left(v, T(v)\right), \\ & \omega_{\lambda}\left(T^{n}(x), T(v)\right), \omega_{\lambda}\left(T^{n+1}(x), v\right)\right) \right). \end{split}$$

Hence, we have

$$\omega_{\lambda}\Big(T^{n+1}(x), T(v)\Big) \leq k \bigg(\phi \max\Big(k^{n}\delta_{\omega}(x), k\omega_{\lambda}\big(v, T(v)\big), \omega_{\lambda}\big(T^{n}(x), T(v)\big)\Big) - \psi \max\Big(k^{n}\delta_{\omega}(x), k\omega_{\lambda}\big(v, T(v)\big), \omega_{\lambda}\big(T^{n}(x), T(v)\big)\Big)\bigg).$$

Using our previous assumption, we get

$$\omega_{\lambda}\Big(T^{n+1}(x), T(v)\Big) \le \phi \max\left(k^{n+1}\delta_{\omega}(x), k\omega_{\lambda}(v, T(v)), k^{n+1}\omega_{\lambda}(x, T(v))\right) -\psi \max\left(k^{n+1}\delta_{\omega}(x), k\omega_{\lambda}(v, T(v)), k^{n+1}\omega_{\lambda}(x, T(v))\right).$$

Thus by induction, we have

$$\omega_{\lambda}\Big(T^{n}(x), T(v)\Big) \leq \phi \max\Big(k^{n}\delta_{\omega}(x), k\omega_{\lambda}\big(v, T(v)\big), k^{n}\omega_{\lambda}\big(x, T(v)\big)\Big) -\psi \max\Big(k^{n}\delta_{\omega}(x), k\omega_{\lambda}\big(v, T(v)\big), k^{n}\omega_{\lambda}\big(x, T(v)\big)\Big)$$

for any $n \ge 1$ and $\lambda \in (0, \infty)$. Therefore, we have

$$\lim_{n \to \infty} \sup \omega_{\lambda} \Big(T^{n}(x), T(x) \Big) \le \phi \Big(\omega_{\lambda} \big(v, T(v) \big) \Big) - \psi \Big(\omega_{\lambda} \big(v, T(v) \big) \Big)$$

for all $\lambda \in (0, \infty)$. Using Fatou property, for the modular metric ω , we get $\omega_{\lambda}(v, T(v))$

$$=\lim_{n\to\infty}\sup\omega_{\lambda}(T^{n}(x),T(v))\leq k\left(\phi\Big(\omega_{\lambda}(v,T(v))\Big)-\psi\Big(\omega_{\lambda}(v,T(v))\Big)\right)$$

、

for all $\lambda \in (0,\infty)$. Since k < 1, we get $\omega_{\lambda}(v,T(v)) = 0$ for all $\lambda \in (0,\infty)$ and so T(v) = v.

Let v^* be another fixed point of T such that $\omega_{\lambda}(v, v^*) < \infty$ for all $\lambda \in (0, \infty)$. Then we have for all

$$\omega_{\lambda}(v,v^*) = \omega_{\lambda}\Big(T(v),T(v^*)\Big) \le k\left(\phi\Big(\omega_{\lambda}(v,v^*)\Big) - \psi\Big(\omega_{\lambda}(v,v^*)\Big)\right).$$

This implies that

$$\omega_{\lambda}(v, v^*) = 0$$

for all $\lambda \in (0, \infty)$. Hence $v = v^*$.

4 Conclusion

In modular metric spaces, a fixed-point theorem for $\emptyset - \psi$ quasi-contractive mappings satisfying Fatou property has been established that strengthens and extends similar recognized outcomes in the current fixed-point theory literature.

Acknowledgement

Authors are grateful for the careful reading of our manuscript by the learned referees, particularly for the comments and recommendations that carried some changes for improvement of the paper.

References

[1] Chistyakov, V. V., Modular metric spaces generated by F-modulars, Folia Mathematica, Vol.15, No.1 (2008) 3–24.

- [2] Chistyakov, V. V., *Modular metric spaces, I: basic concepts*, Nonlinear Anal. Theory, Methods and Applications, 72, (2010) 1–14.
- [3] Chistyakov, V. V., A fixed point theorem for contractions in modular metric spaces, arXiv: 1112. 556 1v1[math.FA]23, Dec 2011.
- [4] Cho, Y., Saadati, R. and Sadeghi, G., Quasi-contraction mapping in modular metric spaces, Journal of Applied Mathematics, Volume 2012 (2012), Article ID 907951, 5 pages doi:10.1155/2012/907951.
- [5] ÇiriÇ, L. B., *A generalization of Banach's contraction principle*, Proceedings of the American Mathematical Society, 45(2) (1974) 267-27.
- [6] Rahimpoor, H., Ebadian, A., Gordji, M. E. and Zohri, A., *Fixed Point Theory for Generalized Quasi-contraction Maps in Modular Metric Spaces*, Journal of mathematics and computer science, 10 (2014), 54-60.