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Abstract

In this paper, we shall prove a unique fixed point theorem for weakly

contractive mappings satisfying C-class function in the setting of complete

partial metric spaces. The results obtain in this paper generalize the corre-

sponding results of Alber and Guerre-Delabriere [4], Dutta and Choudhury

[13], Rhoades [23] and others.

1 Introduction

The Banach contraction principle (or in short BCP) is the opening and vital result
in the direction of fixed point theory. In this theory, contraction is one of the main
tools to prove the existence and uniqueness of a fixed point. Banach’s contraction
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principle which gives an answer to the existence and uniqueness of a solution of
an operator equation Tx = x, is the most widely used fixed point theorem in all of
analysis. For the sake of completeness here we mentioned this celebrated theorem.

Let (X, d) be a complete metric space and let f : X → X be a mapping satis-
fying the contractive condition:

d(f(x), f(y)) ≤ a d(x, y)

for all x, y ∈ X , where 0 ≤ a < 1 is a constant. Then f has a unique fixed point.

Remark 1.1. (i) The fixed point of f can be obtained as a limit of repeated iteration

of the mapping at any point of X .

(ii) Every contraction is a continuous function.

Many authors generalized this famous result in different ways. Subsequently,
several authors have devoted their concentration to expanding and improving this
theory (see, e.g., [8, 9, 14, 22] and many others).

Partial metric spaces, introduced by Matthews ([17, 18]) are a generaliza-
tions of the notion of metric space in which, in definition of metric the condition
d(x, x) = 0 is replaced by the condition d(x, x) ≤ d(x, y). In ([18]), Matthews
discussed some properties of convergence of sequences and proved the fixed point
theorem for contraction mapping on partial metric spaces: any mapping T of a
complete partial metric space X onto itself that satisfies, where 0 ≤ b < 1, the
inequality p(T (x), T (y)) ≤ b p(x, y) for all x, y ∈ X , has a unique fixed point.
Also, the concept of PMS provides to study denotational semantics of dataflow
networks [17, 18, 25, 27].

In 1997, Alber and Guerre-Delabriere [4], defined weakly contractive map-
pings on a Hilbert space and established a novel fixed point theorem for such a
mappings. Subsequently, Rhoades [23] use the notion of weakly contractive map-
pings and obtained a fixed point theorem in complete metric space. Afterward,
weak contraction and function satisfying weak contractive type inequalities have
been considered in a large number of papers, (see, for instance [2], [3], [8], [10],
[11], [12], [13], [19], [21], [24], [28] and references therein). In 2014, Ansari [5]
introduced and study C-class function and proved some fixed point theorems.

The purpose of this paper is to study generalized (ψ − ϕ)-weakly contractive
mappings via C-class function in the setting of complete partial metric spaces and
establish some fixed point theorems in the said space. The results presented in this
paper extend and generalize several results from the current existing literature (see,
e.g., [4, 7, 13, 23] and others).
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2 Preliminaries

Before proving our main results, we need the following relevant definitions and
lemmas.

Definition 2.1. ([18]) Let X be a nonempty set and p : X×X → R+ be such that

for all x, y, z ∈ X the followings are satisfied:

(P1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(P2) p(x, x) ≤ p(x, y),

(P3) p(x, y) = p(y, x),

(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

Then p is called partial metric onX and the pair (X, p) is called partial metric

space.

Remark 2.1. It is clear that if p(x, x) = 0, then x = y. But, on the contrary

p(x, x) need not be zero.

Example 2.1. ([6]) Let X = R+ and p : X × X → R+ given by p(x, y) =

max{x, y} for all x, y ∈ R+. Then (R+, p) is a partial metric space.

Example 2.2. ([6]) Let X = {[a, b] : a, b ∈ R, a ≤ b}. Then p
(

[a, b], [c, d]
)

=

max{b, d} −min{a, c} defines a partial metric p on X .

Various applications of this space has been extensively investigated by many
authors (see [16], [26] for details).

Remark 2.2. ([15]) Let (X, p) be a partial metric space.

(i) The function dP : X×X → R+ defined as dP (x, y) = 2p(x, y)−p(x, x)−

p(y, y) is a metric on X and (X, dP ) is a metric space.

(ii) The function dS : X × X → R+ defined as dS(x, y) = max{p(x, y) −

p(x, x), p(x, y)− p(y, y)} is a metric on X and (X, dS) is a metric space.
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Note also that each partial metric p on X generates a T0 topology τp on X ,
whose base is a family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}whereBp(x, ε) =
{y ∈ X : p(x, y) ≤ p(x, x) + ε} for all x ∈ X and ε > 0.

On a partial metric space the notions of convergence, the Cauchy sequence,
completeness and continuity are defined as follows [17].

Definition 2.2. ([17]) Let (X, p) be a partial metric space. Then

(i) a sequence {xn} in (X, p) is said to be convergent to a point x ∈ X if and only

if p(x, x) = limn→∞ p(xn, x),

(ii) a sequence {xn} is called a Cauchy sequence if limm,n→∞ p(xm, xn) exists

and finite,

(iii) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges

to a point x ∈ X with respect to τp. Furthermore,

lim
m,n→∞

p(xm, xn) = lim
n→∞

p(xn, x) = p(x, x).

(iv) A mapping f : X → X is said to be continuous at x0 ∈ X if for every ε > 0,

there exists δ > 0 such that f
(
Bp(x0, δ)

)
⊂ Bp

(
f(x0), ε

)
.

Definition 2.3. ([20]) Let (X, p) be a partial metric space. Then

(a1) a sequence {xn} in (X, p) is called 0-Cauchy if limm,n→∞ p(xm, xn) = 0,

(a2) (X, p) is said to be 0-complete if every 0-Cauchy sequence {xn} in X con-

verges to a point x ∈ X , such that p(x, x) = 0.

Definition 2.4. ([5]) A mapping F : [0,∞) × [0,∞) → R is called a C-class

function if it is continuous and satisfies following axioms:

(i) F (s, t) ≤ s,

(ii) F (s, t) = s implies that either s = 0 or t = 0, for all s, t ∈ [0,∞).

An extra condition on F is that F (0, 0) = 0 could be imposed in some cases
if required. The letter C denotes the set of all C-class functions. The following
example shows that C is nonempty.
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Example 2.3. ([5]) Define a function F : [0,∞)× [0,∞)→ R by

(i) F (s, t) = s− t, F (s, t) = s⇒ t = 0,

(ii) F (s, t) = ms, 0 < m < 1, F (s, t) = s⇒ s = 0,

(iii) F (s, t) = s
(1+t)r , r ∈ (0,∞), F (s, t) = s⇒ s = 0 or t = 0,

(iv) F (s, t) = log(t+as)
1+t , a > 1, F (s, t) = s⇒ s = 0 or t = 0,

(v) F (s, t) = ln(1+as)
2 , a > e, F (s, 1) = s⇒ s = 0,

(vi) F (s, t) = (s+ l)(1/(1+t)r) − l, l > 1, r ∈ (0,∞), F (s, t) = s⇒ t = 0,

(vii) F (s, t) = s logt+aa, a > 1, F (s, t) = s⇒ s = 0 or t = 0,

(viii) F (s, t) = s−
(

1+s
2+s

)(
t

1+t

)
, F (s, t) = s⇒ t = 0,

(ix) F (s, t) = sβ(s), where β : [0,∞)→ [0, 1) and is continuous, F (s, t) = s⇒

s = 0,

(x) F (s, t) = s−
(

t
k+t

)
, F (s, t) = s⇒ t = 0,

(xi) F (s, t) = s − ϕ(s), F (s, t) = s ⇒ s = 0, here ϕ : [0,∞) → [0,∞) is a

continuous function such that ϕ(t) = 0 if and only if t = 0,

(xii) F (s, t) = sh(s, t), F (s, t) = s⇒ s = 0, here h : [0,∞)× [0,∞)→ [0,∞)

is a continuous function such that h(s, t) < 1 for all t, s > 0,

(xiii) F (s, t) = s−
(

2+t
1+t t

)
, F (s, t) = s⇒ t = 0,

(xiv) F (s, t) = n
√
ln(1 + sn), F (s, t) = s⇒ s = 0,

(xv) F (s, t) = φ(s), F (s, t) = s ⇒ s = 0, here φ : [0,∞) → [0,∞) is a upper

semi-continuous function such that φ(0) = 0 and φ(t) < t for all t > 0,

(xvi) F (s, t) = s
(1+s)r , r ∈ (0,∞), F (s, t) = s⇒ s = 0,

(xvii) F (s, t) = s
Γ(1/2)

∫∞
0

e−x
√
x+t

dx, where Γ is the Euler Gamma function.

Then F are elements of C.

Definition 2.5. ([5]) A function ψ : [0,∞)→ [0,∞) is called an altering distance

function if the following properties are satisfied:

(c1) ψ is non-decreasing and continuous function,

(c2) ψ(t) = 0 if and only if t = 0.
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Remark 2.3. ([5]) We denote Ψ the class of all altering distance functions.

Definition 2.6. ([5]) A function ϕ : [0,∞)→ [0,∞) is said to be an ultra altering

distance function, if it is continuous, non-decreasing such that ϕ(t) > 0 for t > 0

and ϕ(0) ≥ 0.

Remark 2.4. ([5]) We denote Φu the class of all ultra altering distance functions.

Now, we define the following concept.

Definition 2.7. Let (X, p) be a partial metric space. Let T : X → X be a mapping,

T is said to be generalized weakly contractive on X , if

ψ
(
p(Tx, Ty)

)
≤ F

(
ψ(p(x, y)), ϕ(p(x, y))

)
(2.1)

for all x, y ∈ X , where F is a C-class function, ψ : [0,∞) → [0,∞) is nonde-

creasing and continuous function with ψ(t) = 0 if and only if t = 0 and ϕ is an

ultra altering distance function.

Definition 2.8. Let (X, p) be a partial metric space. Let T : X → X be a mapping,

T is said to be generalized (ψ − ϕ)-weakly contractive on X , if

ψ
(
p(Tx, Ty)

)
≤ F

(
ψ(M(x, y)), ϕ(M(x, y))

)
(2.2)

for all x, y ∈ X , where

M(x, y) = max
{
p(x, y), p(x, Tx), p(y, Ty),

1

2

[
p(x, Ty) + p(y, Tx)

]}
F is a C-class function, ψ : [0,∞) → [0,∞) is nondecreasing and continuous

function with ψ(t) = 0 if and only if t = 0 and ϕ is an ultra altering distance

function.

Remark 2.5. If we take max
{
p(x, y), p(x, Tx), p(y, Ty), 1

2

[
p(x, Ty)+p(y, Tx)

]}
= p(x, y) in (2.2), then (2.2) reduces to (2.1).
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Lemma 2.1. ([17, 18]) Let (X, p) be a partial metric space. Then

(b1) a sequence {xn} in (X, p) is a Cauchy sequence if and only if it is a Cauchy

sequence in the metric space (X, dP ),

(b2) (X, p) is complete if and only if the metric space (X, dP ) is complete,

(b3) a subset E of a partial metric space (X, p) is closed if a sequence {xn} in E

such that {xn} converges to some x ∈ X , then x ∈ E.

Lemma 2.2. ([1]) Assume that xn → u as n→∞ in a partial metric space (X, p)

such that p(u, u) = 0. Then limn→∞ p(xn, y) = p(u, y) for every y ∈ X .

3 Main results

In this section, we shall prove some unique fixed point theorems for generalized
(ψ − ϕ)-weakly contractive mappings via C-class function in the setting of com-
plete partial metric spaces.

Theorem 3.1. Let (X, p) be a complete partial metric space. Let T : X → X be

a mapping satisfying the inequality:

ψ
(
p(Tx, Ty)

)
≤ F

(
ψ(M(x, y)), ϕ(M(x, y))

)
(3.1)

for each x, y ∈ X , where

M(x, y) = max
{
p(x, y), p(x, Tx), p(y, Ty),

1

2

[
p(x, Ty) + p(y, Tx)

]}
F ∈ C, ψ ∈ Ψ and ϕ ∈ Φu. Then T has a unique fixed point in X .

Proof. Let x0 ∈ X . We construct the iterative sequence {xn} which is defined as

xn = Txn−1 for n = 1, 2, 3, . . . , then xn = Tnx0. If xn = xn+1 for some n ∈ N,

then xn is a fixed point of T . So, we assume that xn 6= xn+1 for all n ∈ N. From

(3.2) and (P4), we have

ψ
(
p(xn, xn+1)

)
= ψ

(
p(Txn−1, Txn)

)
≤ F

(
ψ(M(xn−1, xn)), ϕ(M(xn−1, xn))

)
, (3.2)
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where

M(xn−1, xn) = max
{
p(xn−1, xn), p(xn−1, Txn−1), p(xn, Txn),

1

2

[
p(xn−1, Txn) + p(xn, Txn−1)

]}
= max

{
p(xn−1, xn), p(xn−1, xn), p(xn, xn+1),

1

2

[
p(xn−1, xn+1) + p(xn, xn)

]}
= max

{
p(xn−1, xn), p(xn−1, xn), p(xn, xn+1),

1

2

[
p(xn−1, xn) + p(xn, xn+1)− p(xn, xn) + p(xn, xn)

]}
= max

{
p(xn−1, xn), p(xn−1, xn), p(xn, xn+1),

1

2

[
p(xn−1, xn) + p(xn, xn+1)

]}
.

If M(xn−1, xn) = p(xn, xn+1), then from equation (3.2), we have

ψ
(
p(xn, xn+1)

)
= ψ

(
p(Txn−1, Txn)

)
≤ F

(
ψ(p(xn, xn+1)), ϕ(p(xn, xn+1))

)
< ψ

(
p(xn, xn+1)

)
, (3.3)

which is a contradiction. Thus, we conclude that

M(xn−1, xn) = p(xn−1, xn). (3.4)

From (3.2) and (3.4), we obtain

ψ
(
p(xn, xn+1)

)
= ψ

(
p(Txn−1, Txn)

)
≤ F

(
ψ(p(xn−1, xn)), ϕ(p(xn−1, xn))

)
< ψ

(
p(xn−1, xn)

)
. (3.5)

Hence, we have

p(xn, xn+1) ≤ p(xn−1, xn). (3.6)
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It follows that the sequence {p(xn, xn+1)} is monotonically decreasing. Hence

p(xn, xn+1)→ 0 as n→ +∞. (3.7)

Now, we shall show that {xn} is a Cauchy sequence inX . Suppose on the contrary

that the sequence {xn} is not Cauchy. Then there exists ε > 0 and increasing

sequences of integers {m(k)} and {n(k)} such that for all integers k,

n(k) > m(k) > k, (3.8)

p(xm(k), xn(k)) ≥ ε. (3.9)

Further corresponding to m(k), we can choose n(k) in such a way that it is the

smallest integer with n(k) > m(k) and satisfying (3.8). Then

p(xm(k), xn(k)−1) < ε. (3.10)

Now, we have

ε ≤ p(xm(k), xn(k))

≤ p(xm(k), xn(k)−1) + p(xn(k)−1, xn(k))− p(xn(k)−1, xn(k)−1)

≤ p(xm(k), xn(k)−1) + p(xn(k)−1, xn(k))

< ε+ p(xn(k)−1, xn(k)) (by (3.10)). (3.11)

Letting k → +∞ in equation (3.11) and using (3.7), we get

lim
k→∞

p(xm(k), xn(k)) = ε. (3.12)

Again

p(xn(k), xm(k)) ≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k)−1)

+p(xm(k)−1, xm(k))− p(xn(k)−1, xn(k)−1)

−p(xm(k)−1, xm(k)−1)

≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k)−1)

+p(xm(k)−1, xm(k)), (3.13)
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whereas

p(xn(k)−1, xm(k)−1) ≤ p(xn(k)−1, xn(k)) + p(xn(k), xm(k))

+p(xm(k), xm(k)−1)− p(xn(k), xn(k))

−p(xm(k), xm(k))

≤ p(xn(k)−1, xn(k)) + p(xn(k), xm(k))

+p(xm(k), xm(k)−1). (3.14)

Now, on letting k → +∞ in (3.13), (3.14) and using (3.7) and (3.12), we obtain

lim
k→∞

p(xm(k)−1, xn(k)−1) = ε. (3.15)

Now setting x = xm(k)−1 and y = xn(k)−1 in inequality (3.2), we obtain

ψ
(
p(xm(k), xn(k))

)
= ψ

(
p(Txm(k)−1, Txn(k)−1)

)
≤ F

(
ψ(M(xm(k)−1, xn(k)−1)),

ϕ(M(xm(k)−1, xn(k)−1))
)
, (3.16)

where

M(xm(k)−1, xn(k)−1) = max
{
p(xm(k)−1, xn(k)−1), p(xm(k)−1, Txm(k)−1),

p(xn(k)−1, Txn(k)−1),
1

2

[
p(xm(k)−1, Txn(k)−1)

+p(xn(k)−1, Txm(k)−1)
]}

= max
{
p(xm(k)−1, xn(k)−1), p(xm(k)−1, xm(k)),

p(xn(k)−1, xn(k)),
1

2

[
p(xm(k)−1, xn(k)) + p(xn(k)−1, xm(k))

]}
= max

{
p(xm(k)−1, xn(k)−1), p(xm(k)−1, xm(k)),

p(xn(k)−1, xn(k)),
1

2

[
p(xm(k)−1, xm(k)) + p(xm(k), xn(k))

−p(xm(k), xm(k)) + p(xn(k)−1, xn(k)) + p(xn(k), xm(k))

−p(xn(k), xn(k))
]}
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= max
{
p(xm(k)−1, xn(k)−1), p(xm(k)−1, xm(k)),

p(xn(k)−1, xn(k)),
1

2

[
p(xm(k)−1, xm(k)) + p(xm(k), xn(k))

+p(xn(k)−1, xn(k)) + p(xn(k), xm(k))
]}
.

On letting k → +∞ and using (3.7), (3.12) and (3.15), we get

M(xm(k)−1, xn(k)−1)→ ε. (3.17)

Thus, using equation (3.16), (3.17) and (3.12), we obtain

ψ(ε) ≤ F
(
ψ(ε), ϕ(ε)

)
,

which implies either ψ(ε) = 0 or ϕ(ε) = 0. That is ε = 0, which is a contradiction.

Thus the sequence {xn} is a Cauchy sequence and hence convergent. Thus by

Lemma 2.1 this sequence will also Cauchy in (X, dP ). In addition, since (X, p) is

complete, (X, dP ) is also complete. Thus there exists z ∈ X such that xn → z as

n→ +∞. Moreover by Lemma 2.2,

p(z, z) = lim
n→∞

p(z, xn) = lim
n,m→∞

p(xn, xm) = 0, (3.18)

implies

lim
n→∞

dP (z, xn) = 0. (3.19)

Now, we show that z is a fixed point of T . Notice that due to (3.18), we have

p(z, z) = 0. Putting x = xn−1 and y = z in equation (3.2), we obtain

ψ
(
p(xn, T z)

)
= ψ

(
p(Txn−1, T z)

)
≤ F

(
ψ(M(xn−1, z)), ϕ(M(xn−1, z))

)
≤ ψ(M(xn−1, z)), (3.20)
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where

M(xn−1, z) = max
{
p(xn−1, z), p(xn−1, Txn−1), p(z, Tz),

1

2

[
p(xn−1, T z) + p(z, Txn−1)

}
= max

{
p(xn−1, z), p(xn−1, xn), p(z, Tz),

1

2

[
p(xn−1, T z) + p(z, xn)

}
. (3.21)

On letting n→ +∞ in (3.21), we get

M(xn−1, z)→ p(z, Tz). (3.22)

On letting n→ +∞ in (3.20) and using (3.22) and continuity of ψ, we get

ψ(p(z, Tz)) ≤ ψ(p(z, Tz)),

which implies that ψ(p(z, Tz)) = 0. Hence p(z, Tz) = 0, that is, z = Tz. This

shows that z is a fixed point of T .

Now, to show that the uniqueness of fixed points of T . Let us assume that z1

and z2 are two fixed points of T with z1 6= z2. Then from (3.2), (3.18) and using

(P3), we have

ψ
(
p(z1, z2)

)
= ψ

(
p(Tz1, T z2)

)
≤ F

(
ψ(M(z1, z2)), ϕ(M(z1, z2))

)
≤ ψ(M(z1, z2)), (3.23)

where

M(z1, z2) = max
{
p(z1, z2), p(z1, T z1), p(z2, T z2),

1

2

[
p(z1, T z2) + p(z2, T z1)

]}
= max

{
p(z1, z2), p(z1, z1), p(z2, z2),

1

2

[
p(z1, z2) + p(z2, z1)

]}
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= max
{
p(z1, z2), 0, 0, p(z1, z2)

}
= p(z1, z2). (3.24)

From (3.23) and (3.24), we get

ψ(p(z1, z2)) ≤ ψ(p(z1, z2)),

which implies that ψ(p(z1, z2)) = 0. Hence p(z1, z2) = 0, that is, z1 = z2. Thus

the fixed point of T is unique. This completes the proof.

Remark 3.1. If we take max
{
p(x, y), p(x, Tx), p(y, Ty), 1

2

[
p(x, Ty]+p(y, Tx)

]}
= p(x, y), F (s, t) = s − t and ψ(t) = t for all t ≥ 0 in Theorem 3.1, then we

deduce a partial generalization of result due to Alber and Guerre-Delabriere [4]

for partial metric spaces.

If we take max
{
p(x, y), p(x, Tx), p(y, Ty), 1

2

[
p(x, Ty]+p(y, Tx)

]}
= p(x, y),

F (s, t) = s− t and ψ(t) = t for all t ≥ 0 in Theorem 3.1, then we deduce a result
due to Rhoades [23] for partial metric spaces.

Corollary 3.1. Let (X, p) be a complete partial metric space. Let T : X → X be

a mapping satisfying the inequality:

p(Tx, Ty) ≤ p(x, y)− ϕ(p(x, y)), (3.25)

for all x, y ∈ X , where ϕ is as in Theorem 3.1. Then T has a unique fixed point in

X .

If we take max
{
p(x, y), p(x, Tx), p(y, Ty), 1

2

[
p(x, Ty]+p(y, Tx)

]}
= p(x, y),

F (s, t) = ks, 0 < k < 1 and ψ(t) = t for all t ≥ 0 in the Theorem 3.1, then we
obtain the following result in the form of a Banach contraction principle [7].

Corollary 3.2. Let (X, p) be a complete partial metric space. Let T : X → X be

a mapping satisfying the inequality:

p(Tx, Ty) ≤ k p(x, y), (3.26)
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for all x, y ∈ X , where 0 < k < 1 is a constant. Then T has a unique fixed point

in X .

If we take F (s, t) = ks, 0 < k < 1 and ψ(t) = t for all t ≥ 0 in the Theorem
3.1, then we obtain the following result.

Corollary 3.3. Let (X, p) be a complete partial metric space. Let T : X → X be

a mapping satisfying the inequality:

p(Tx, Ty) ≤ k max
{
p(x, y), p(x, Tx), p(y, Ty),

1

2

[
p(x, Ty) + p(y, Tx)

]}
,(3.27)

for all x, y ∈ X , where 0 < k < 1 is a constant. Then T has a unique fixed point

in X .

Remark 3.2. It is clear that the conclusions of the Corollary 3.3 remain valid if in

condition (??), the right-hand side is replaced by one of the following terms:

k p(x, y); k
(1

2
[p(x, Ty) + p(y, Tx)]

)
;

k max
{
p(x, Tx), p(y, Ty)

}
;

or k max
{
p(x, y), p(x, Tx), p(y, Ty)

}
.

Corollary 3.4. Let (X, p) be a complete partial metric space and let T : X → X

be a mapping satisfying the inequality

p(Tx, Ty) ≤ q1 p(x, y) + q2 p(x, Tx) + q3 p(y, Ty) +
q4

2
[p(x, Ty) + p(y, Tx)]

for all x, y ∈ X , where q1, q2, q3, q4 ≥ 0 are constants such that q1+q2+q3+q4 <

1. Then T has a unique fixed point in X .

Proof. Follows from Corollary 3.3, by noting that

q1 p(x, y) + q2 p(x, Tx) + q3 p(y, Ty) +
q4

2
[p(x, Ty) + p(y, Tx)]
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≤ (q1 + q2 + q3 + q4) max
{
p(x, y), p(x, Tx), p(y, Ty),

1

2
[p(x, Ty) + p(y, Tx)]

}
.

If we take F (s, t) = s − t in the Theorem 3.1, then we obtain the following
result.

Corollary 3.5. Let (X, p) be a complete partial metric space. Let T : X → X be

a mapping satisfying the inequality:

ψ
(
p(Tx, Ty)

)
≤ ψ(M(x, y))− ϕ(M(x, y)), (3.28)

for all x, y ∈ X , where M(x, y), ψ and ϕ are as in Theorem 3.1. Then T has a

unique fixed point in X .

If we take F (s, t) = s− t and max
{
p(x, y), p(x, Tx), p(y, Ty), 1

2

[
p(x, Ty]+

p(y, Tx)
]}

= p(x, y) in the Theorem 3.1, then we obtain the following result.

Corollary 3.6. Let (X, p) be a complete partial metric space. Let T : X → X be

a mapping satisfying the inequality:

ψ
(
p(Tx, Ty)

)
≤ ψ(p(x, y))− ϕ(p(x, y)), (3.29)

for all x, y ∈ X , where ψ and ϕ are as in Theorem 3.1. Then T has a unique fixed

point in X .

Remark 3.3. Corollary 3.5 extends Theorem 2.1 of Dutta and Choudhury [13]

from complete metric space to the setting of complete partial metric space.

If we takeψ(t) = t in the Corollary 3.3 and putting φ(t) = (I(t)−ϕ(t)), where
φ : [0,∞) → [0,∞) is an upper semi continuous function such that φ(t) = 0 if
and only if t = 0 and φ(t) < t for all t > 0 and I is the identity map, then we
obtain the following result as corollary.
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Corollary 3.7. Let (X, p) be a complete partial metric space. Let T : X → X be

a mapping satisfying the inequality:

p(Tx, Ty) ≤ φ(M(x, y)), (3.30)

for all x, y ∈ X , where M(x, y) is as in Theorem 3.1. Then T has a unique fixed

point in X .

If we take F (s, t) = s
(1+s)r for r > 0 in the Theorem 3.1, then we obtain the

following result.

Corollary 3.8. Let (X, p) be a complete partial metric space. Let T : X → X be

a mapping satisfying the inequality:

ψ(p(Tx, Ty)) ≤ ψ(M(x, y))

(1 + ψ(M(x, y))r
, (3.31)

for all x, y ∈ X , where r > 0 and M(x, y) and ψ are as in Theorem 3.1. Then T

has a unique fixed point in X .

Example 3.1. Let X = [0, 1]. Define p : X ×X → R+ as p(x, y) = max{x, y}

with T : X → X by T (x) = x
3 for all x ∈ X . Clearly (X, p) is a partial

metric space. Now, define ψ and ϕ on R+ by ψ(t) = t and ϕ(t) = t
2 for all

t ∈ R+. Let x ≤ y. Then choose x = 1
2 and y = 1, we have p(Tx, Ty) = y

3 ,

p(x, y) = y, p(x, Tx) = x, p(y, Ty) = y, p(x, Ty) = x, p(y, Tx) = y and

max
{
p(x, y), p(x, Tx), p(y, Ty), 1

2 [p(x, Ty)+p(y, Tx)]
}

= max
{
y, x, y, 1

2(x+

y)
}

= y.

Result analysis

(1) Now, we consider inequality (3.26). Here p(Tx, Ty) = y
3 and M(x, y) = y,

we have

ψ(p(Tx, Ty)) = ψ(
y

3
) ≤ ψ(y)− ϕ(y)
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or

y

3
≤ y − y

2
=
y

2

or

1

3
≤ 1

2

which is true. Hence inequality (3.28) is satisfied. Thus all the conditions of Corol-

lary 3.5 are satisfied. Hence by Corollary 3.5, T has a unique fixed point. Here,

note that ′0′ is the unique fixed point of T .

(2) Now, we consider inequality (3.29). Here p(Tx, Ty) = y
3 and p(x, y) = y, we

have

ψ(p(Tx, Ty)) = ψ(
y

3
) ≤ ψ(y)− ϕ(y)

or

y

3
≤ y − y

2
=
y

2

or

1

3
≤ 1

2

which is true. Hence inequality (3.29) is satisfied. Thus all the conditions of Corol-

lary 3.6 are satisfied. Hence by Corollary 3.6, T has a unique fixed point. Here,

note that ′0′ is the unique fixed point of T .

(3) Now, we consider inequality (3.25). Here p(Tx, Ty) = y
3 and p(x, y) = y, we

have

p(Tx, Ty) =
y

3
≤ y − ϕ(y)

or

y

3
≤ y − y

2
=
y

2
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or

1

3
≤ 1

2

which is true. Hence inequality (3.25) is satisfied. Thus all the conditions of Corol-

lary 3.1 are satisfied. Hence by Corollary 3.1, T has a unique fixed point. Here,

note that ′0′ is the unique fixed point of T .

(4) Now, we consider inequality (3.26). Here p(Tx, Ty) = y
3 and p(x, y) = y, we

have

p(Tx, Ty) =
y

3
≤ k y

or

1

3
≤ k y

or

k ≥ 1

3
.

If we take 0 < k < 1, then inequality (3.26) is satisfied. Thus all the conditions

of Corollary 3.2 are satisfied. Hence by Corollary 3.2, T has a unique fixed point.

Here, note that ′0′ is the unique fixed point of T .

(5) Now, we consider inequality (??). Here p(Tx, Ty) = y
3 and M(x, y) = y, we

have

p(Tx, Ty) =
y

3
≤ k y

or

1

3
≤ k y

or

k ≥ 1

3
.
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If we take 0 < k < 1, then inequality (??) is satisfied. Thus all the conditions of

Corollary 3.3 are satisfied. Hence by Corollary 3.3, T has a unique fixed point.

Here, note that ′0′ is the unique fixed point of T .

(6) Now, we consider inequality (3.30). Here p(Tx, Ty) = y
3 , φ(t) = t − ϕ(t) =

t− t/2 = t/2 and M(x, y) = y, we have

p(Tx, Ty) =
y

3
≤ φ(y)

or

y

3
≤ y

2

or

1

3
≤ 1

2
,

which is true. Hence inequality (3.30) is satisfied. Thus all the conditions of Corol-

lary 3.7 are satisfied. Hence by Corollary 3.7, T has a unique fixed point. Here,

note that ′0′ is the unique fixed point of T .

(7) Now, we consider inequality (3.31). Here p(Tx, Ty) = y
3 , M(x, y) = y and

taking r = 1, we have

ψ(p(Tx, Ty)) = p(Tx, Ty) =
y

3
≤ ψ(y)

1 + ψ(y)

or

y

3
≤ y

1 + y

putting y = 1, we get

1

3
≤ 1

2
,

which is true. Hence inequality (3.31) is satisfied. Thus all the conditions of Corol-

lary 3.8 are satisfied. Hence by Corollary 3.8, T has a unique fixed point. Here,

note that ′0′ is the unique fixed point of T .
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Example 3.2. Let X = {1, 2, 3, 4} and p : X ×X → R be defined by

p(x, y) =


|x− y|+ max{x, y}, if x 6= y,

x, if x = y 6= 1,

0, if x = y = 1,

for all x, y ∈ X . Then (X, p) is a complete partial metric space.

Define the mapping T : X → X by

T (1) = 1, T (2) = 1, T (3) = 2, T (4) = 2.

Now, we have

p(T (1), T (2)) = p(1, 1) = 0 ≤ 3

4
.3 =

3

4
p(1, 2),

p(T (1), T (3)) = p(1, 2) = 3 ≤ 3

4
.5 =

3

4
p(1, 3),

p(T (1), T (4)) = p(1, 2) = 3 ≤ 3

4
.7 =

3

4
p(1, 4),

p(T (2), T (3)) = p(1, 2) = 3 ≤ 3

4
.4 =

3

4
p(2, 3),

p(T (2), T (4)) = p(1, 2) = 3 ≤ 3

4
.6 =

3

4
p(2, 4),

p(T (3), T (4)) = p(2, 2) = 2 ≤ 3

4
.5 =

3

4
p(3, 4).

Thus, T satisfies all the conditions of Corollary 3.2 with k = 3
4 < 1. Now by

Corollary 3.2, T has a unique fixed point, which in this case is 1.

4 Conclusion

In this paper, we study generalized (ψ−ϕ)-weakly contractive mappings and prove
a unique fixed point theorem in a complete partial metric space. Also, we give some
examples in support of our results. Our result extends and generalizes several re-
sults from the existing literature (see, e.g., [4, 7, 13, 23] and others).
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