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Abstract

In this paper, the ideas of relative (p, q, t)L-th order, relative (p, q, t)L-th lower
order, relative (p, q, t)L-th type and relative (p, q, t)L-th weak type of an analytic
function with respect to an entire function in the unit polydisc are introduced. Hence
we study some comparative growth properties of composition of two analytic func-
tions in the unit polydisc on the basis of relative (p, q, t)L-th order, relative (p, q, t)L-
th lower order, relative (p, q, t)L-th type and relative (p, q, t)L-th weak type where
p, q ∈ N and t ∈ N ∪ {−1, 0}.

1 Introduction, Definitions and Notations

For x ∈ [0,∞) and k ∈ N, we define exp[k] x = exp
(
exp[k−1] x

)
and log[k] x =

log
(
log[k−1] x

)
where N be the set of all positive integers. We also denote log[0] x = x,

log[−1] x = expx, exp[0] x = x and exp[−1] x = log x. Let f (z) =
∞∑
n=0

cnz
n be analytic in

Keywords and phrases : Growth, analytic function, composition, unit polydisc, relative (p, q, t)L-th
order, relative (p, q, t)L-th lower order, relative (p, q, t)L-th type, relative (p, q, t)L-th lower type, relative
(p, q, t)L-th weak type, slowly changing function in the unit polydisc
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2 Tanmay Biswas

the unit disc U = {z : |z| < 1} and Mf (r) be the maximum of |f (z)| on |z| = r. In [8],
Sons was define the order ρ (f) and the lower order λ (f) as

ρ (f) = lim
r→1

log[2]Mf (r)

− log (1− r)
and λ (f) = lim

r→1

log[2]Mf (r)

− log (1− r)
.

Considering the unit polydisc U = {(z1, z2) : |zj | ≤ 1, j = 1, 2} , Banerjee and
Dutta [2] introduced the definition of order and lower order of functions of two complex
variables analytic in the unit polydisc which are as follows:

Definition 1. Let f(z1, z2) =
∞∑

m,n=0
cmnz

m
1 z

n
2 be a non-constant analytic function of two

complex variables z1 and z2 holomorphic in the closed unit polydisc U = {(z1, z2) : |zj | ≤
1, j = 1, 2} and Mf (r1, r2) = max {|f(z1, z2)| : |zj | ≤ 1, j = 1, 2} . Then order and
lower order of f(z1, z2) are denoted by ρ (f) and λ (f) respectively and defined as

v2ρ (f) = lim
r1,r2→1

log[2]Mf (r1, r2)

− log (1− r1) (1− r2)
and v2λ (f) = lim

r1,r2→1

log[2]Mf (r1, r2)

− log (1− r1) (1− r2)
.

Generalizing this notion, Dutta [5] introduced the definitions of (p, q)-th order
and lower (p, q)-th lower order of functions of two complex variables analytic in the unit
polydisc in the following way:

Definition 2. [5] Let f(z1, z2) be a non-constant analytic function of two complex variables
z1 and z2 holomorphic in the closed unit polydisc U = {(z1, z2) : |zj | ≤ 1, j = 1, 2} .
then (p, q)-th order v2ρ

(p,q) (f) and lower (p, q)-th lower order v2λ
(p,q) (f) of f(z1, z2) are

defined by

v2ρ
(p,q) (f) = lim

r1,r2→1

log[p]Mf (r1, r2)

log[q]
(

1
(1−r1)(1−r2)

) and v2λ
(p,q) (f) = lim

r1,r2→1

log[p]Mf (r1, r2)

log[q]
(

1
(1−r1)(1−r2)

)
where where p and q are positive integers with p ≥ q ≥ 1.

Extending this notion, one may introduce (p, q)-th order and lower (p, q)-th lower
order for functions of n-complex variables analytic in a unit polydisc as follows :

vnρ
(p,q) (f) = lim

r1,r2,···,rn→1

log[p]Mf (r1, r2, ··, rn)

log[q]
(

1
(1−r1)(1−r2)···(1−rn)

)
and

vnλ
(p,q) (f) = lim

r1,r2,···,rn→1

log[p]Mf (r1, r2, ··, rn)

log[q]
(

1
(1−r1)(1−r2)···(1−rn)

)
where p, q ∈ N and f(z1, z2, · · ·, zn) be a non-constant analytic function of n-complex
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variables z1, z2, · · ·, zn−1 and zn in the unit polydisc

U = {(z1, z2, ··, zn) : |zj | ≤ 1, j = 1, 2, ··, n; r1 > 0, r2 > 0, ··, rn > 0}

and

Mf (r1, r2, ··, rn) = max {|f(z1, z2, ··, zn)| : |zj | ≤ 1, j = 1, 2, ··, n; r1 > 0, r2 > 0, ··, rn > 0} .

The above definition avoids the restriction p ≥ q ≥ 1 of the original definition of (p, q)-th
order (respectively (p, q)-th lower order) of functions of two complex variables holomor-
phic in the unit polydisc as introduced by Dutta [5].

In this connection we just recall the following definition :

Definition 3. A a non-constant analytic function of n-complex variables f(z1, z2, · · ·, zn)
is said to have index-pair (p, q) if b < vnρ

(p,q) (f) < ∞ and vnρ
(p−1,q−1) (f) is not a

nonzero finite number, where b = 1 if p = q and b = 0 for otherwise. Moreover if 0 <

vnρ
(p,q) (f) <∞, then

vnρ
(p−n,q) (f) =∞ for n < p,

vnρ
(p,q−n) (f) = 0 for n < q,

vnρ
(p+n,q+n) (f) = 1 for n = 1, 2, ... .

Similarly for 0 < vnλ
(p,q) (f) <∞, one can easily verify that

vnλ
(p−n,q) (f) =∞ for n < p,

vnλ
(p,q−n) (f) = 0 for n < q,

vnλ
(p+n,q+n) (f) = 1 for n = 1, 2, ... .

The function f(z1, z2, · · ·, zn) is said to be of regular (p, q) growth when (p, q)-th
order and (p, q)-th lower order of f(z1, z2, · · ·, zn) are the same. Functions which are not
of regular (p, q) growth are said to be of irregular (p, q)-growth.

Somasundaram and Thamizharasi [9] introduced the notions of L-order (L-lower
order ) for entire functions of single variable where L ≡ L (r) is a positive continuous
function increasing slowly i.e., L (ar) ∼ L (r) as r → ∞ for every positive constant
‘a’. In the line of Somasundaram and Thamizharasi [9] one may introduce the definition
of (p, q, t)L-th order and (p, q, t)L-th lower order for functions of n complex variables
holomorphic in a unit polydisc in the following way:

vnρ
(p,q,t)L (f) = lim

r1,r2,···,rn→1

log[p]Mf (r1, r2, ··, rn)

log[q]
(

1
(1−r1)(1−r2)···(1−rn)

)
+ exp[t] L

(
1

1−r1 ,
1

1−r2 , · · ·,
1

1−rn

)
and
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vnλ
(p,q,t)L (f) = lim

r1,r2,···,rn→1

log[p]Mf (r1, r2, ··, rn)

log[q]
(

1
(1−r1)(1−r2)···(1−rn)

)
+ exp[t] L

(
1

1−r1 ,
1

1−r2 , · · ·,
1

1−rn

) ,
where p, q ∈ N, t ∈ N ∪ {−1, 0} and L ≡ L

(
1

1−r1 ,
1

1−r2 , ··,
1

1−rn

)
is a positive

continuous function in the unit polydisc U increasing slowly i.e., L
(

a
1−r1 ,

a
1−r2 , ··,

a
1−rn

)
∼ L

(
1

1−r1 ,
1

1−r2 , ··,
1

1−rn

)
as r → 1, for every positive constant ‘a’.

Mainly the growth investigation of analytic functions of single variable has usually
been done through their maximum moduli in comparison with those of exponential func-
tion. But if one is paying attention to evaluate the growth rates of any analytic function with
respect to a new one, the notions of relative growth indicators [3, 4] will come. Considering
this notion one may introduce the definition of relative (p, q)-th order and relative (p, q)-th
lower order in the unit polydisc which are as follows:

Definition 4. If f(z1, z2, ··, zn) be holomorphic in U and g (z1, z2, ··, zn) be entire func-
tion of n-complex variables, then the relative (p, q)-th order f(z1, z2, ··, zn) with respect to
g (z1, z2, ··, zn), denoted by vnρ

(p,q)
g (f) is defined by

vnρ
(p,q)
g (f) = lim

r1,r2,···,rn→1

log[p]M−1g (Mf (r1, r2, ··, rn))

log[q]
(

1
(1−r1)(1−r2)···(1−rn)

) ,

where p and q are any two positive integers.
Similarly for any two positive integers p and q, the relative (p, q)-th lower order of

f(z1, z2, ··, zn) with respect to g (z1, z2, ··, zn), denoted by vnλ
(p,q)
g (f) is given by

vnλ
(p,q)
g (f) = lim

r1,r2,···,rn→1

log[p]M−1g (Mf (r1, r2, ··, rn))

log[q]
(

1
(1−r1)(1−r2)···(1−rn)

) .

In order to make some progress in the study of relative order in the unit polydisc,
now we introduce relative (p, q, t)L-th order and relative (p, q, t)L-th lower order in the
following way:

Definition 5. If f(z1, z2, ··, zn) be holomorphic in U and g (z1, z2, ··, zn) be entire function
of n-complex variables, then the relative (p, q, t)L-th order denoted as ρ(p,q,t)Lg (f) and
relative (p, q, t)L-th lower order denoted as λ(p,q,t)Lg (f) of f(z1, z2, ··, zn) with respect to
g (z1, z2, ··, zn) are define by

vnρ
(p,q,t)L
g (f) = lim

r1,r2,···,rn→1

log[p]M−1g (Mf (r1, r2, ··, rn))

log[q]
(

1
(1−r1)(1−r2)···(1−rn)

)
+ exp[t] L

(
1

1−r1 ,
1

1−r2 , ··,
1

1−rn

)
and
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vnλ
(p,q,t)L
g (f) = lim

r1,r2,···,rn→1

log[p]M−1g (Mf (r1, r2, ··, rn))

log[q]
(

1
(1−r1)(1−r2)···(1−rn)

)
+ exp[t] L

(
1

1−r1 ,
1

1−r2 , ··,
1

1−rn

) ,
where p, q ∈ N and t ∈ N ∪ {−1, 0} .

Now to compare the relative growth of two analytic functions in the unit polydisc
having same non zero finite relative (p, q, t)L-th order with respect to another entire func-
tion of n-complex variables, one may introduce the concepts of relative (p, q, t)L-th type
and relative (p, q, t)L-th lower type in the unit polydisc in the following manner:

Definition 6. Let f(z1, z2, ··, zn) be holomorphic in U and g (z1, z2, ··, zn) be entire func-
tion of n-complex variables with 0 < vnρ

(p,q,t)L
g (f) < ∞, then the relative (p, q, t)L-

th type and relative (p, q, t)L-th lower type denoted respectively by vnσ
(p,q,t)L
g (f) and

vnσ
(p,q,t)L
g (f) of f(z1, z2, ··, zn) with respect to g (z1, z2, ··, zn) are respectively defined as

follows:

vnσ
(p,q,t)L
g (f) =

lim
r1,r2,···,rn→1

log[p−1]M−1g (Mf (r1, r2, ··, rn))[
log[q−1]

(
1

(1−r1)(1−r2)···(1−rn)

)
· exp[t+1] L

(
1

1−r1 ,
1

1−r2 , ··,
1

1−rn

)]
vnρ

(p,q,t)L
g (f)

and

vnσ
(p,q,t)L
g (f) =

lim
r1,r2,···,rn→1

log[p−1]M−1g (Mf (r1, r2, ··, rn))[
log[q−1]

(
1

(1−r1)(1−r2)···(1−rn)

)
· exp[t+1] L

(
1

1−r1 ,
1

1−r2 , ··,
1

1−rn

)]
vnρ

(p,q,t)L
g (f)

,

where p, q ∈ N and t ∈ N ∪ {−1, 0}.

Analogously to determine the relative growth of two analytic functions in the unit
polydisc having same non zero finite relative (p, q, t)L-th lower order with respect to an-
other entire function of n-complex variables, one may introduce the definition of relative
(p, q, t)L-th weak type in the unit polydisc in the following way:

Definition 7. Let f(z1, z2, ··, zn) be holomorphic in U and g (z1, z2, ··, zn) be entire func-
tion of n-complex variables with 0 < vnλ

(p,q,t)L
g (f) < ∞, then the relative (p, q, t)L-th

weak type denoted by vnτ
(p,q,t)L
g (f) of f(z1, z2, ··, zn) with respect to g (z1, z2, ··, zn) is

defined as follows:

vnτ
(p,q,t)L
g (f) =
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lim
r1,r2,···,rn→1

log[p−1]M−1g (Mf (r1, r2, ··, rn))[
log[q−1]

(
1

(1−r1)(1−r2)···(1−rn)

)
· exp[t+1] L

(
1

1−r1 ,
1

1−r2 , ··,
1

1−rn

)]
vnλ

(p,q,t)L
g (f)

where p, q ∈ N and t ∈ N ∪ {−1, 0}.
Also one may define the growth indicatorvnτ

(p,q,t)L
g (f) in the unit polydisc in the fol-

lowing manner :

vnτ
(p,q,t)L
g (f) =

lim
r1,r2,···,rn→1

log[p−1]M−1g (Mf (r1, r2, ··, rn))[
log[q−1]

(
1

(1−r1)(1−r2)···(1−rn)

)
· exp[t+1] L

(
1

1−r1 ,
1

1−r2 , ··,
1

1−rn

)]
vnλ

(p,q,t)L
g (f)

where p, q ∈ N and t ∈ N ∪ {−1, 0}.

In this paper we study some growth properties relating to the composition of
two analytic function of n-complex variables in the unit polydisc on the basis of relative
(p, q, t)L-th type, relative (p, q, t)L-th lower type and relative (p, q, t)L-th weak type as
compared to the growth of their corresponding left and right factors where p, q ∈ N and
t ∈ N ∪ {−1, 0}. We do not explain the standard definitions and notations in the theory of
entire functions as those are available in 1,

2 Theorems

In this section we present the main results of the paper.

Theorem 1. If f(z1, z2, ··, zn), g (z1, z2, ··, zn) be any two analytic functions in U and
h (z1, z2, ··, zn) be an entire function of n-complex variables such that 0 < vnλ

(p,q,t)L
h (f ◦ g)

≤ vnρ
(p,q,t)L
h (f ◦ g) < ∞ and 0 < vnλ

(p,q,t)L
h (f) ≤ vnρ

(p,q,t)L
h (f) < ∞, where p, q ∈ N

and t ∈ N ∪ {−1, 0}. Then

vnλ
(p,q,t)L
h (f ◦ g)

vnρ
(p,q,t)L
h (f)

≤ lim
r1,r2,···,rn→1

log[p]M−1h (Mf◦g (r1, r2, ··, rn))
log[p]M−1h (Mf (r1, r2, ··, rn))

≤ min

{
vnλ

(p,q,t)L
h (f ◦ g)

vnλ
(p,q,t)L
h (f)

,
vnρ

(p,q,t)L
h (f ◦ g)

vnρ
(p,q,t)L
h (f)

}

≤ max

{
vnλ

(p,q,t)L
h (f ◦ g)

vnλ
(p,q,t)L
h (f)

,
vnρ

(p,q,t)L
h (f ◦ g)

vnρ
(p,q,t)L
h (f)

}

≤ lim
r1,r2,···,rn→1

log[p]M−1h (Mf◦g (r1, r2, ··, rn))
log[p]M−1h (Mf (r1, r2, ··, rn))

≤ vnρ
(p,q,t)L
h (f ◦ g)

vnλ
(p,q,t)L
h (f)

.

Proof. From the definition of vnρ
(p,q,t)L
h (f) and vnλ

(p,q,t)L
h (f ◦ g) , we have for arbitrary
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positive ε and for all sufficiently large values of
(

1
1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
that

log[p]M−1h (Mf◦g (r1, r2, ··, rn)) >
(
vnλ

(p,q,t)L
h (f ◦ g)− ε

)
×

[
log[q]

(
1

(1− r1) (1− r2) · · (1− rn)

)
+ exp[t] L

(
1

1− r1
,

1

1− r2
, ··, 1

1− rn

)]
(2.1)

and

log[p]M−1h (Mf (r1, r2, ··, rn)) ≤
(
vnρ

(p,q,t)L
h (f) + ε

)
×

[
log[q]

(
1

(1− r1) (1− r2) · · (1− rn)

)
+ exp[t] L

(
1

1− r1
,

1

1− r2
, ··, 1

1− rn

)]
.

(2.2)
Now from (2.1) and (2.2) it follows for all sufficiently large values of

(
1

1−r1

)
,
(

1
1−r2

)
, · · ·

and
(

1
1−rn

)
that

log[p]M−1h (Mf◦g (r1, r2, ··, rn))
log[p]M−1h (Mf (r1, r2, ··, rn))

>

(
vnλ

(p,q,t)L
h (f ◦ g)− ε

)
(
vnρ

(p,q,t)L
h (f) + ε

) .

As ε (> 0) is arbitrary, we obtain that

lim
r1,r2,···,rn→1

log[p]M−1h (Mf◦g (r1, r2, ··, rn))
log[p]M−1h (Mf (r1, r2, ··, rn))

>
vnλ

(p,q,t)L
h (f ◦ g)

vnρ
(p,q,t)L
h (f)

. (2.3)

Again for a sequence of values of
(

1
1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
tending to infinity,

log[p]M−1h (Mf◦g (r1, r2, ··, rn)) ≤
(
vnλ

(p,q,t)L
h (f ◦ g) + ε

)
×

[
log[q]

(
1

(1− r1) (1− r2) · · (1− rn)

)
+ exp[t] L

(
1

1− r1
,

1

1− r2
, ··, 1

1− rn

)]
(2.4)

and for all sufficiently large values of
(

1
1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
,

log[p]M−1h (Mf (r1, r2, ··, rn)) >
(
vnλ

(p,q,t)L
h (f)− ε

)
×

log

[
log[q]

(
1

(1− r1) (1− r2) · · (1− rn)

)
+ exp[t] L

(
1

1− r1
,

1

1− r2
, ··, 1

1− rn

)]
.

(2.5)
Combining (2.4) and (2.5) , we get for a sequence of values of

(
1

1−r1

)
,
(

1
1−r2

)
, · · · and
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(
1

1−rn

)
tending to infinity that

log[p]M−1h (Mf◦g (r1, r2, ··, rn))
log[p]M−1h (Mf (r1, r2, ··, rn))

≤

(
vnλ

(p,q,t)L
h (f ◦ g) + ε

)
(
vnλ

(p,q,t)L
h (f)− ε

) .

Since ε (> 0) is arbitrary, it follows that

lim
r1,r2,···,rn→1

log[p]M−1h (Mf◦g (r1, r2, ··, rn))
log[p]M−1h (Mf (r1, r2, ··, rn))

≤ vnλ
(p,q,t)L
h (f ◦ g)

vnλ
(p,q,t)L
h (f)

. (2.6)

Also for a sequence of values of
(

1
1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
tending to infinity that

log[p]M−1h (Mf (r1, r2, ··, rn)) ≤
(
vnλ

(p,q,t)L
h (f) + ε

)
×

[
log[q]

(
1

(1− r1) (1− r2) · · (1− rn)

)
+ exp[t] L

(
1

1− r1
,

1

1− r2
, ··, 1

1− rn

)]
.

(2.7)
Now from (2.1) and (2.7) , we obtain for a sequence of values of

(
1

1−r1

)
,
(

1
1−r2

)
, · · · and(

1
1−rn

)
tending to infinity that

log[p]M−1h (Mf◦g (r1, r2, ··, rn))
log[p]M−1h (Mf (r1, r2, ··, rn))

≥

(
vnλ

(p,q,t)L
h (f ◦ g)− ε

)
(
vnλ

(p,q,t)L
h (f) + ε

) .

As ε (> 0) is arbitrary, we get from above that

lim
r1,r2,···,rn→1

log[p]M−1h (Mf◦g (r1, r2, ··, rn))
log[p]M−1h (Mf (r1, r2, ··, rn))

≥ vnλ
(p,q,t)L
h (f ◦ g)

vnλ
(p,q,t)L
h (f)

. (2.8)

Also for all sufficiently large values of
(

1
1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
,

log[p]M−1h (Mf◦g (r1, r2, ··, rn)) ≤
(
vnρ

(p,q,t)L
h (f ◦ g) + ε

)
×

[
log[q]

(
1

(1− r1) (1− r2) · · (1− rn)

)
+ exp[t] L

(
1

1− r1
,

1

1− r2
, ··, 1

1− rn

)]
.

(2.9)
Now it follows from (2.5) and (2.9) for all sufficiently large values of

(
1

1−r1

)
,
(

1
1−r2

)
, · · ·
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and
(

1
1−rn

)
that

log[p]M−1h (Mf◦g (r1, r2, ··, rn))
log[p]M−1h (Mf (r1, r2, ··, rn))

≤

(
vnρ

(p,q,t)L
h (f ◦ g) + ε

)
(
vnλ

(p,q,t)L
h (f)− ε

) .

Since ε (> 0) is arbitrary, we obtain that

lim
r1,r2,···,rn→1

log[p]M−1h (Mf◦g (r1, r2, ··, rn))
log[p]M−1h (Mf (r1, r2, ··, rn))

≤ vnρ
(p,q,t)L
h (f ◦ g)

vnλ
(p,q,t)L
h (f)

. (2.10)

Again from the definition of vnρ
(p,q,t)L
h (f) ,we get for a sequence of values of

(
1

1−r1

)
,
(

1
1−r2

)
, ··

· and
(

1
1−rn

)
tending to infinity that

log[p]M−1h (Mf (r1, r2, ··, rn)) >
(
vnρ

(p,q,t)L
h (f)− ε

)
×

[
log[q]

(
1

(1− r1) (1− r2) · · (1− rn)

)
+ exp[t] L

(
1

1− r1
,

1

1− r2
, ··, 1

1− rn

)]
.

(2.11)
Now from (2.9) and (2.11) , it follows for a sequence of values of

(
1

1−r1

)
,
(

1
1−r2

)
, · · ·

and
(

1
1−rn

)
tending to infinity that

log[p]M−1h (Mf◦g (r1, r2, ··, rn))
log[p]M−1h (Mf (r1, r2, ··, rn))

≤

(
vnρ

(p,q,t)L
h (f ◦ g) + ε

)
(
vnρ

(p,q,t)L
h (f)− ε

) .

As ε (> 0) is arbitrary, we obtain that

lim
r1,r2,···,rn→1

log[p]M−1h (Mf◦g (r1, r2, ··, rn))
log[p]M−1h (Mf (r1, r2, ··, rn))

≤ vnρ
(p,q,t)L
h (f ◦ g)

vnρ
(p,q,t)L
h (f)

. (2.12)

Again for a sequence of values of
(

1
1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
tending to infinity,

log[p]M−1h (Mf◦g (r1, r2, ··, rn)) >
(
vnρ

(p,q,t)L
h (f ◦ g)− ε

)
×

[
log[q]

(
1

(1− r1) (1− r2) · · (1− rn)

)
+ exp[t] L

(
1

1− r1
,

1

1− r2
, ··, 1

1− rn

)]
.

(2.13)
So combining (2.2) and (2.13) , we get for a sequence of values of

(
1

1−r1

)
,
(

1
1−r2

)
, · · ·
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and
(

1
1−rn

)
tending to infinity that

log[p]M−1h (Mf◦g (r1, r2, ··, rn))
log[p]M−1h (Mf (r1, r2, ··, rn))

>

(
vnρ

(p,q,t)L
h (f ◦ g)− ε

)
(
vnρ

(p,q,t)L
h (f) + ε

) .

Since ε (> 0) is arbitrary, it follows that

lim
r1,r2,···,rn→1

log[p]M−1h (Mf◦g (r1, r2, ··, rn))
log[p]M−1h (Mf (r1, r2, ··, rn))

>
vnρ

(p,q,t)L
h (f ◦ g)

vnρ
(p,q,t)L
h (f)

. (2.14)

Thus the theorem follows from (2.3) , (2.6) , (2.8), (2.10) , (2.12) and (2.14) .

The following theorem can be proved in the line of Theorem 5 and so its proof is
omitted.

Theorem 2. If f(z1, z2, ··, zn), g (z1, z2, ··, zn) be any two analytic functions in U and
h (z1, z2, ··, zn) be an entire function of n-complex variables such that 0 < vnλ

(p,q,t)L
h (f ◦ g)

≤ vnρ
(p,q,t)L
h (f ◦ g) < ∞ and 0 < vnλ

(p,q,t)L
h (g) ≤ vnρ

(p,q,t)L
h (g) < ∞, where p, q ∈ N

and t ∈ N ∪ {−1, 0}. Then

vnλ
(p,q,t)L
h (f ◦ g)

vnρ
(p,q,t)L
h (g)

≤ lim
r1,r2,···,rn→1

log[p]M−1h (Mf◦g (r1, r2, ··, rn))
log[p]M−1h (Mg (r1, r2, ··, rn))

≤ min

{
vnλ

(p,q,t)L
h (f ◦ g)

vnλ
(p,q,t)L
h (g)

,
vnρ

(p,q,t)L
h (f ◦ g)

vnρ
(p,q,t)L
h (g)

}

≤ max

{
vnλ

(p,q,t)L
h (f ◦ g)

vnλ
(p,q,t)L
h (g)

,
vnρ

(p,q,t)L
h (f ◦ g)

vnρ
(p,q,t)L
h (g)

}

≤ lim
r1,r2,···,rn→1

log[p]M−1h (Mf◦g (r1, r2, ··, rn))
log[p]M−1h (Mg (r1, r2, ··, rn))

≤ vnρ
(p,q,t)L
h (f ◦ g)

vnλ
(p,q,t)L
h (g)

.

Theorem 3. Let f(z1, z2, ··, zn), g (z1, z2, ··, zn) be any two analytic functions in U and
h (z1, z2, ··, zn) be an entire function of n-complex variables such that vnλ

(p,q,t)L
h (f ◦ g) =

∞ and vnρ
(p,q,t)L
h (f) <∞ where p, q ∈ N and t ∈ N ∪ {−1, 0}. Then

lim
r1,r2,···,rn→1

log[p]M−1h (Mf◦g (r1, r2, ··, rn))
log[p]M−1h (Mf (r1, r2, ··, rn))

=∞ .

Proof. If possible, let there exists a constant β such that for a sequence of values of
(

1
1−r1

)
,
(

1
1−r2

)
, ··

· and
(

1
1−rn

)
tending to infinity we have

log[p]M−1h (Mf◦g (r1, r2, ··, rn)) < β · log[p]M−1h Mf (r1, r2, ··, rn) . (2.15)
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Again from the definition of vnρ
(p,q,t)L
h (f) , it follows for all sufficiently large values

of
(

1
1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
that

log[p]M−1h (Mf (r1, r2, · · ·, rn)) ≤
(
vnρ

(p,q,t)L
h (f) + ε

)
×

[
log[q]

(
1

(1− r1) (1− r2) · · (1− rn)

)
+ exp[t] L

(
1

1− r1
,

1

1− r2
, ··, 1

1− rn

)]
.

(2.16)
Now combining (2.15) and (2.16) we obtain for a sequence of values of

(
1

1−r1

)
,
(

1
1−r2

)
, ··

· and
(

1
1−rn

)
tending to infinity that

log[p]M−1h (Mf◦g (r1, r2, · · ·, rn)) ≤ β ·
(
vnρ

(p,q,t)L
h (f) + ε

)
×

[
log[q]

(
1

(1− r1) (1− r2) · · (1− rn)

)
+ exp[t] L

(
1

1− r1
,

1

1− r2
, ··, 1

1− rn

)]
i.e., vnλ

(p,q,t)L
h (f ◦ g) ≤ β ·

(
vnρ

(p,q,t)L
h (f) + ε

)
,

which contradicts the condition vnλ
(p,q,t)L
h (f ◦ g) =∞. So for all sufficiently large values

of
(

1
1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
we get that

log[p]M−1h (Mf◦g (r1, r2, ··, rn)) ≥ β · log[p]M−1h (Mf (r1, r2, ··, rn)) ,

from which the theorem follows.

In the line of Theorem 3, one can easily prove the following theorem and therefore
its proof is omitted.

Theorem 4. Let f(z1, z2, ··, zn), g (z1, z2, ··, zn) be any two analytic functions in U and
h (z1, z2, ··, zn) be an entire function of n-complex variables such that vnλ

(p,q,t)L
h (f ◦ g) =

∞ and vnρ
(p,q,t)L
h (g) <∞ where p, q ∈ N and t ∈ N ∪ {−1, 0}. Then

lim
r1,r2,···,rn→1

log[p]M−1h (Mf◦g (r1, r2, ··, rn))
log[p]M−1h (Mg (r1, r2, ··, rn))

=∞ .

Remark 1. Theorem 3 is also valid with “limit superior” instead of “limit” if vnλ
(p,q,t)L
h (f ◦ g)

=∞ is replaced by vnρ
(p,q,t)L
h (f ◦ g) =∞ and the other conditions remain the same.

Remark 2. Theorem 4 is also valid with “limit superior” instead of “limit” if λ(p,q,t)Lh (f ◦ g) =
∞ is replaced by ρ(p,q,t)Lh (f ◦ g) =∞ and the other conditions remain the same.
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Corollary 1. Under the assumptions of Theorem 3 and Remark 1,

lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

=∞

and

lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

=∞

respectively.

Proof. By Theorem 3 we obtain for all sufficiently large values of
(

1
1−r1

)
,
(

1
1−r2

)
, · · ·

and
(

1
1−rn

)
and for K > 1,

log[p]M−1h (Mf◦g (r1, r2, ··, rn)) ≥ K · log[p]M−1h (Mf (r1, r2, ··, rn))

i.e., log[p−1]M−1h (Mf◦g (r1, r2, ··, rn)) ≥
{
log[p−1]M−1h (Mf (r1, r2, ··, rn))

}K
,

from which the first part of the corollary follows.
Similarly using Remark 1, we obtain the second part of the corollary.

Corollary 2. Under the assumptions of Theorem 4 and Remark 2,

lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mg (r1, r2, ··, rn))

=∞

and

lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mg (r1, r2, ··, rn))

=∞

respectively.

In the line of Corollary 1, one can easily verify Corollary 2 with the help of Theo-
rem 4 and Remark 2 respectively and therefore its proof is omitted.

Theorem 5. If f(z1, z2, ··, zn), g (z1, z2, ··, zn) be any two analytic functions in U and
h (z1, z2, ··, zn) be an entire function of n-complex variables such that 0 < vnσ

(p,q,t)L
h (f ◦ g)

≤ vnσ
(p,q,t)L
h (f ◦ g)<∞, 0 < vnσ

(p,q,t)L
h (f)≤ vnσ

(p,q,t)L
h (f)<∞ and vnρ

(p,q,t)L
h (f ◦ g)

= vnρ
(p,q,t)L
h (f) , where p, q ∈ N and t ∈ N ∪ {−1, 0}. Then

vnσ
(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (f)

≤ lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

≤ min

{
vnσ

(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (f)

,
vnσ

(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (f)

}
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≤ max

{
vnσ

(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (f)

,
vnσ

(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (f)

}

≤ lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

≤ vnσ
(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (f)

.

Proof. From the definition of vnσ
(p,q,t)L
h (f) and vnσ

(p,q,t)L
h (f ◦ g), we have for arbitrary

positive ε and for all sufficiently large values of
(

1
1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
that

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn)) ≥
(
vnσ

(p,q,t)L
h (f ◦ g)− ε

)
×

[
log[q−1]

(
1

(1− r1) · · (1− rn)

)
· exp[t+1] L

(
1

1− r1
, ··, 1

1− rn

)]
vnρ

(p,q,t)L
h (f◦g)

,

(2.17)
and

log[p−1]M−1h (Mf (r1, r2, ··, rn)) ≤
(
vnσ

(p,q,t)L
h (f) + ε

)
×

[
log[q−1]

(
1

(1− r1) · · (1− rn)

)
· exp[t+1] L

(
1

1− r1
, ··, 1

1− rn

)]
vnρ

(p,q,t)L
h (f)

(2.18)
Now from (2.17), (2.18) and the condition vnρ

(p,q,t)L
h (f ◦ g) = vnρ

(p,q,t)L
h (f) , it follows

for all sufficiently large values of
(

1
1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
that

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

>
vnσ

(p,q,t)L
h (f ◦ g)− ε

vnσ
(p,q,t)L
h (f) + ε

.

As ε (> 0) is arbitrary , we obtain from above that

lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

>
vnσ

(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (f)

. (2.19)

Again for a sequence of values of
(

1
1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
tending to infinity,

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn)) ≤
(
vnσ

(p,q,t)L
h (f ◦ g) + ε

)
×

[
log[q−1]

(
1

(1− r1) · · (1− rn)

)
· exp[t+1] L

(
1

1− r1
, ··, 1

1− rn

)]
vnρ

(p,q,t)L
h (f◦g)

(2.20)
and for all sufficiently large values of

(
1

1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
,
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log[p−1]M−1h (Mf (r1, r2, ··, rn)) ≥
(
vnσ

(p,q,t)L
h (f)− ε

)
×

[
log[q−1]

(
1

(1− r1) · · (1− rn)

)
· exp[t+1] L

(
1

1− r1
, ··, 1

1− rn

)]
vnρ

(p,q,t)L
h (f)

.

(2.21)
Combining (2.20) and (2.21) and the condition vnρ

(p,q,t)L
h (f ◦ g) = vnρ

(p,q,t)L
h (f) , we get

for a sequence of values of
(

1
1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
tending to infinity that

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

≤ vnσ
(p,q,t)L
h (f ◦ g) + ε

vnσ
(p,q,t)L
h (f)− ε

.

Since ε (> 0) is arbitrary, it follows from above that

lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

≤ vnσ
(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (f)

. (2.22)

Also for a sequence of values of
(

1
1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
tending to infinity, it

follows that

log[p−1]M−1h (Mf (r1, r2, ··, rn)) ≤
(
vnσ

(p,q,t)L
h (f) + ε

)
×

[
log[q−1]

(
1

(1− r1) · · (1− rn)

)
· exp[t+1] L

(
1

1− r1
, ··, 1

1− rn

)]
vnρ

(p,q,t)L
h (f)

.

(2.23)
Now from (2.17), (2.23) and the condition vnρ

(p,q,t)L
h (f ◦ g) = vnρ

(p,q,t)L
h (f) , we obtain

for a sequence of values of
(

1
1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
tending to infinity that

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

≥ vnσ
(p,q,t)L
h (f ◦ g)− ε

vnσ
(p,q,t)L
h (f) + ε

.

As ε (> 0) is arbitrary, we get from above that

lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

≥ vnσ
(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (f)

. (2.24)

Also for all sufficiently large values of
(

1
1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
,

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn)) ≤
(
vnσ

(p,q,t)L
h (f ◦ g) + ε

)
×
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[
log[q−1]

(
1

(1− r1) · · (1− rn)

)
· exp[t+1] L

(
1

1− r1
, ··, 1

1− rn

)]
vnρ

(p,q,t)L
h (f◦g)

.

(2.25)
In view of the condition vnρ

(p,q,t)L
h (f ◦ g) = vnρ

(p,q,t)L
h (f) , it follows from (2.21) and

(2.25) for all sufficiently large values of
(

1
1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
that

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

≤ vnσ
(p,q,t)L
h (f ◦ g) + ε

vnσ
(p,q,t)L
h (f)− ε

.

Since ε (> 0) is arbitrary, we obtain that

lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

≤ vnσ
(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (f)

. (2.26)

Again from the definition of vnσ
(p,q,t)L
h (f) we get for a sequence of values of

(
1

1−r1

)
,
(

1
1−r2

)
, ··

· and
(

1
1−rn

)
tending to infinity that

log[p−1]M−1h (Mf (r1, r2, ··, rn)) ≥
(
vnσ

(p,q,t)L
h (f)− ε

)
×

[
log[q−1]

(
1

(1− r1) · · (1− rn)

)
· exp[t+1] L

(
1

1− r1
, ··, 1

1− rn

)]
vnρ

(p,q,t)L
h (f)

(2.27)

Now from (2.25), (2.27) and the condition vnρ
(p,q,t)L
h (f ◦ g) = vnρ

(p,q,t)L
h (f) , it follows

for a sequence of values of
(

1
1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
tending to infinity that

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

≤ vnσ
(p,q,t)L
h (f ◦ g) + ε

vnσ
(p,q,t)L
h (f)− ε

.

As ε (> 0) is arbitrary, we obtain that

lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

≤ vnσ
(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (f)

. (2.28)

Again for a sequence of values of
(

1
1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
tending to infinity that

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn)) >
(
vnσ

(p,q,t)L
h (f ◦ g)− ε

)
×

[
log[q−1]

(
1

(1− r1) · · (1− rn)

)
· exp[t+1] L

(
1

1− r1
, ··, 1

1− rn

)]
vnρ

(p,q,t)L
h (f◦g)

.

(2.29)
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So combining (2.18) and (2.29) and in view of the condition vnρ
(p,q,t)L
h (f ◦ g) = vnρ

(p,q,t)L
h (f) ,

we get for a sequence of values of
(

1
1−r1

)
,
(

1
1−r2

)
, · · · and

(
1

1−rn

)
tending to infinity that

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

>
vnσ

(p,q,t)L
h (f ◦ g)− ε

vnσ
(p,q,t)L
h (f) + ε

.

Since ε (> 0) is arbitrary, it follows that

lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

>
vnσ

(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (f)

. (2.30)

Thus the theorem follows from (2.19) , (2.22) , (2.24), (2.26) , (2.28) and (2.30)

The following theorem can be proved in the line of Theorem 5 and so its proof is omit-
ted.

Theorem 6. If f(z1, z2, ··, zn), g (z1, z2, ··, zn) be any two analytic functions in U and
h (z1, z2, ··, zn) be an entire function of n-complex variables such that 0 < vnσ

(p,q,t)L
h (f ◦ g)

≤ vnσ
(p,q,t)L
h (f ◦ g)<∞, 0 < vnσ

(p,q,t)L
h (g)≤ vnσ

(p,q,t)L
h (g)<∞ and vnρ

(p,q,t)L
h (f ◦ g)

= vnρ
(p,q,t)L
h (g) , where p, q ∈ N and t ∈ N ∪ {−1, 0}. Then

vnσ
(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (g)

≤ lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mg (r1, r2, ··, rn))

≤ min

{
vnσ

(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (g)

,
vnσ

(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (g)

}

≤ max

{
vnσ

(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (g)

,
vnσ

(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (g)

}

≤ lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mg (r1, r2, ··, rn))

≤ vnσ
(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (g)

.

Now in the line of Theorem 5 and Theorem 6 respectively one can easily prove the
following two theorems using the notion of relative (p, q, t)L -th weak type and therefore
their proofs are omitted.

Theorem 7. If f(z1, z2, ··, zn), g (z1, z2, ··, zn) be any two analytic functions in U and
h (z1, z2, ··, zn) be an entire function of n-complex variables such that 0 < vnτ

(p,q,t)L
h (f ◦ g)

≤ vnτ
(p,q,t)L
h (f ◦ g)<∞, 0 < vnτ

(p,q,t)L
h (f)≤ vnτ

(p,q,t)L
h (f)<∞ and vnλ

(p,q,t)L
h (f ◦ g)

= vnλ
(p,q,t)L
h (f) , where p, q ∈ N and t ∈ N ∪ {−1, 0}. Then
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vnτ
(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (f)

≤ lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

≤ min

{
vnτ

(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (f)

,
vnτ

(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (f)

}

≤ max

{
vnτ

(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (f)

,
vnτ

(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (f)

}

≤ lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

≤ vnτ
(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (f)

.

Theorem 8. If f(z1, z2, ··, zn), g (z1, z2, ··, zn) be any two analytic functions in U and
h (z1, z2, ··, zn) be an entire function of n-complex variables such that 0 < vnτ

(p,q,t)L
h (f ◦ g)

≤ vnτ
(p,q,t)L
h (f ◦ g)<∞, 0 < vnτ

(p,q,t)L
h (g)≤ vnτ

(p,q,t)L
h (g)<∞ and vnλ

(p,q,t)L
h (f ◦ g)

= vnλ
(p,q,t)L
h (g) , where p, q ∈ N and t ∈ N ∪ {−1, 0}. Then

vnτ
(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (g)

≤ lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mg (r1, r2, ··, rn))

≤ min

{
vnτ

(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (g)

,
vnτ

(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (g)

}

≤ max

{
vnτ

(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (g)

,
vnτ

(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (g)

}

≤ lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mg (r1, r2, ··, rn))

≤ vnτ
(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (g)

.

We may now state the following theorems without their proofs based on relative
(p, q, t)L-th type and relative (p, q, t)L-th weak type:

Theorem 9. If f(z1, z2, ··, zn), g (z1, z2, ··, zn) be any two analytic functions in U and
h (z1, z2, ··, zn) be an entire function of n-complex variables such that 0 < vnσ

(p,q,t)L
h (f ◦ g)

≤ vnσ
(p,q,t)L
h (f ◦ g)<∞, 0 < vnτ

(p,q,t)L
h (f)≤ vnτ

(p,q,t)L
h (f)<∞ and vnρ

(p,q,t)L
h (f ◦ g)

= vnλ
(p,q,t)L
h (f) , where p, q ∈ N and t ∈ N ∪ {−1, 0}. Then
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vnσ
(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (f)

≤ lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

≤ min

{
vnσ

(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (f)

,
vnσ

(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (f)

}

≤ max

{
vnσ

(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (f)

,
vnσ

(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (f)

}

≤ lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

≤ vnσ
(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (f)

.

Theorem 10. If f(z1, z2, ··, zn), g (z1, z2, ··, zn) be any two analytic functions in U and
h (z1, z2, ··, zn) be an entire function of n-complex variables such that 0 < vnτ

(p,q,t)L
h (f ◦ g)

≤ vnτ
(p,q,t)L
h (f ◦ g)<∞, 0 < vnσ

(p,q,t)L
h (f)≤ vnσ

(p,q,t)L
h (f)<∞ and vnλ

(p,q,t)L
h (f ◦ g)

= vnρ
(p,q,t)L
h (f) , where p, q ∈ N and t ∈ N ∪ {−1, 0}. Then

vnτ
(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (f)

≤ lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

≤ min

{
vnτ

(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (f)

,
vnτ

(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (f)

}

≤ max

{
vnτ

(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (f)

,
vnτ

(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (f)

}

≤ lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mf (r1, r2, ··, rn))

≤ vnτ
(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (f)

.

Theorem 11. If f(z1, z2, ··, zn), g (z1, z2, ··, zn) be any two analytic functions in U and
h (z1, z2, ··, zn) be an entire function of n-complex variables such that 0 < vnσ

(p,q,t)L
h (f ◦ g)

≤ vnσ
(p,q,t)L
h (f ◦ g)<∞, 0 < vnτ

(p,q,t)L
h (g)≤ vnτ

(p,q,t)L
h (g)<∞ and vnρ

(p,q,t)L
h (f ◦ g)

= vnλ
(p,q,t)L
h (g) , where p, q ∈ N and t ∈ N ∪ {−1, 0}. Then

vnσ
(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (g)

≤ lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mg (r1, r2, ··, rn))

≤ min

{
vnσ

(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (g)

,
vnσ

(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (g)

}
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≤ max

{
vnσ

(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (g)

,
vnσ

(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (g)

}

≤ lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mg (r1, r2, ··, rn))

≤ vnσ
(p,q,t)L
h (f ◦ g)

vnτ
(p,q,t)L
h (g)

.

Theorem 12. If f(z1, z2, ··, zn), g (z1, z2, ··, zn) be any two analytic functions in U and
h (z1, z2, ··, zn) be an entire function of n-complex variables such that 0 < vnτ

(p,q,t)L
h (f ◦ g)

≤ vnτ
(p,q,t)L
h (f ◦ g)<∞, 0 < vnσ

(p,q,t)L
h (g)≤ vnσ

(p,q,t)L
h (g)<∞ and vnλ

(p,q,t)L
h (f ◦ g)

= vnρ
(p,q,t)L
h (g) , where p, q ∈ N and t ∈ N ∪ {−1, 0}. Then

vnτ
(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (g)

≤ lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mg (r1, r2, ··, rn))

≤ min

{
vnτ

(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (g)

,
vnτ

(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (g)

}

≤ max

{
vnτ

(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (g)

,
vnτ

(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (g)

}

≤ lim
r1,r2,···,rn→1

log[p−1]M−1h (Mf◦g (r1, r2, ··, rn))
log[p−1]M−1h (Mg (r1, r2, ··, rn))

≤ vnτ
(p,q,t)L
h (f ◦ g)

vnσ
(p,q,t)L
h (g)

.
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Abstract

The paper considers a double system of exponentials with complex-valued coeffi-

cients. Under certain conditions on the coefficients it is proved that if this system forms

a basis in a weighted Morrey-Lebesgue type space on the interval [−π, π], then it is

isomorphic to the classical system of exponentials in this space if the weight function

satisfies certain conditions.

1 Introduction

Consider the double system of exponentials

{
A (t) ei nt;B (t) e−i nt

}
n∈Z+,k∈N , (1.1)

Keywords and phrases : Morrey space, system of exponential, basicity
2010 AMS Subject Classification : 33B10, 46E30, 54D70
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with complex valued coefficients A (t) = |A (t)| eiα(t); B (t) = |B (t)| eiβ(t) on the
interval [−π, π], where N− is a set of natural numbers, Z+ = {0}

⋃
N . The system (1.1)

is a generalization of the following binary system of cosines and sines

1
⋃
{cos (nt+ γ (t)) ; sin (nt+ γ (t))}n∈Z+

, (1.2)

where, generally speaking, γ : [−π, π] → C− is a complex-valued function. A lot of
work has been devoted to the study of basis properties (completeness, minimality, basicity)
of systems of the form (1.1), (1.2) in spaces Lp (−π, π), 1 ≤ p < +∞(L∞ (−π, π) ≡
C [−π, π]), starting with the classical results of Paley-Wiener [1] and N. Levinson [2]
concerning the basis properties of perturbed systems of exponentials. The well-known
”1

4−Kadets” theorem [3] also refers to this range of issue. The criterion for the basicity
of a system of exponentials {

ei (n+ αsignn) t
}
n∈Z

, (1.3)

in Lp (−π, π) , 1 < p < +∞, was first found in the work of A. M. Sedletskii [4], where
Z are integers. The same and other results were obtained by the method of boundary value
problems by E. I.Moiseev [5]. Note that, single variants of these systems are the system of
cosine

1
⋃
{cos (n+ α) t}n∈N , (1.4)

and the system of sine
{ sin (n+ α) t}n∈N , (1.5)

which arise when solving a series of equations of mixed type by the Fourier method (see,
for example, works [6-10]). The basis properties of the systems (1.4), (1.5) in the spaces
Lp (0, π), 1 < p < +∞, are completely studied in the works of E. I. Moiseev [5, 11], when
α ∈ R−is a real parameter. These results were transferred to the case of complex parameter
by G. G. Devdariani [12;13]. When γ : [−π, π] → C is a Holder function, the Riesz
basicity of the system (1.2) in L2 (−π, π), was studied in the work of A. N. Barmenkov
[14]. One of the effective methods for studying the basis properties of systems of the form
(1.1) - (1.5) is the method of boundary value problems of the theory of analytic functions,
which originates from the work of A. V. Bitsadze [15]. This method was successfully used
by the authors of works [5-14, 16-19]. B. T. Bilalov [16-18, 20] considered the most general
case, namely, considering the systems of the form (1.1) and using the results concerning the
basis properties of the system (1.1), he established a criterion for the basicity, completeness
and minimality of a sine system of the form

{sin (nt+ γ (t))}n∈N , (1.6)
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in Lp (0, π), 1 < p < +∞, when γ : [0, π] → C− is a piecewise continuous function.
Similar results concerning system (1.6) were obtained earlier in the paper [21].

The study of the basis properties of systems of the form (1.1) - (1.6) in various function
spaces still continues. The weighted case of Lp space is considered in [22-24]. These
problems are studied in Sobolev spaces in [25-27], the basicity of the system (1.3) is studied
in the generalized Lebesgue spaces in [19;28]. It should be noted that, recently, interest in
study of various problems of analysis in Morrey type spaces has greatly increased. There
is a natural need to study the approximate properties of systems of the form (1.1) - (1.6) in
Morrey type spaces. Some problems in the theory of approximation were studied in papers
[29-31]. In the paper [32], the basis property of the classical system of exponentials is
studied in Morrey-Lebesgue type spaces.

In this paper a double system of exponentials with complex-valued coefficients is con-
sidered. Under some conditions on the coefficients, it is proved that if this system forms a
basis for a weighted Morrey-Lebesgue type space on the interval [−π, π], if the weight func-
tion satisfies certain conditions then it is isomorphic to the classical system of exponentials
in this space.

2 Necessary information

We need some information from the theory of Morrey type spaces. Let Γ be some rectifiable
Jordan curve in the complex plane C. We denote by |M |Γ the linear Lebesgue measure of
the set M ⊂ Γ. Everywhere in the future, the constants (may be different in different
places) will be denoted by c.

By the Morrey-Lebesgue space Lp, α (Γ), 0 ≤ α ≤ 1, p ≥ 1, we mean the normed
space of all functions f (·) that are measurable on Γ with a finite norm ‖·‖Lp, α(Γ):

‖f‖Lp, α(Γ) = sup
B

(∣∣∣B⋂Γ
∣∣∣α−1

Γ

∫
B
⋂

Γ
|f (ξ)|p |dξ|

)1/p
< +∞,

where B is an arbitrary ball with center on Γ.
Lp, α (Γ) is a Banach space and Lp, 1 (Γ) = Lp (Γ), Lp, 0 (Γ) = L∞ (Γ). Inclusion

Lp, α1 (Γ) ⊂ Lp, α2 (Γ) is true when 0 ≤ α1 ≤ α2 ≤ 1. So that Lp, α (Γ) ⊂ L1 (Γ),
∀α ∈ [0, 1],∀p ≥ 1. The case Γ = [−π, π] will be denoted by Lp, α (−π, π) = Lp, α.
More detailed information on Morrey-type spaces can be obtained from [33-38].

Let ω = {z ∈ C : |z| < 1} be a unit ball in C and ∂ω = γ be a unit circle. We define
the Morrey-Hardy space Hp, α

+ of analytic functions f (z) within ω with the norm ‖·‖Hp, α
+

:

‖f‖Hp, α
+

= sup
0<r<1

‖f (ren)‖Lp, α .
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We denote by L̃p, α the linear subspace Lp, α of functions whose shifts are continuous
in Lp, α, such that ‖f (·+ δ)− f (·)‖Lp, α → 0, when δ → 0. We take the closure of L̃p, α

in Lp, α and denote it by Mp, α.

Let us consider the space Hp, α
+ . The subspace of Lp, α generated by the restrictions of

functions from Hp, α
+ to γ is denoted by Lp, α+ . It follows immediately from the results of

the preceding items that the spaces Hp, α
+ and Lp, α+ are isomorphic and f+ (·) = (Jf) (·),

where f ∈ Hp, α
+ , f+ are nontangential boundary values of f on γ, and J realizes the

corresponding isomorphism. LetMp, α
+ = Mp, α

⋂
Lp, α+ . It is clear thatMp, α

+ is a subspace
of Mp, α with respect to the norm ‖·‖Lp, α . Set MHp, α

+ = J−1
(
Mpα

+

)
. It is a subspace of

Hp, α
+ . Let f ∈ Hp, α

+ and f+ be its boundary values. It is obvious that the norm ‖f‖Hp, α
+

can also be determined by the expression ‖f‖Hp, α
+

= ‖f+‖Lp, α . The case α = 1 ∧ p = 1

will be denoted by H+
1 , i.e., H+

1 = H1,1
+ .

Similarly to the classical case, we define the Morrey-Hardy class outside ω. So, let
ω− = C\ω̄ (ω̄ = ω

⋃
γ). We say that an analytic function f in ω− has finite order k at

infinity if the Laurent series of it in the neighborhood of an infinitely removable point has
the form

f (z) =
k∑

n=−∞
anz

n, k < +∞, ak 6= 0. (2.1)

Thus, for k > 0 the function f (z) has a pole of order k; for k = 0, it is bounded; and
in the case k < 0 it has a zero order (−k). Let f (z) = f0 (z) + f1 (z), where f0 (z) is the
major, and f1 (z) is a regular part of the expansion (2.1) of the functionf (z). Therefore,
if k < 0 then f0 (z) = 0. For k ≥ 0,f0 (z) is a polynomial of degree k. We say that a
function f (z) belongs to the class mH

p, α
− if f has the order at infinity less than or equal to

m, i.e., k ≤ m and f1

(
1
z

)
∈ Hp, α

+ . The case α = 1 ∧ p = 1 will be denoted by mH
−
1 ,

i.e. mH
−
1 =m H1,1

− . The class mMHp, α
− is completely similarly defined to the case of

MHp, α
+ . In other words, mMHp, α

− is the subspace of functions in mH
p, α
− whose shifts on

the unit circle are continuous with respect to the norm ‖·‖Lp, α(γ).

The weight case Lp, αµ (Γ) of the Morrey-Lebesgue space with weight function µ (·) on
Γ with the norm ‖·‖Lp, α(Γ) is determined in a natural way

‖f‖Lp, αµ (Γ) = ‖fµ‖Lp, α(Γ) , f ∈ L
p, α
µ (Γ) .

The inclusion Lp, α1 (Γ) ⊂ Lp, α2 (Γ) is valid for 0 ≤ α1 ≤ α2 ≤ 1. Thus, Lp, α (Γ) ⊂
L1 (Γ), ∀α ∈ [0, 1], ∀p ≥ 1. The case Γ = [−π, π] will be denoted by Lp, α (−π, π) =

Lp, α.

We also use the following concepts. Let Γ ⊂ C be same bounded rectifiable curve, and
t = t (σ), 0 ≤ σ ≤ 1, its parametric representation with respect to the length of the arc σ



On the isomorphism of two bases of exponentials in weighted Morrey type spaces · · ·25

and l is the length of Γ. We set dµ (t) = dσ, that is, µ (·) is a linear measure on Γ. Let

Γt (r) = {τ ∈ Γ : |τ − t| < r} ,Γt(s) (r) = {τ (σ) ∈ Γ : |σ − s| < r} .

It is quite obvious that Γt(s) (r) ⊂ Γt (r).

Definition 2.1. A curve X is called Carleson curve if ∃c > 0, such that

sup
t∈Γ

µ (Γt (r)) ≤ cr, ∀r > 0.

It is said that the curve Γ satisfies the condition arc−chord at the point t0 = t (s0) ∈ Γ

if there exists a constant m > 0, independent of t, such that

|s− s0| ≤ m |t (s)− t (s0)| , ∀t (s) ∈ Γ.

Γ satisfies the condition arc− chord uniformly on Γ if

∃m > 0 : |s− σ| ≤ m |t (s)− t (σ)| , ∀t (s) , t (σ) ∈ Γ.

By SΓ we denote the following singular integral operator

(SΓf) (τ) =
1

2πi

∫
Γ

f (ζ) dζ

ζ − τ
, τ ∈ Γ.

We shall essentially use the following theorem from N.Samko’s paper [37].

Theorem 2.1 [37]. Suppose that the curve Γ satisfies the condition arc − chord and the
weight ρ (·) is defined by

ρ (t) =
m∏
k=1

|t− tk|αk ; {tk}m1 ⊂ Γ, ti 6= tj , i 6= j.

A singular operator SΓ is bounded in a weighted space Lp, αρ (Γ), 1 < p < +∞, 0 < α ≤ 1,
if the inequalities

−α
p
< αk < −

α

p
+ 1, k = 1, m, (2.2)

hold. Moreover, if Γ is smooth in some neighborhoods of the points tk, k = 1, m, then the
inequalities (2.2) are necessary for the boundedness of the operator SΓ in Lp, αρ (Γ).

In the future, as Γ we will take the unit circle γ = ∂ω. Consider the weighted space
Lp, αρ (γ) =: Lp, αρ with weight ρ (·). In a completely analogous manner to the weight-
less case, we define the space Mp, α

ρ with weight ρ. Thus, we denote by M̃p, α
ρ the set of
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functions whose shifts are continuous in Lp, αρ , that is

‖Sδf − f‖p, α; ρ = ‖f (·+ δ)− f (·)‖p, α; ρ → 0, δ → 0,

where Sδ is the shift operator: (Sδf) (x) = f (x+ δ). It is easy to see that if ρ ∈ Lp, α,
then C [−π, π] ⊂Mp, α

ρ holds. In fact, let f ∈ C [−π, π]. We have

|f (x+ δ)− f (x)| ≤ ‖f (·+ δ)− f (·)‖∞ → 0, δ → 0.

Consequently

‖f (·+ δ)− f (·)‖p, α; ρ = ‖(f (·+ δ)− f (·)) ρ (·)‖p, α

≤ ‖f (·+ δ)− f (·)‖∞ ‖ρ (·)‖p, α → 0, δ → 0.

It follows that f ∈Mp, α
ρ .

Thus, the following is true

Lemma 2.1. Let ν ∈ Lp,λ (a, b). Then we have the inclusion C[a, b] ⊂Mp,λ
ν (a, b).

The class of weights ρ (·), for which there is a continuous embedding Hp,α
+,ρ ⊂ H+

1 , is
denoted by W p,α, that is

W p,α =
{
ρ (·) : Hp,α

+,ρ ⊂ H+
1

}
.

Let f ∈ Hp,α
+,ρ , 1 < p < +∞ , 0 < α < 1, and ρ ∈W p,α. It is known that the relation

lim
r→1−0

∫ π

−π

∣∣f (reit)− f+
(
eit
)∣∣ dt = 0, (2.3)

holds, where f+ (·) is the nontangential boundary values of the function f ∈ H+
1 on γ. It

follows from (2.3) that there exists a sequence {rn}n∈N : rn → 1 − 0 , n → ∞, such
that the sequence

{
f
(
rne

it
)}

n∈N converges almost everywhere to f+
(
eit
)

on(−π, π).
Consequently, for an arbitrary interval I ⊂ (−π, π) we have∣∣f (rneit) ρ (t)

∣∣p → ∣∣f+
(
eit
)
ρ (t)

∣∣p , a. e. t ∈ I.

On the other hand, we have

1

|I|1−α

∫
I

∣∣f (rneit) ρ (t)
∣∣p dt ≤ sup

I⊂(−π,π)

(
1

|I|1−α

∫
I

∣∣f (rneit) ρ (t)
∣∣p dt) ≤ ‖f‖p

Hp,α
+,ρ

.
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Applying the Fatou’s theorem, we obtain∫
I

∣∣f+
(
eit
)
ρ (t)

∣∣p dt ≤ sup
n

∫
I

∣∣f (rneit) ρ (t)
∣∣p dt ≤ |I|1−α ‖f‖p

Hp,α
+,ρ

, ∀I ⊂ (−π, π) .

It immediately follows that f+ ∈ Lp,αρ and moreover ‖f+‖p,α;ρ ≤ ‖f‖Hp,α
+,ρ

holds. Now, on
the contrary, let g (·) ∈ Lp,αρ , 1 < p < +∞, 0 < α < 1, and consider the Cauchy type
integral

f (z) =
1

2πi

∫
γ

g (τ)

τ − z
dτ , z ∈ ω. (2.4)

Applying the Sohocki-Plemel formula in (2.4), we obtain

f+ (τ) =
1

2
g (τ) + (Sg) (τ) , τ ∈ γ. (2.5)

We denote by M the Hardy Littlewood operator

(Mg) (x) ≡Mg (x) = sup
x∈I

1

|I|

∫
I

∣∣g (eit)∣∣ dt,
where sup is taken over all intervals I ⊂ [−π, π]. Further, we denote by Ap,α the class
of weights ρ (·), for which the singular operator S and the maximal operator M behaves
boundedly in the space Lp,αρ , that is

Ap,α ≡
{
ρ : ‖S;M‖Lp,αρ →Lp,αρ < +∞

}
.

So, suppose that ρ ∈ Ap,α. Then from (2.5) we obtain f+ (·) ∈ Lp,αρ . Let us show that
f ∈ Hp,α

+,ρ. Let

Pr (ϕ) =
1

2π

1− r2

1− 2r cosϕ+ r2
, 0 ≤ r < 1,

be the Poisson kernel for the unit ball. It is known that (see, for example, [27, 41]) the
function f ∈ H+

1 is representable in terms of the Poisson-Lebesgue integral

f
(
reiϕ

)
=

∫ π

−π
f+
(
eis
)
Pr (ϕ− s) ds , z = reiϕ ∈ ω.

Let Γα (τ) be a nontangential angle with vertex τ ∈ γ and α ∈ (0, π). Then, as it is known
(see [27])

∃Aα > 0 : sup
z∈Γα(τ)

|f (z)| ≤ AαMf+ (τ) , a. e. τ ∈ γ,

where Mf+
(
eit
)

= Mg (t) , g (t) = f+
(
eit
)
. From this we immediately obtain that for
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an arbitrary fixed r ∈ (0, 1) , we have∣∣f (reit)∣∣ ≤ AMf+
(
eit
)
, a. e. t ∈ (−π, π) ,

where A > 0 is an absolute constant. From here we immediately obtain

‖fr (·)‖p,α;ρ ≤ A ‖Mg (·)‖p,α;ρ , ∀r ∈ (0, 1) ,

where fr (t) = f
(
reit
)
. From the boundedness of the operator M in Lp,αρ implies

sup
0<r<1

‖fr (·)‖p,α;ρ ≤ C
∥∥f+

∥∥
p,α;ρ

,

where C > 0 is some constant. Consequently, f ∈ Hp,α
+,ρ. Thus, we have following

Theorem 2.2. Let f (·) ∈ Hp,α
+,ρ, 1 < p < +∞, 0 < α < 1, and ρ ∈ W p,α

⋂
Ap,α. Then

f+ (·) ∈ Lp,αρ and the Cauchy formula

f (z) =
1

2π

∫
γ

f+ (τ) dτ

τ − z
, z ∈ ω, (2.6)

holds, where f+ (·) is the nontangential boundary value of f (·) on γ. Conversely, if
f+ (·) ∈ Lp,αρ , then the function f (·), defined by a Cauchy type integral (2.6), belongs
to the class Hp,α

+,ρ, and we have

‖f‖p,α;ρ ≤ C
∥∥f+

∥∥
p,α;ρ

,

where C > 0 is some constant. Let f (·) be the given function on [a, b]. In determining the
Zorko type subspace we will assume that the function f (·) is continued to [2a− b, 2b− a]

with the following expression (and this function is also denoted by f (·)

f (x) =

{
f (2a− x) , x ∈ [2a− b, a) ,

f (2b− x) , x ∈ (b, 2b− a] .

Since Mp,λ
ν (a, b) is a closed subspace of Lp,λν (a, b), it also contains the Lp,λν -closure of

C∞0 [a, b]; in fact, Mp,λ
ν (a, b) is precisely that closure.

Proposition 2.1. Let ν be given by the formula

ν(t) =

r∏
k=0

|t− tk|αk , t ∈ [−π, π] , ti 6= tj , i 6= j ,
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and the conditions
αk ∈

[
−1− λ

p
,−1− λ

p
+ 1

)
, k = 0, r , (2.7)

hold. Then the set C∞0 [−π, π] is dense in Mp,λ
ν (−π, π).

We need the following lemma.

Lemma 2.2 [Minkowski inequality for integrals in weighted Morrey spaces] Let (X;Xσ;µ)

be a measurable space with an σ-additive measure µ (·) on a setX , ν = ν(t) a weight func-
tion, dy a linear Lebesgue measure on an interval (a, b) and F (x, y) is µ× dy-measurable.
If 1 ≤ p <∞, then∥∥∥∥∫

X
F (x, y)dµ(x)

∥∥∥∥
p,λ;ν

≤
∫
X
‖F (x, y)‖p,λ;ν dµ(x).

Proof. By using the Minkowski inequality for integrals in Lp(a, b),∥∥∥∥∫
X
F (x, y)ν(y)dµ(x)

∥∥∥∥
Lp

≤
∫
X
‖F (x, y)ν(y)‖Lp dµ(x),

we have(∫
Br(x)

∣∣∣∣∫
X
F (x, y)ν(y)dµ(x)

∣∣∣∣p dy
) 1

p

≤
∫
X

(∫
Br(x)

|F (x, y)ν(y)|p dy

) 1
p

dµ(x),

where Br (x) is a ball with a radius r > 0 and the center at x ∈ X . Then

(
1

rλ

∫
Br(x)

∣∣∣∣∫
X
F (x, y)ν(y)dµ(x)

∣∣∣∣p dy
) 1

p

≤
∫
X

(
1

rλ

∫
Br(x)

|F (x, y)ν(y)|p dy

) 1
p

dµ(x).

The required result follows by taking the supremum over all x ∈ (a, b) and r > 0 in the last
inequality.

It is now easy to provide the proof of Proposition 2.1.

Proof of Proposition 2.1. Let f ∈ Mp,λ
ν (−π, π), and ε > 0, be a sufficiently small

number. Consider the function

wε(t) =

 cεe

(
−ε2
ε2−t2

)
, |t| < ε,

0, |t| ≥ ε,

where cε is chosen such that
∫∞
−∞wε(t)dt = 1. Define the function fε(t) as

fε(t) =

∫ ∞
−∞

wε(s)f(t− s)ds.

As ε > 0 is sufficiently small, this definition is correct. In fact, it is enough to prove
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thatf ∈ L1 (−π, π). It follows from f ∈ Mp,λ
ν (−π, π) that (fν) ∈ Lp,λ (−π, π). Sup-

pose that conditions (2.7) are satisfied. Then, it is not difficult to establish that ν−1 ∈(
Lp,λ (−π, π)

)′
. Since (fν) ∈ Lp,λ (−π, π), it is clear that f = (fν) ν−1 ∈ L1 (−π, π).

It is clear that fε(t) is infinitely differentiable function on [−π, π], and

‖fε − f‖p,λ;ν =

∥∥∥∥∫ ∞
−∞

wε(s)f(t− s)ds− f(t)

∥∥∥∥
p,λ;ν

=

=

∥∥∥∥∫ ∞
−∞

wε(s) [f(t− s)− f(t)] ds

∥∥∥∥
p,λ;ν

.

Applying Lemma 2.2, we get

‖fε − f‖p,λ;ν ≤
∫ ∞
−∞
‖wε(s) [f(.− s)− f(.)]‖p,λ;ν ds ≤

≤ sup
|s|<ε
‖[f(.− s)− f(.)]‖p,λ;ν

∫ ε

−ε
wε(s)ds

= sup
|s|<ε
‖[f(.− s)− f(.)]‖p,λ;ν → 0 asε→ 0.

This completes the proof.

By similar way we can define Mp,λ
ν (0, π) and prove the following proposition.

Proposition 2.2. Let ν be given as

ν(t) =
r∏

k=0

|t− tk|αk , t ∈ [0, π] , ti 6= tj , i 6= j , (2.8)

where t0 = 0, tr = π, and tk are arbitrary finite points in the interval (0, π) for all k =

1, 2, ..., r − 1 and αk ∈ R for all k = 0, 1, ..., r and the conditions (2.7) be satisfied. Then
the set C∞[0, π], of all infinitely differentiable functions with compact support in (0, π), is
dense in Mp,λ

ν (0, π).

Concerning the basicity of the system of exponents in Mp,λ
ν (−π, π), we have the fol-

lowing theorem.

Theorem 2.3. Let ν be given as in (2.9).

(I) The system
{
eint
}
n∈Z

is minimal in Lp,λν (−π, π) if αk ∈
[
λ−1
p , 1−λ

q + λ
)

for all k = 0, 1, ..., r.

(II) The system
{
eint
}
n∈Z

is complete inMp,λ
ν (−π, π) if the following conditionsα0 ; αr ∈(

−1−λ
p ,−1−λ

p + 1
)
, αk ∈

[
−1−λ

p ,−1−λ
p + 1

)
, k = 1, r − 1 are satisfied.

(III) The system
{
eint
}
n∈Z

forms a basis for Mp,λ
ν (−π, π) if and only if the following

conditions αk ∈
[
−1−λ

p ,−1−λ
p + 1

)
, k = 0, r are satisfied.
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We need the Sokhotskii-Plemel formula for the boundary values of a Cauchy type
integral

Φ (z) =
1

2πi

∫
γ

f (τ) dτ

τ − z
,

where f
(
eit
)
∈ L1 (−π, π). Then the boundary values Φ± (τ), τ ∈ γ, satisfy the follow-

ing Sokhotsky-Plemelj expression

Φ± (τ) = ±1

2
f (τ) + (Sf) (τ) , a.e. on τ ∈ γ, (2.9)

where S (·) is the singular integral

(Sf) (τ) =
1

2πi

∫
γ

f (ξ) dξ

ξ − τ
, τ ∈ γ.

We show that if all the conditions of Theorem 2.2 are satisfied, then the following direct
decomposition

Lp,αρ = Hp, α
+,ρ

·
+−1H

p, α
−,ρ , 1 < p < +∞, 0 < α < 1, (2.10)

holds, where ρ ∈ W p, α
⋂
Ap,α is some weight function. In fact, let f ∈ Lp,αρ . Then it is

clear that f ∈ Lp,ρ. We consider the Cauchy integral (i.e., the Cauchy formula)

Φ+ (z) =
1

2π i

∫
γ

Φ+ (τ)

τ − z
dτ , |z| < 1.

Then, by Theorem 2.2, we have Φ+ (z) ∈ Hp, α
+,ρ for |z| < 1. In a similar way, we have that

the Cauchy integral

Φ− (z) =
1

2π i

∫
γ

Φ− (τ)

τ − z
dτ , |z| > 1,

belongs to the class −1H
p, α
−,ρ . It follows from the Sokhotski-Plemelj formula (2.10) that

f (τ) = Φ+ (τ)− Φ− (τ) , almost everywhere on τ ∈ γ. (2.11)

Thus, the expansion (2.4) takes place. It is easy to see thatHp, α
+,ρ ⊂ H+

1 ∧ −1H
p, α
−,ρ ⊂ −1H

−
1

holds. Then it follows from H+
1

⋂
−1H

−
1 = {0} that the decomposition (1.1) is unique.

The subspace of Lp, αρ generated by the restrictions of functions from −1H
p, α
−,ρ to γ is

denoted by −1L
p, α
−,ρ. Hence, we have Lp, α+,ρ

⋂
−1L

p, α
−,ρ = {0}. Then, from (2.9) follows

immediately a direct expansion

Lp, αρ = Lp, α+,ρ

·
+−1L

p, α
−,ρ. (2.12)
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Identifying Hp, α
+,ρ ↔ Lp, α+,ρ and −1L

p, α
−,ρ ↔ −1H

p, α
−,ρ , we obtain the expansion (2.10).

We similarly establish that, there is also a direct expansion

Mp, α
ρ = MHp, α

+,ρ

·
+−1MHp, α

−,ρ . (2.13)

Let P± be the projections

P+ : Mp,α
ρ →Mp, α

+,ρ ∧ P− : Mp,α
ρ → −1M

p , α
−,ρ ,

generated by the decomposition (2.13). We denote by T± : Mp,α
ρ → Mp,α

ρ the multiplica-
tion operators defined by the expressions

T+f = Af ∧ T−f = Bf, ∀f ∈Mp,α
ρ .

Suppose that the condition A±1; B±1 ∈ L∞ (−π, π) holds. Assume that the system (2.3)
forms a basis in Mp,α

ρ . We take ∀g ∈Mp,α
ρ , and expand it on this basis

g (t) = A (t)
∞∑
n=0

gne
int +B (t)

∞∑
n=1

g−ne
−int.

Since A±1 ∈ L∞ ∧ B±1 ∈ L∞, it follows that the series f+ (t) =
∑∞

n=0 gne
int and

f− (t) =
∑∞

n=0 g−ne
−int represent some functions of Mp,α

ρ . We set

f (t) =
+∞∑

n=−∞
gne

int, t ∈ [−π, π] .

It is clear that f ∈Mp,α
ρ . Let us show that the inclusions

f+ ∈Mp, α
+,ρ ∧ f− ∈ −1M

p, α
−,ρ

occur. In fact, we have∫
γ
f+ (arg ξ) ξndξ = i

∫ π

−π
f+ (t) ei(n+1)tdt = i

∞∑
n=0

gk

∫ π

−π
ei(k+n+1)tdt = 0,∀n ∈ Z+.

Then it follows from Privalov theorem [40] that f+ (t) a boundary value of F+ ∈ H+
1 , and

F+ (z) =
1

2πi

∫
γ

f (arg ξ)

ξ − z
dξ, |z| < 1. (2.14)
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We have

F+ (z) =
1

2πi

∫
γ

∞∑
n=0

gn
eint

eit − z
deit =

1

2πi

∞∑
n=0

gn

∫
γ

ξndξ

ξ − z
=

∞∑
n=0

gnz
n, |z| < 1.

Since f ∈ Mp,α
ρ , it follows from (2.14) that F ∈ MHp, α

+,ρ . Similarly, we can prove that
F− ∈ −1MHp, α

−,ρ , where

F− (z) =

∞∑
n=1

g−nz
−n, |z| > 1.

Consider the operator T = T+P+ + T−P−. We have

Tf = T+P+f + T−P−f = T+f+ + T−f− = A (·) f+ +B (·) f− = g.

Consequently, the equation
Tf = g, g ∈Mp,α

ρ , (2.15)

has a solution for ∀g ∈ Mp,α
ρ in Mp,α

ρ , that is, RT = Mp,α
ρ , where RT is the range of the

operator T . Let f ∈ KerT . We expand f with respect to the basis
{
eint
}
n∈Z :

f (t) =
+∞∑

n=−∞
fne

int.

We have

0 = Tf = A (t)

∞∑
n=0

fne
int +B (t)

∞∑
n=1

f−ne
−int.

Since the system (2.3) forms a basis in Mp,α
ρ , it follows that fn = 0, ∀n ∈ Z, i.e., KerT =

{0}. Since T ∈ L (Mp,α
ρ ), it follows from the Banach theorem that T−1 ∈ L (Mp,α

ρ ),
which in turn means the correct solvability of equation (2.15). Now, on the contrary, let
equation (2.15) be correctly solvable in Mp,α

ρ . We take ∀g ∈Mp,α
ρ , and let f = T−1g. We

expand f with respect in the basis
{
eint
}
n∈Z in Mp,α

ρ :

f (t) =

+∞∑
n=−∞

fne
int, t ∈ [−π, π] .

We have

P+f =
∞∑
n=0

fne
int;P−f =

∞∑
n=1

f−ne
−int,
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and hence

Tf = A (t)
∞∑
n=0

fne
int +B (t)

∞∑
n=1

f−ne
−int = g (t) ,

i.e., an arbitrary element of Mp,α
ρ decomposes along the system (1.1) in Mp,α

ρ . We show
that such a decomposition is unique. Let

A (t)
∞∑
n=0

fne
int +B (t)

∞∑
n=1

f−ne
−int = 0.

We set

f (t) =
+∞∑

n=−∞
fne

int.

It’s clear thatf ∈Mp,α
ρ . We have

Tf = A (t)

∞∑
n=0

fne
int +B (t)

∞∑
n=0

f−ne
−int = 0⇒ f = T−10 = 0⇒ fn = 0,∀n ∈ Z.

Thus, the following theorem is proved:

Theorem 2.4. LetA±1;B±1 ∈ L∞ (−π, π),and ρ ∈W p,α
⋂
Ap,α. The system (1.1) forms

a basis in Mp,α
ρ if and only if equation (2.15) is correctly solvable in Mp,α

ρ , 1 < p < +∞,
0 < α ≤ 1.

Now let’s prove the following theorem.

Theorem 2.5. Let A±1;B±1 ∈ L∞ (−π, π), and ρ ∈ AMp. If the system (2.3) forms a
basis in Mp,α

ρ , then it is isomorphic to the classical system of exponentials
{
eint
}
n∈Z in

Mp,α
ρ , and the isomorphism is given by the operator T0:

(T0f) (t) = A (t)

∞∑
n=0

(
f ; einx

)
eint +B (t)

∞∑
n=1

(
f ; e−inx

)
e−int, (2.16)

where
(f ; g) =

1

2π

∫ π

−π
f (t) g (t)dt.

Proof. Let the system (2.3) form a basis in Mp,α
ρ . We take ∀f ∈ Mp,α

ρ . Since the system{
eint
}
n∈Z forms a basis in Mp,α

ρ , it is clear that the series

f+ (t) =

∞∑
n=0

(
f ; einx

)
eint, f− (t) =

∞∑
n=1

(
f ; e−inx

)
e−int,

converge in Mp,α
ρ , and moreover, ∥∥f±∥∥

p, α
≤ c ‖f‖p, α
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holds. Then it follows immediately from the expression (2.16) of the operator T0 that
T0 ∈ L (Mp,α

ρ ). We show that KerT0 = {0}. Let f ∈ KerT0, i.e.,

T0f = A (t)
∞∑
n=0

(
f ; einx

)
eint +B (t)

∞∑
n=1

(
f ; e−inx

)
e−int = 0.

Since, system (2.3) forms a basis in Mp,α
ρ , it follows that

(
f ; einx

)
= 0,∀n ∈ Z ⇒ f = 0.

Since, the system
{
einx

}
n∈Z forms a basis in Mp,α

ρ . Therefore, KerT0 = {0}. And now,
let’s show that RT0 = Mp,α

ρ . Let g ∈ Mp,α
ρ be an arbitrary element. By Theorem 2.1

∃f ∈ Mp,α
ρ : Tf = g. On the other hand, it is not difficult to see that T0 = T , and as a

result RT = Mp,α
ρ . Then it follows from the Banach theorem that T0 is an automorphism

in Mp,α
ρ . It’s clear that T0

[
einx

]
= A (t) eint, ∀n ∈ Z+, & T0

[
e−inx

]
= B (t) e−int,

∀n ∈ N . The theorem is proved.
This theorem immediately implies following

Corollary 2.1. If the perturbed system of exponents

{
ei (n+ αsignn) t

}
n∈Z

,

forms a basis in Mp,α
ρ , 1 < p < +∞, 0 < α ≤ 1, then it is isomorphic to its classical

exponents system
{
eint
}
n∈Z .
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Abstract

The concept of visible points of a convex set was introduced and discussed in

normed linear spaces by Frank Deutsch, Hein Hundal and Ludmil Zikatanov [Visible

Points in Convex Sets and Best Approximation, Computational and Analytical Mathe-

matics, Springer (2013), 349-364]. Extending this concept to metric spaces, we study

some basic properties of such points, besides giving some characterizations of visible

sets. We also study the connection between visible points and best approximation in

such spaces. Moreover, we show that in linear metric spaces, those closed convex sets

C for which the set of visible points to each point not in C is the whole set C are

precisely the affine sets.

1 Introduction

Let C be a closed convex subset of a real normed linear space X and x ∈ X. An element
v ∈ C is said to be visible to x with respect to C if [x, v] ∩ C = {v} or, equivalently,

Keywords and phrases : Linear metric space, convex space, strongly convex space, M -space, best ap-
proximation, visible point

2010 AMS Subject Classification : 41A65, 41A50, 52A27
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[x, v[∩C = φ. The notion of visible points was introduced and discussed in normed linear
spaces by Deutsch et al. [2]. As remarked in [2], this concept is useful in the study of best
approximation, and it also seems to have potential value in the study of robotics.

Geometrically, one can regard the set VC(x) = {v ∈ C : [x, v] ∩ C = {v}} = {v ∈
C : [x, v[∩C = φ} as the ”light” that would be cast on the set C if there were a light
source at the point x emanating in all directions. Alternatively, one can regard the set C as
an ”obstacle” in X , a robot is located at a point x ∈ X , and the direction determined by
the interval [x, v], where v ∈ VC(x), as directions to be avoided by the robot so as not to
collide with the obstacle C.

In this paper, we extend the notion of visible points to metric spaces, study some basic
properties of such points, give some characterizations of visible sets and study the connec-
tion between visible points and best approximation in such spaces. We also show that in
linear metric spaces, those closed convex sets C for which the set of visible points to each
point not in C is the whole set C are precisely the affine sets.

2 Notations and Definitions

To start with, we recall a few definitions.

Definition 1. [4] Let (X, d) be a metric space and x, y, z ∈ X . We say that z is between x
and y if d(x, z) + d(z, y) = d(x, y). For any two points x, y ∈ X , the set

{z ∈ X : d(x, z) + d(z, y) = d(x, y)}

is called a metric segment and is denoted by [x, y].

Definition 2. [1] A metric space (X, d) is said to be convex if for every x, y in X and for
every t, 0 ≤ t ≤ 1 there exists at least one point z such that d(x, z) = (1 − t) d(x, y) and
d(z, y) = t d(x, y).

The space X is said to be strongly convex [1] if such a z exists and is unique for each
pair x, y of X. Thus in strongly convex metric spaces, each t, 0 ≤ t ≤ 1, determines a
unique point of the segment [x, y].

It was proved by Menger [4], that in a complete convex metric space (X, d), each two
points x, y ∈ X are joined by a metric segment [x,y] i.e. by a subset of X isometric with
the real line interval of length d(x, y).

Definition 3. [3] A convex metric space (X, d) is called anM -space if for every two points
x, y ∈ X with d(x, y) = λ, and for every r ∈ [0, λ], there exists a unique zr ∈ X such that

B[x, r] ∩B[y, λ− r] = {zr},

where B[x, r] = {y ∈ X : d(x, y) ≤ r}.
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Clearly, every normed linear space is an M -space.
It is known (see[8]) that a metric space (X, d) is anM -space if and only ifX is strongly

convex.

Definition 4. In a metric space (X, d), we define

[x, y] = {z ∈ X : d(x, y) = d(x, z) + d(z, y)},
[x, y[ = {z ∈ X : d(x, y) = d(x, z) + d(z, y), z 6= y},
]x, y] = {z ∈ X : d(x, y) = d(x, z) + d(z, y), z 6= x},
]x, y[ = {z ∈ X : d(x, y) = d(x, z) + d(z, y), z 6= x, z 6= y}.

Definition 5. (see [5]) A subset C of a metric space (X, d) is said to be convex if for every
x, y ∈ C, any point between x and y is also in C i.e. for each x, y ∈ C, the metric segment
[x, y] lies in C.

Definition 6. [2] Let C be a closed convex subset of a metric space (X, d) and x ∈ X . A
point v ∈ C is said to be visible to x with respect to C if [x, v] ∩ C = {v} or, equivalently,
[x, v[∩C = φ. The set of all visible points to x with respect to C is denoted by VC(x). Thus
VC(x) = {v ∈ C : [x, v] ∩ C = {v}} = {v ∈ C : [x, v[∩C = φ}.

Definition 7. [9] A point yo ∈ C is said to be a best approximation to x in C if d(x, yo) =
d(x,C) ≡ inf{d(x, c) : c ∈ C}. The set of all best approximations to x in C is denoted by
PC(x) i.e.; PC(x) = {y ∈ C : d(x, y) = d(x,C)}

The set C is said to be proximinal if PC(x) is non-empty for each x ∈ X. For examples
of proximinal and non proximinal sets, we refer to Singer [9].

3 Visible Points in Metric Spaces

In this section, we give some auxiliary results

Lemma 1. Let C be a closed convex set in a metric space (X, d), if x ∈ C then VC(x) =
{x}.

Proof. Suppose x ∈ C, then [x, x] = {x} and [x, x] ∩ C = {x} ∩ C = {x}. Therefore
x ∈ VC(x) i.e. {x} ⊆ VC(x).

Conversely, let v ∈ VC(x) be any element and x ∈ C. To prove v = x. On contrary, let
v 6= x. Now v ∈ VC(x) implies [x, v] ∩ C = {v}. But x ∈ C, therefore x ∈ [x, v] ∩ C. So
x = v and hence VC(x) = {x}.

It may be remarked that an analogous result is true for PC(x) i.e.; PC(x) = {x} if
x ∈ C. Whereas the set PC(x) may be empty if x /∈ C (see [9]), the following theorem
shows that the set VC(x) is always non-empty.



42 Sangeeta & T. D. Narang

Theorem 1. Let C be a closed convex set in an M -space (X, d), then

(i) VC(x) 6= φ for each x ∈ X and

(ii) VC(x) ⊂ bdC for each x ∈ X�C.

Proof. (i) Let x ∈ X. By Lemma 1 we may assume that x /∈ C as if x ∈ C then VC(x) =
{x} 6= φ. Fix any y ∈ C. Then [x, y] contains some points in C (e.g. y) and some points
not in C (e.g. x). Let to = sup{t, 0 < t < 1, z ∈ [x, y], d(x, z) = (1 − t)d(x, y) and
d(z, y) = td(x, y), z ∈ C}. Let zo ∈ [x, y] be such that d(x, zo) = (1 − to)d(x, y) and
d(zo, y) = tod(x, y). Such a zo ∈ C as C is closed and [x, zo] ∩ C = {zo} i.e. zo ∈ VC(x)
and hence VC(x) 6= φ.

(ii) Fix any x ∈ X�C. To show that v ∈ bdC for each v ∈ VC(x). If it is not so,
then there exists some v ∈ VC(x) such that v ∈ C�bdC. Hence v is in the interior of C
i.e. there exists an open ball B(v, ε) ⊂ C. Let vo ∈ B(v, ε) be such that vo ∈ [x, v]. Then
clearly [vo, v] is a subinterval of [x, v] which lies inside C. Hence [x, v] ∩ C 6= {v}, which
contradicts the fact that v ∈ VC(x).

It may be remarked that result analogous to (ii) is true for PC(x) even if C is not convex
(see [6]) but it is not true in metric spaces (see Singer [9] )

The following theorem gives a characterization of visible points:

Theorem 2. Let C be a closed convex set in an M -space (X, d), x ∈ X�C and v ∈ C.
Then the following are equivalent.

(i) v is visible to x with respect to C.

(ii) z /∈ C for t, 0 ≤ t < 1, z ∈ [x, v], d(x, z) = (1− t)d(x, v) and d(z, v) = td(x, v).

(iii) max{t, t ∈ [0, 1] : z ∈ C, z ∈ [x, v], d(x, z) = (1− t)d(x, v), d(z, v) = td(x, v)} =
1

Proof. (i) ⇒ (ii). If (i) holds then [x, v[∩C = φ, then clearly, no z ∈ [x, v], satisfying
d(x, z) = (1− t)d(x, v) and d(z, v) = td(x, y), 0 ≤ t < 1, belongs to C i.e. (ii) is true.

(ii)⇒ (iii). Since v ∈ C, (iii) is an obvious consequence of (ii).
(iii)⇒ (i). If (iii) is true then [x, v[∩C = φ i.e. v ∈ VC(x).

It is known (see [6]) that if C is a convex set in a convex metric space (X, d), then
PC(x) is convex. It is also known (see [9]) that in any metric space, the set PC(x) is closed
if C is closed. However, analogous results are not true for VC(x) even in normed linear
spaces (see [2]).

The following theorem connects visible points and points of best approximation.

Theorem 3. Let (X, d) be a convex metric space and C a closed convex subset of X. Then
PC(x) ⊂ VC(x) for each x ∈ X.
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Proof. The result is trivial if PC(x) = φ. If x ∈ C, then clearly PC(x) = {x} and VC(x) =
{x} by Lemma 1. Now suppose x ∈ X�C and let xo ∈ PC(x). Then xo ∈ C and xo 6= x.

If [x, xo[∩C 6= φ, then there exists a zλ for 0 < λ < 1 such that

d(x, zλ) = (1− λ)d(x, xo) < d(x, xo).

This is a contradiction to the fact that xo is a best approximation to x in C. Therefore
[x, xo[∩C = φ and hence xo ∈ VC(x).

4 Visible Points in Linear Metric Spaces

The following result shows that in linear metric spaces, the visible set mapping VC satisfies
translation property which is also satisfied by the set mapping PC (see [7]).

Lemma 2. Let (X, d) be a linear metric space, C a closed convex set and x, y ∈ X. Then
VC(x) = VC+y(x+ y)− y.

Proof. For x, y ∈ X and v ∈ C,

v ∈ VC(x) ⇔ [x, v[∩C = φ

⇔ [x+ y, v + y[∩(C + y) = φ

⇔ v + y ∈ VC+y(x+ y)

⇔ v ∈ VC+y(x+ y)− y.

Next, we explore those closed convex sets C having the property VC(x) = C for each
x /∈ C i.e. we find answer to the question: For which sets is the whole set visible from any
point outside the set? For this we recall the following notion(see [2]):

A set A of a linear metric space (X, d) is said to be affine if the line through each pair
of points in A lies in A i.e. if the line

aff{α1a1 + α2a2 : α1 + α2 = 1} ⊂ A for each pair a1, a2 ∈ A. Equivalently, A is
affine if and only if A =M + a for some unique linear subspace M and a ∈ A.

The following result gives the class of sets C for which VC(x) = C.

Theorem 4. LetC be a closed convex set in a linear metric space (X, d). Then the following
statements are equivalent:

1. C is affine.

2. VC(x) = C for each x ∈ X�C.

Proof. (1)⇒ (2). Let us first assume that C = M is actually a subspace i.e. 0 ∈ C. Fix
any x /∈ M. Since VM (x) ⊂ M, it is sufficient to show that M ⊂ VM (x). For this, let
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m ∈ M. If m /∈ VM (x), then [x,m[∩M 6= φ. Hence there exists λ, 0 < λ < 1 such that
λx + (1 − λ)m ∈ M. Since m ∈ M, λx ∈ M and hence x ∈ M , a contradiction. This
proves (2) in case C is a subspace . In general , suppose C is affine. Then C = M + c for
some subspace M and c ∈ C. For any x ∈ X�C, we see that x− c /∈M and by the above
proof and Lemma 2 we obtain

VC(x) = VM+c(x) = VM (x− c) + c =M + c = C.

(2)⇒ (1). Assume (2) holds . If C is not affine, then there exist distinct points c1, c2 ∈
C such that aff{c1, c2} * C. Since C is closed convex and aff{c1, c2} is a line, it follows
that either aff{c1, c2}∩C = [y1, y2] for some distinct points y1, y2 inC. or aff{c1, c2}∩C =

y1 + {ρ(y2 − y1) | ρ ≥ 0} for some distinct points y1, y2 in C. Therefore x = y1 + ρ(y2 −
y1) /∈ C for −1 ≤ ρ < 0. But y1 = 1

1−ρx− ρy2 ∈ [x, y2[∩C proves that y2 /∈ VC(x). This
contradicts the hypothesis as VC(x) = C if x /∈ C. Hence C is affine.

Remarks: In the Euclidean space R2, if S is the unit sphere, then PS(0) = S. It will be
interesting to explore the class of sets C for which PC(x) = C for each x ∈ X�C.
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Abstract

In this paper, we establish some fixed point and common fixed point theorems for

rational contractions in the setting of b-metric spaces. Also, as a consequence, some

results of integral type for such class of mappings is obtained. Our results extend and

generalize several known results from the existing literature.

1 Introduction and Preliminaries

Fixed point theory plays a very significant role in the development of nonlinear analysis. In

this area, the first important result was proved by Banach in 1922 for contraction mapping

in complete metric space, known as the Banach contraction principle [3].

In [2], Bakhtin introduced b-metric spaces as a generalization of metric spaces. He

proved the contraction mapping principle in b-metric spaces that generalized the famous

contraction principle in metric spaces. Czerwik used the concept of b-metric space and
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generalized the renowned Banach fixed point theorem in b-metric spaces (see, [5, 6]).

In this note, we establish some fixed point and common fixed point theorems satisfying
rational inequality in the framework of b-metric spaces.

Definition 1.1. ([1]) Let X be a nonempty set and let d : X × X → R+ be a function
satisfying the conditions:

(A1) d(x, y) = 0 ⇔ x = y;

(A2) d(x, y) = d(y, x) for all x, y ∈ X;

(A3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .

Then d is called a metric on X and the pair (X, d) is called a metric space.

Definition 1.2. ([2]) LetX be a nonempty set and s ≥ 1 be a given real number. A mapping
d : X × X → R+ is called a b-metric if for all x, y, z ∈ X , the following conditions are
satisfied:

(B1) d(x, y) = 0 ⇔ x = y;

(B2) d(x, y) = d(y, x);

(B3) d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (X, d) is called a b-metric space.

It is clear from the definition of b-metric space that every metric space is a b-metric
space for s = 1. Therefore, the class of b-metric spaces is larger than the class of metric
spaces.

Example 1.3. ([1]) Let X = {0, 1, 2}. Define d : X × X → R+ as follows d(0, 0) =

d(1, 1) = d(2, 2) = 0, d(1, 2) = d(2, 1) = d(0, 1) = d(1, 0) = 1, d(2, 0) = d(0, 2) = p ≥
2 for s = p

2 where p ≥ 2, the function defined as above is a b-metric space but not a metric
space for p > 2.

Example 1.4. ([7]) Let X = `p with 0 < p < 1, where `p = {{xn} ⊂ R :
∑∞

n=1 |xn|p <

∞}. Let d : X×X → R defined by d(x, y) =
(∑∞

n=1 |xn−yn|p
) 1

p , where x = {xn}, y =

{yn} ∈ `p. Then (X, d) is a b-metric space with the coefficient s = 2
1
p > 1, since by an

elementary calculation, we get that d(x, y) ≤ 2
1
p [d(x, z) + d(z, y)], but it is not a metric

space.

Example 1.5. ([7]) Let X = {1, 2, 3, 4}. Define d : X ×X → R2 by

d(x, y) =

{
(|x− y|−1, |x− y|−1) if x 6= y,

0, if x = y.
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Then (X, d) is a b-metric space with the coefficient s = 6
5 > 1. But it is not a metric

space since the triangle inequality is not satisfied,

d(1, 2) > d(1, 4) + d(4, 2), d(3, 4) > d(3, 1) + d(1, 4).

In our main result we will use the following definitions which can be found in [1] and
[8].

Definition 1.6. Let (X, d) be a b-metric space, x ∈ X and {xn} be a sequence in X . Then

(C1) {xn} is a Cauchy sequence whenever, if for ε > 0, there exists a positive integer
N such that for all n,m ≥ N , d(xn, xm) < ε;

(C2) {xn} is called convergent if for ε > 0 and n ≥ N , we have d(xn, x) < ε, where
x is called the limit point of the sequence {xn}. We denote this by limn→∞ xn = x or
xn → x as n→∞.

(C3) (X, d) is said to be a complete b-metric space if every Cauchy sequence in X
converges to a point in X .

Remark 1.7. In a b-metric space (X, d), the following assertions hold:

(i) a convergent sequence has a unique limit;

(ii) each convergent sequence is Cauchy;

(iii) in general, a b-metric is not continuous.

2 Main Results

In this section we shall prove some fixed point and common fixed point theorems for rational
contraction in the framework of b-metric spaces.

Theorem 2.1. Let (X, d) be a complete b-metric space (CbMS) with the coefficient s ≥ 1.
Suppose that the mappings S, T : X → X satisfy:

d(Sx, Ty) ≤ k
[d(x, Sx)d(x, Ty) + [d(x, y)]2 + d(x, Sx)d(x, y)

d(x, Sx) + d(x, y) + d(x, Ty)

]
(2.1)

for all x, y ∈ X , k ∈ [0, 1) with sk < 1 and d(x, Sx) + d(x, y) + d(x, Ty) 6= 0. Then
S and T have a common fixed point in X . Further if d(x, Sx) + d(x, y) + d(x, Ty) = 0

implies that d(Sx, Ty) = 0. Then S and T have a unique common fixed point in X .

Proof. Choose x0 ∈ X . Let x1 = S(x0) and x2 = T (x1) such that

x2n+1 = Sx2n, x2n+2 = Tx2n+1, n = 0, 1, 2, . . . .
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Let d(x, Sx) + d(x, y) + d(x, Ty) 6= 0. Then from (2.1), we have

d(x2n+1, x2n+2) = d(Sx2n, Tx2n+1)

≤ k
[(
d(x2n, Sx2n)d(x2n, Tx2n+1) + [d(x2n, x2n+1)]

2

+d(x2n, Sx2n)d(x2n, x2n+1)
)

×
(
d(x2n, Sx2n) + d(x2n, x2n+1) + d(x2n, Tx2n+1)

)−1]
= k

[(
d(x2n, x2n+1)d(x2n, x2n+2) + [d(x2n, x2n+1)]

2

+d(x2n, x2n+1)d(x2n, x2n+1)
)

×
(
d(x2n, x2n+1) + d(x2n, x2n+1) + d(x2n, x2n+2)

)−1]
= k d(x2n, x2n+1)

×
[d(x2n, x2n+2) + 2d(x2n, x2n+1)

d(x2n, x2n+2) + 2d(x2n, x2n+1)

]
= k d(x2n, x2n+1). (2.2)

Similarly, we have

d(x2n, x2n+1) = d(Sx2n−1, Tx2n)

≤ k
[(
d(x2n−1, Sx2n−1)d(x2n−1, Tx2n) + [d(x2n−1, x2n)]2

+d(x2n−1, Sx2n−1)d(x2n−1, x2n)
)

×
(
d(x2n−1, Sx2n−1) + d(x2n−1, x2n) + d(x2n−1, Tx2n)

)−1]
= k

[(
d(x2n−1, x2n)d(x2n−1, x2n+1) + [d(x2n−1, x2n)]2

+d(x2n−1, x2n)d(x2n−1, x2n)
)

×
(
d(x2n−1, x2n) + d(x2n−1, x2n) + d(x2n−1, x2n+1)

)−1]
= k d(x2n−1, x2n)

×
[d(x2n−1, x2n+1) + 2d(x2n−1, x2n)

d(x2n−1, x2n+1) + 2d(x2n−1, x2n)

]
= k d(x2n−1, x2n). (2.3)

By induction, we have

d(xn+1, xn) ≤ k d(xn, xn−1) ≤ k2 d(xn−1, xn−2) ≤ . . .

≤ kn d(x1, x0). (2.4)
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Let m,n ≥ 1 and m > n, we have

d(xn, xm) ≤ s[d(xn, xn+1) + d(xn+1, xm)]

= sd(xn, xn+1) + sd(xn+1, xm)

≤ sd(xn, xn+1) + s2[d(xn+1, xn+2) + d(xn+2, xm)]

= sd(xn, xn+1) + s2d(xn+1, xn+2) + s2d(xn+2, xm)

≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + s3d(xn+2, xn+3)

+ · · ·+ sn+m−1d(xn+m−1, xm)

≤ [skn + s2kn+1 + s3kn+2 + · · ·+ smkn+m−1]d(x1, x0)

= skn[1 + sk + s2k2 + s3k3 + · · ·+ (sk)m−1]d(x1, x0)

≤
[ skn

1− sk

]
d(x1, x0).

Since 0 < sk < 1, therefore taking limit m,n→∞, we have

lim
m,n→∞

d(xm, xn) = 0.

Hence {xn} is a Cauchy sequence in complete b-metric space X . Since X is complete, so
there exists p ∈ X such that limn→∞ xn = p. Now, we have to show that p is a common
fixed point of S and T . For this consider

d(x2n+1, Tp) = d(Sx2n, Tp)

≤ k
[d(x2n, Sx2n)d(x2n, Tp) + [d(x2n, p)]

2 + d(x2n, Sx2n)d(x2n, p)

d(x2n, Sx2n) + d(x2n, p) + d(x2n, Tp)

]
= k

[d(x2n, x2n+1)d(x2n, Tp) + [d(x2n, p)]
2 + d(x2n, x2n+1)d(x2n, p)

d(x2n, x2n+1) + d(x2n, p) + d(x2n, Tp)

]
.

Taking limit n→∞, we have
d(p, Tp) ≤ 0.

Thus Tp = p, that is, p is a fixed point of T .
In an exactly the same fashion we can prove that Sp = p. Hence Sp = Tp = p. This

shows that p is a common fixed point of S and T .

Uniqueness
Let q be another common fixed point of S and T , that is, Sq = Tq = q such that p 6= q.
Suppose that d(x, Sx) + d(x, y) + d(x, Ty) = 0 implies that d(Sx, Ty) = 0. Now, we
take x = p and y = q in the hypothesis, we have

d(p, Sp) + d(p, q) + d(p, Tq) = 0⇒ d(Sp, Tq) = 0.
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Therefore, we get
d(p, q) = d(Sp, Tq) = 0.

Hence p = q. This shows that p is a unique common fixed point of S and T . This
completes the proof.

Putting S = T in Theorem 2.1, then we have the following result.

Corollary 2.2. Let (X, d) be a complete b-metric space (CbMS) with the coefficient s ≥ 1.
Suppose that the mapping T : X → X satisfies:

d(Tx, Ty) ≤ k
[d(x, Tx)d(x, Ty) + [d(x, y)]2 + d(x, Tx)d(x, y)

d(x, Tx) + d(x, y) + d(x, Ty)

]
(2.5)

for all x, y ∈ X , k ∈ [0, 1) with sk < 1 and d(x, Tx) + d(x, y) + d(x, Ty) 6= 0. Then
T has a fixed point in X . Further if d(x, Tx) + d(x, y) + d(x, Ty) = 0 implies that
d(Tx, Ty) = 0. Then T has a unique fixed point in X .

Proof. The proof of corollary 2.2 is immediately follows from Theorem 2.1 by taking S =

T . This completes the proof.

Corollary 2.3. Let (X, d) be a complete b-metric space (CbMS) with the coefficient s ≥ 1.
Suppose that the mapping T : X → X satisfies (for fixed n):

d(Tnx, Tny) ≤ k
[d(x, Tnx)d(x, Tny) + [d(x, y)]2 + d(x, Tnx)d(x, y)

d(x, Tnx) + d(x, y) + d(x, Tny)

]
(2.6)

for all x, y ∈ X , k ∈ [0, 1) with sk < 1 and d(x, Tnx) + d(x, y) + d(x, Tny) 6= 0. Then
T has a fixed point in X . Further if d(x, Tnx) + d(x, y) + d(x, Tny) = 0 implies that
d(Tnx, Tny) = 0. Then T has a unique fixed point in X .

Proof. By Corollary 2.2, there exists v ∈ X such that Tnv = v. Then

d(Tv, v) = d(TTnv, Tnv) = d(TnTv, Tnv)

≤ k
[d(Tv, TnTv)d(Tv, Tnv) + [d(Tv, v)]2 + d(Tv, TnTv)d(Tv, v)

d(Tv, TnTv) + d(Tv, v) + d(Tv, Tnv)

]
= k

[d(Tv, TTnv)d(Tv, Tnv) + [d(Tv, v)]2 + d(Tv, TTnv)d(Tv, v)

d(Tv, TTnv) + d(Tv, v) + d(Tv, Tnv)

]
= k

[d(Tv, Tv)d(Tv, v) + [d(Tv, v)]2 + d(Tv, Tv)d(Tv, v)

d(Tv, Tv) + d(Tv, v) + d(Tv, v)

]
=

k

2
d(Tv, v)

≤ k d(Tv, v).
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The above inequality is possible only if d(Tv, v) = 0 and so Tv = v. This shows that T
has a unique fixed point in X . This completes the proof.

Theorem 2.4. Let (X, d) be a complete b-metric space (CbMS) with the coefficient s ≥ 1.
Suppose that the mapping T : X → X satisfies the contraction condition:

d(Tx, Ty) ≤ β max
{
d(x, y),

d(x, Tx), d(y, Ty)

1 + d(x, y)
,
d(x, Tx), d(y, Ty)

1 + d(Tx, Ty)

}
(2.7)

for all x, y ∈ X , β ∈ [0, 1) is a constant with sβ < 1. Then T has a unique fixed point in
X .

Proof. Choose x0 ∈ X . We construct the iterative sequence {xn}, where xn = Txn−1,
n ≥ 1, that is, xn+1 = Txn = Tn+1x0. From (2.7), we have

d(xn, xn+1) = d(Txn−1, Txn)

≤ β max
{
d(xn−1, xn),

d(xn−1, Txn−1), d(xn, Txn)

1 + d(xn−1, xn)
,

d(xn−1, Txn−1), d(xn, Txn)

1 + d(Txn−1, Txn)

}
(2.8)

= β max
{
d(xn−1, xn),

d(xn−1, xn), d(xn, xn+1)

1 + d(xn−1, xn)
,

d(xn−1, xn), d(xn, xn+1)

1 + d(xn, xn+1)

}
≤ β max

{
d(xn−1, xn), d(xn, xn+1)

}
. (2.9)

If max
{
d(xn−1, xn), d(xn, xn+1)

}
= d(xn, xn+1), then from (2.9), we have

d(xn, xn+1) ≤ β d(xn, xn+1)

<
1

s
d(xn, xn+1)

< d(xn, xn+1), (2.10)

which is a contradiction.

Hence max
{
d(xn−1, xn), d(xn, xn+1)

}
= d(xn−1, xn), so from (2.9), we have

d(xn, xn+1) ≤ β d(xn−1, xn). (2.11)
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By induction, we have

d(xn, xn+1) ≤ β d(xn−1, xn) ≤ β2 d(xn−2, xn−1) ≤ . . .

≤ βn d(x0, x1). (2.12)

Let m,n ≥ 1 and m > n, we have

d(xn, xm) ≤ s[d(xn, xn+1) + d(xn+1, xm)]

= sd(xn, xn+1) + sd(xn+1, xm)

≤ sd(xn, xn+1) + s2[d(xn+1, xn+2) + d(xn+2, xm)]

= sd(xn, xn+1) + s2d(xn+1, xn+2) + s2d(xn+2, xm)

≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + s3d(xn+2, xn+3)

+ · · ·+ sn+m−1d(xn+m−1, xm)

≤ [sβn + s2βn+1 + s3βn+2 + · · ·+ smβn+m−1]d(x1, x0)

= sβn[1 + sβ + s2β2 + s3β3 + · · ·+ (sβ)m−1]d(x1, x0)

≤
[ sβn

1− sβ

]
d(x1, x0).

Since 0 < sβ < 1, therefore taking limit m,n→∞, we have

lim
m,n→∞

d(xm, xn) = 0.

Hence {xn} is a Cauchy sequence in complete b-metric space X . Since X is complete, so
there exists q ∈ X such that limn→∞ xn = q. Now, we have to show that q is a fixed point
of T . For this consider

d(xn+1, T q) = d(Txn, T q)

≤ β max
{
d(xn, q),

d(xn, Txn), d(q, T q)

1 + d(xn, q)
,
d(xn, Txn), d(q, T q)

1 + d(Txn, T q)

}
= β max

{
d(xn, q),

d(xn, xn+1), d(q, T q)

1 + d(xn, q)
,
d(xn, xn+1), d(q, T q)

1 + d(xn+1, T q)

}
.

Taking the limit n→∞, we have

d(q, T q) ≤ 0.

Thus Tq = q, that is, q is a fixed point of T .

Uniqueness
Let q′ be another fixed point of T , that is, Tq′ = q′ such that q 6= q′, then from (2.7), we
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have

d(q, q′) = d(Tq, Tq′)

≤ β max
{
d(q, q′),

d(q, T q), d(q′, T q′)

1 + d(q, q′)
,
d(q, T q), d(q′, T q′)

1 + d(Tq, Tq′)

}
= β max

{
d(q, q′),

d(q, q), d(q′, q′)

1 + d(q, q′)
,
d(q, q), d(q′, q′)

1 + d(q, q′)

}
= β max

{
d(q, q′), 0, 0

}
≤ β d(q, q′).

The above inequality is possible only if d(q, q′) = 0 and so q = q′. Thus q is a fixed point
of T . This completes the proof.

If max
{
d(x, y), d(x,Tx),d(y,Ty)

1+d(x,y) , d(x,Tx),d(y,Ty)
1+d(Tx,Ty)

}
= d(x, y), then from Theorem 2.4, we

have the following result as corollary.

Corollary 2.5. Let (X, d) be a complete b-metric space (CbMS) with the coefficient s ≥ 1.
Suppose that the mapping T : X → X satisfies:

d(Tx, Ty) ≤ β d(x, y)

for all x, y ∈ X , where β ∈ (0, 1) is a constant with sβ < 1. Then T has a unique fixed
point in X .

Remark 2.6. Corollary 2.5 extends well known Banach contraction principle from complete
metric space to that setting of complete b-metric space considered in this paper.

We give an example in support of Theorems 2.1 and 2.4 as follows.

Example 2.7. LetX = [0,∞) be endowed with b-metric and d(x, y) = |x−y|2 = (x−y)2,
where s = 2. We consider the the mappings S, T : X → X defined by S(x) = ln(1 + x

3 )

and T (x) = ln(1 + x
2 ). Observe that S(X) = T (X) = [0,∞). For each x, y ∈ X with

x 6= y, we have

d(Sx, Ty) = (Sx− Ty)2 = [ln(1 +
x

3
)− ln(1 +

y

2
)]2

<
(x

3
− y

2

)2
, since ln(1 + x) < x

=
1

36
(2x− 3y)2

≤ 1

36
(4x− 4y)2
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=
16

36
(x− y)2

=
4

9
d(x, y)

≤ 4

9

[d(x, Sx)d(x, Ty) + [d(x, y)]2 + d(x, Sx)d(x, y)

d(x, Sx) + d(x, y) + d(x, Ty)

]
where 4

9 ≤ k < 1 and s = 2. Thus S and T satisfy all the conditions of Theorem 2.1.
Moreover 0 is the unique common fixed point of S and T .

Example 2.8. LetX = [0,∞) be endowed with b-metric and d(x, y) = |x−y|2 = (x−y)2,
where s = 2. We consider the the mapping T : X → X defined by T (x) = x

2 . Observe that
T (X) = [0,∞). For each x, y ∈ X with x 6= y, we have

d(Tx, Ty) = (Tx− Ty)2 =
(x

2
− y

2

)2
=

1

4
(x− y)2

≤ 1

2
(x− y)2

=
1

2
d(x, y)

≤ 1

2
max

{
d(x, y),

d(x, Tx), d(y, Ty)

1 + d(x, y)
,
d(x, Tx), d(y, Ty)

1 + d(Tx, Ty)

}
where β = 1

2 < 1 and s = 2. Thus T satisfies all the conditions of Theorem 2.4. Moreover
0 is the unique fixed point of T .

Other consequences of our results for the mappings involving contractions of integral
type are the following.

Denote Λ the set of functions ϕ : [0,∞)→ [0,∞) satisfying the following hypothesis:
(h1) ϕ is a Lebesgue-integrable mapping on each compact subset of [0,∞);
(h2) for any ε > 0 we have

∫ ε
0 ϕ(t)dt > 0.

Theorem 2.9. Let (X, d) be a complete b-metric space (CbMS) with the coefficient s ≥ 1.
Suppose that the mappings S, T : X → X satisfy the condition:

∫ d(Sx,Ty)

0
ψ(t)dt ≤ k

∫ [d(x, Sx)d(x, Ty) + [d(x, y)]2 + d(x, Sx)d(x, y)

d(x, Sx) + d(x, y) + d(x, Ty)

]
0

ψ(t)dt

for all x, y ∈ X , where k ∈ [0, 1) is a constant with sk < 1 and ψ ∈ Λ. Then S and T
have a unique common fixed point in X .

If we put S = T in Theorem 2.9, then we have the following result.
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Theorem 2.10. Let (X, d) be a complete b-metric space (CbMS) with the coefficient s ≥ 1.
Suppose that the mappings T : X → X satisfies the condition:

∫ d(Tx,Ty)

0
ψ(t)dt ≤ k

∫ [d(x, Tx)d(x, Ty) + [d(x, y)]2 + d(x, Tx)d(x, y)

d(x, Tx) + d(x, y) + d(x, Ty)

]
0

ψ(t)dt

for all x, y ∈ X , where k ∈ [0, 1) is a constant with sk < 1 and ψ ∈ Λ. Then T has a
unique fixed point in X .

Theorem 2.11. Let (X, d) be a complete b-metric space (CbMS) with the coefficient s ≥ 1.
Suppose that the mapping T : X → X satisfies:

∫ d(Tx,Ty)

0
ψ(t)dt ≤ β

∫ max

{
d(x, y),

d(x, Tx), d(y, Ty)

1 + d(x, y)
,
d(x, Tx), d(y, Ty)

1 + d(Tx, Ty)

}
0

ψ(t)dt

for all x, y ∈ X , where β ∈ [0, 1) is a constant with sβ < 1 and ψ ∈ Λ. Then T has a
unique fixed point in X .

Theorem 2.12. Let (X, d) be a complete b-metric space (CbMS) with the coefficient s ≥ 1.
Suppose that the mapping T : X → X satisfies:∫ d(Tx,Ty)

0
ψ(t)dt ≤ β

∫ d(x,y)

0
ψ(t)dt

for all x, y ∈ X , where β ∈ [0, 1) is a constant with sβ < 1 and ψ ∈ Λ. Then T has a
unique fixed point in X .

Remark 2.13. Theorem 2.12 extends Theorem 2.1 of Branciari [4] from complete metric
space to that setting of complete b-metric space for integral type contraction considered in
this paper.

3 Conclusion

In this paper, we establish some unique fixed point and common fixed point theorems for
rational contractions in the setting of b-metric spaces. Also, as a consequence, we obtain
some results of integral type contraction for such mappings. Our results extend and gener-
alize several results from the existing literature.
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Abstract

Let R be a ring with involution ′∗′. An additive map x 7→ x∗ of R into
itself is called an involution if (i) (xy)∗ = y∗x∗ and (ii) (x∗)∗ = x holds
for all x, y ∈ R. An additive mapping δ : R → R is called a derivation
if δ(xy) = δ(x)y + xδ(y) for all x, y ∈ R. The purpose of this paper is to
examine the commutativity of prime rings with involution satisfying certain
identities involving derivations.

1 Introduction and Notations
In all that follows, unless specially stated, R always denotes an associative ring with
centre Z(R). As usual the symbols s ◦ t and [s, t] will denote the anti-commutator
st + ts and commutator st − ts, respectively. Given an integer n ≥ 2, a ring R

is said to be n-torsion free if nx = 0 (where x ∈ R) implies that x = 0. A ring
R is called prime if aRb = (0) (where a, b ∈ R) implies a = 0 or b = 0 and is
called semiprime ring if aRa = (0) (where a ∈ R) implies a = 0. An additive
map x 7→ x∗ of R into itself is called an involution if (i) (xy)∗ = y∗x∗ and (ii)

Keywords and phrases : Prime ring, ∗-ideal, involution, derivation
2010 AMS Subject Classification : 16N60; 16W10; 16W25
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(x∗)∗ = x hold for all x, y ∈ R. A ring equipped with an involution is called ring
with involution or ∗-ring. An ideal I of R is said to be ∗-ideal of R if I∗ = I .
An element x in a ring with involution is said to be hermitian if x∗ = x and skew-
hermitian if x∗ = −x. The sets of all hermitian and skew-hermitian elements of R

will be denoted by H(R) and S(R), respectively. The involution is called the first
kind if Z(R) ⊆ H(R), otherwise it is said to be of the second kind. In the later
case S(R) ∩ Z(R) 6= (0). Notice that in case x is normal i.e., xx∗ = x∗x, if and
only if h and k commute. If all elements in R are normal, then R is called a normal
ring(see [15] for more details).

An additive mapping δ : R → R is said to be a derivation of R if δ(st) =

δ(s)t+sδ(t) for all s, t ∈ R. A derivation δ is said to be inner if there exists a ∈ R

such that δ(s) = as − sa for all s ∈ R. For an automorphism α, an additive map-
ping δ : R → R is said to be a skew derivation of R if δ(st) = δ(s)t + α(s)δ(t)

for all s, t ∈ R. Over the last some decades, several authors have investigated the
relationship between the commutativity of the ring R and certain special types of
additive maps like derivations, skew derivations and automorphisms of R. The cri-
teria to discuss the commutativity of prime rings via derivations has been studied
first time by Posner [23]. In fact, he proved that the existence of a nonzero cen-
tralizing derivation(i.e., δ(x)x − xδ(x) ∈ Z(R) for all x ∈ Z(R) on a prime
ring forces that the ring to be commutative. Since then many algebraists studied the
commutativity of prime and semiprime rings via derivations, skew derivations or
automorphisms that satisfying certain identities (viz.; [2, 4, 5, 6, 7, 8, 13, 14, 19, 21]
and references therein). In [9], Bell and Daif showed that if R is a prime ring ad-
mitting a nonzero derivation δ such that δ(st) = δ(ts) for all s, t ∈ R, then R is
commutative. This result was extended for semiprime rings by Daif [11]. In 2016,
S. Ali et. al [3], studied these results in the setting of rings with involution involving
derivations(see also [12]).

In this paper, our intent is to continue this line of investigation and discuss the
commutativity of prime rings with involution involving derivations in more general
situation .

2 The results

We shall do a great deal of calculation with commutators and anti-commutators,
routinely using the following basic identities:

[xy, z] = x[y, z] + [x, z]y and [x, yz] = [x, y]z + y[x, z] for all x, y, z ∈ R.
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Moreover

xo(yz) = (xoy)z − y[x, z] = y(xoz) + [x, y]z for all x, y, z ∈ R.

and
(xy)oz = (xoz)y + x[y, z] = x(yoz)− [x, z]y for all x, y, z ∈ R.

We start our investigation with some well known facts and results in rings
which will be used frequently throughout the text.

Fact 2.1. If R is a prime ring and 0 6= b ∈ Z(R) and ab ∈ Z(R), then a ∈ Z(R).

Fact 2.2. If a prime ring R contains a nonzero central ideal, then R is commuta-
tive.

Fact 2.3. Let R be a prime ring and I be a nonzero ∗-ideal of R. If x is an element
of I such that [x, [y, z∗]] = 0 for all y, z ∈ I , then x ∈ Z(R).

Proof. Substituting yw for y in the given condition, we obtain

[x, y][w, z∗] + [y, z∗][x,w] = 0 for all y, z, w ∈ I.

In particular, forw = x, we have [x, y][x, z∗] = 0. Replacing y by ry, where r ∈ R,
we get [x, r]y[x, z∗] = 0 for all y, z ∈ I and r ∈ R. This implies that [x,R] = {0}
or I[x, I] = {0}. In both the cases, we can conclude that x ∈ Z(R).

Fact 2.4. Let R be a 2-torsion free ring with involution ′∗′. Then every x ∈ R can
be uniquely represented as 2x = h+ k, where h ∈ H(R) and k ∈ S(R).

Fact 2.5. Let R be a prime ring with involution ′∗′ of second kind such that
char(R) 6= 2. Let δ be a nonzero derivation of R such that δ(h) = 0 for all
h ∈ S(R) ∩ Z(R). Then δ(x) = 0 for all x ∈ Z .

Proof. By the assumption, we have δ(h) = 0 for all h ∈ S(R)∩Z(R). Substituting
k2(where k ∈ S(R) ∩ Z(R)) for h, we get δ(k2 = δ(k)k + kδ(k). This implies
that 2kδ(k) = 0 for all k ∈ S(R)∩Z(R). Application of Fact 2.1 yields δ(k) = 0

for all k ∈ S(R) ∩ Z(R). In view of Fact 2.4, we conclude that 2δ(x) = δ(2x) =

δ(h+ k) = δ(h) + δ(k) = 0 and hence δ(x) = 0 for all x ∈ Z .

We begin with the following lemmas:

Lemma 2.1. Let R be a prime ring with involution ′∗′ of the second kind such that
char(R) 6= 2 and I be a nonzero ∗-ideal of R. If [x, x∗] ∈ Z(R) for all x ∈ I ,
then R is a commutative Integral domain.
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Proof. Linearization of the relation [x, x∗] ∈ Z(R) gives that

[x, y∗] + [y, x∗] ∈ Z(R) for all x, y ∈ I. (2.1)

Replacing y by yk, where k ∈ S(R) ∩ Z(R), we get

−[x, y∗]k + [y, x∗]k ∈ Z(R) for all x, y ∈ I and k ∈ S(R) ∩ Z(R). (2.2)

Combining (2.1) and (2.2), we obtain 2[y, x∗]k ∈ Z(R) for all x, y ∈ I and k ∈
S(R) ∩ Z(R). Since R is a prime ring of char(R) 6= 2 with second kind invo-
lution, the above relation gives [y, x∗] ∈ Z(R) for all x, y ∈ I. This implies that
[y, x] ∈ Z(R) for all x, y ∈ I . This implies that I is commutative and hence R is
commutative.

Lemma 2.2. Let R be a prime ring with involution ′∗′ of the second kind such that
char(R) 6= 2 and I be a nonzero ∗-ideal of R. If x ◦x∗ ∈ Z(R) for all x ∈ I , then
R is a commutative Integral domain.

Proof. Linearize the given condition, we have

x ◦ y∗ + y ◦ x∗ ∈ Z(R) for all x, y ∈ I. (2.3)

Replacing x by xk, where k ∈ S(R) ∩ Z(R), we get

(x ◦ y∗)k − (y ◦ x∗)k ∈ Z(R) for all x, y ∈ I and k ∈ S(R) ∩ Z(R). (2.4)

Multiplying by k to (2.3) and combining the obtained expression with (2.4), we
obtain 2(x ◦ y∗)k ∈ Z(R) for all x, y ∈ I and k ∈ S(R) ∩ Z(R). Since R is a
prime ring of char(R) 6= 2, we obtain x◦ y∗ ∈ Z(R) for all x, y ∈ I. This implies
that x ◦ y ∈ Z(R) for all x, y ∈ I. That is

[x ◦ y, r] = 0 for all x, y ∈ I and r ∈ R. (2.5)

Replacing x by xt in (2.5), we get

(y ◦ x)[t, r] + y[[t, x], r] + [y, r][t, x] = 0 for all x, y ∈ I and r, t ∈ R.

In particular, for t = x the above relation reduces as (y ◦ x)[x, r] = 0 for all x, y ∈
I and r ∈ R. In view of Fact 2.1, either y ◦ x = 0 or [x, r] = 0 for all x, y ∈ I and
r ∈ R. In both the cases, we conclude that R is commutative.

Lemma 2.3. Let R be a prime ring of char(R) 6= 2 and I be nonzero ideal of R.
If R admits a nonzero derivation δ such that [δ(x), δ(y)] ∈ Z(R) for all x, y ∈ I ,
then R is a commutative Integral domain.
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Proof. By the assumption, we have

[δ(x), δ(y)] ∈ Z(R) for all x, y ∈ I.

Since I and R satisfy the same differential identities (see [17, Theorem 2]), then
we have

[δ(x), δ(y)] ∈ Z(R) for all x, y ∈ R.

Thus, in view of [18, Theorem 2] R must be commutative.

Corollary 2.1. Let R be a prime ring of char(R) 6= 2 and I be a nonzero ideal of
R. If δ is a nonzero derivation of R such that δ(x)δ(y) ∈ Z(R) for all x, y ∈ I ,
then R is a commutative Integral domain.

Theorem 2.1. Let R be a prime ring with involution ′∗′ of the second kind such
that char(R) 6= 2 and I be a nonzero ∗-ideal of R. If δ is a nonzero derivation of
R such that [δ(x), δ(x∗)] ∈ Z(R) for all x ∈ I , then R is a commutative Integral
domain.

Proof. By the assumption, we have

[δ(x), δ(x∗)] ∈ Z(R) for all x ∈ I. (2.6)

On linearization of (2.6), we get

[δ(x), δ(y∗)] + [δ(y), δ(x∗)] ∈ Z(R) for all x, y ∈ I. (2.7)

Replacing y by yh (where h ∈ Z(R) ∩H(R)) in (2.7), we obtain

([δ(x), y∗] + [y, δ(x∗)])δ(h) ∈ Z(R) for all x, y ∈ I.

Fact 2.1 gives that [δ(x), y∗] + [y, δ(x∗)] ∈ Z(R) for all x, y ∈ I or δ(h) = 0 for
all h ∈ Z(R) ∩H(R). First, we consider the case

[δ(x), y∗] + [y, δ(x∗)] ∈ Z(R) for all x, y ∈ I. (2.8)

Substitute y by yk (where k ∈ Z(R) ∩ S(R)) in above relation, we obtain

(−[δ(x), y∗] + [y, δ(x∗)])k ∈ Z(R) for all x, y ∈ I.

Using Fact 2.1 and the condition Z(R) ∩ S(R) 6= {0}, we get

−[δ(x), y∗] + [y, δ(x∗)] ∈ Z(R) for all x, y ∈ I. (2.9)

Adding (2.8) and (2.9), we get 2[y, δ(x∗)] ∈ Z(R) for all x, y ∈ I. This implies
that [x, δ(x)] ∈ Z(R) for all x ∈ I. Hence R is commutative (see [10, Theorem
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4]). Now, consider the second case δ(h) = 0 for all h ∈ Z(R) ∩ H(R), and
hence δ(z) = 0 for all z ∈ Z(R) by the Fact 2.5. Replacing y by yk (where
k ∈ Z(R) ∩ S(R)) in (2.7), we get

(−[δ(x), δ(y∗)] + [δ(y), δ(x∗)])k ∈ Z(R) for all x, y ∈ I.

This implies that

−[δ(x), δ(y∗)] + [δ(y), δ(x∗)] ∈ Z(R) for all x, y ∈ I. (2.10)

Combining (2.7) and (2.10), we obtain [δ(y), δ(x∗)] ∈ Z(R) for all x, y ∈ I. The
last expression gives [δ(y), δ(x)] ∈ Z(R) for all x, y ∈ I. Thus in view of Lemma
2.3, R is a commutative Integral domain.

Corollary 2.2. Let R be a prime ring with involution ′∗′ of the second kind such
that char(R) 6= 2 and I be a nonzero ∗-ideal of R. If δ is a nonzero derivation of
R such that δ(x)δ(x∗) ∈ Z(R) for all x ∈ I or δ(x∗)δ(x) ∈ Z(R) for all x ∈ I ,
then R is a commutative Integral domain.

Corollary 2.3. Let R be a prime ring with involution ′∗′ of the second kind such
that char(R) 6= 2 and I be a nonzero ∗-ideal of R. If δ is a nonzero derivation of
R such that [δ(x), δ(x∗)] + x ◦ x∗ ∈ Z(R) for all x ∈ I , then R is a commutative
Integral domain.

Proof. By the assuption, we have [δ(x), δ(x∗)] + x ◦ x∗ ∈ Z(R) for all x ∈ I.

Interchanging the role of x and x∗ and using the fact that [x, x∗] = −[x∗, x], we
find that [δ(x), δ(x∗)] − x ◦ x∗ ∈ Z(R) for all x ∈ I. On combining the last two
relations, we get [δ(x), δ(x∗)] ∈ Z(R) for all x ∈ I. Application of Theorem 2.1

gives the required result.

In [1], first author together with N. A. Dar proved the following theorem.

Theorem 2.2. Let R be a prime ring with involution ′∗′ such that char(R) 6= 2.
Let δ be a nonzero derivation of R such that δ([x, x∗]) = 0 for all x ∈ R and
S(R) ∩ Z(R) 6= (0). Then R is commutative.

In the following theorem, we prove the same result in a more general setting.

Theorem 2.3. Let R be a prime ring with involution ′∗′ of the second kind such
that char(R) 6= 2 and I be a nonzero ∗-ideal of R. If δ is a nonzero derivation
of R such that δ([x, x∗]) ∈ Z(R) for all x ∈ I , then R is a commutative Integral
domain.
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Proof. By the hypothesis, we have

δ([x, x∗]) ∈ Z(R) for all x ∈ I. (2.11)

Substituting x+ y for x in (2.11), we get

δ([x, y∗]) + δ([y, x∗]) ∈ Z(R) for all x, y ∈ I. (2.12)

Replacing y by yh (where h ∈ Z(R) ∩H(R)) in (2.12) and using it, we obtain

([x, y∗] + [x, y∗])δ(h) ∈ Z(R) for all x, y ∈ I. (2.13)

Taking x = y in (2.13), we arrive at

2[x, x∗]δ(h) ∈ Z(R) for all x ∈ I. (2.14)

Since char(R) 6= 2, so the last relation gives [x, x∗]δ(h) ∈ Z(R) for all x ∈ I .
In view of Fact 2.5, we have either [x, x∗] ∈ Z(R) for all x ∈ I or δ(h) = 0 for
all h ∈ Z(R) ∩H(R). If [x, x∗] ∈ Z(R) for all x ∈ I , then by Lemma 2.1, R is
commutative.
On the other hand if δ(h) = 0 for all h ∈ Z(R) ∩ H(R), then δ(k) = 0 for all
k ∈ Z(R) ∩ S(R). Replacing y by yk in (2.11) and using it, we get

2δ([y, x∗])k ∈ Z(R) for all x, y ∈ I.

This implies that δ([y, x∗]) ∈ Z(R) for all x, y ∈ I. By taking x = x∗, we have
δ([y, x]) ∈ Z(R) for all x, y ∈ I. By [4, Theorem 3.12], R is commutative. This
completes the proof of the theorem.

Corollary 2.4. Let R be a prime ring with involution ′∗′ of the second kind such
that char(R) 6= 2 and I be a nonzero ∗-ideal of R. If δ is a nonzero derivation of
R such that δ(xx∗) ∈ Z(R) for all x ∈ I or δ(x∗x) ∈ Z(R) for all x ∈ I , then
R is a commutative Integral domain.

Corollary 2.5. Let R be a prime ring with involution ′∗′ of the second kind such
that char(R) 6= 2 and I be a nonzero ∗-ideal of R. If δ is a nonzero derivation of
R such that δ([x, x∗]) + x ◦ x∗ ∈ Z(R) for all x ∈ I , then R is a commutative
Integral domain.

Theorem 2.4. Let R be a prime ring with involution′∗′ of the second kind such that
char(R) 6= 2 and I be a nonzero ∗-ideal of R. If δ is a nonzero derivation of R

such that δ(x◦x∗) ∈ Z(R) for all x ∈ I , then R is a commutative Integral domain.
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Proof. By the assumption, we have

δ(x ◦ x∗) ∈ Z(R) for all x ∈ I.

Linearize the above relation, we have

δ(x ◦ y∗) + δ(y ◦ x∗) ∈ Z(R) for all x, y ∈ I. (2.15)

Substitute y = yh in (2.15), where h ∈ Z(R) ∩H(R), we obtain

(x ◦ y∗ + y ◦ x∗)δ(h) ∈ Z(R) for all x, y ∈ I.

This implies that x ◦ y∗ + y ◦ x∗ ∈ Z(R) for all x, y ∈ I or δ(h) = 0 for all h ∈
Z(R)∩H(R). Firstly, we consider the case x◦y∗+y◦x∗ ∈ Z(R) for all x, y ∈ I .
In particular for x = y, we have 2(x ◦ x∗) ∈ Z(R) for all x ∈ I. Application of
Lemma 2.2 yields the required result.
On the other hand if δ(h) = 0 for all h ∈ Z(R) ∩ H(R), then by Fact 2.5 we
conclude that δ(k) = 0 for all k ∈ Z(R)∩H(R). Replacing y by yk in (2.15), we
get

(−δ(x ◦ y∗) + δ(y ◦ x∗))k ∈ Z(R) for all x, y ∈ I.

This implies that

−δ(x ◦ y∗) + δ(y ◦ x∗) ∈ Z(R) for all x, y ∈ I. (2.16)

Adding (2.15) and (2.16), we obtain 2δ(y ◦ x∗) ∈ Z(R). Hence δ(y ◦ x) ∈
Z(R) for all x, y ∈ I. Therefore R is commutative in view of [22, Theorem 7].

Corollary 2.6. Let R be a prime ring with involution ′∗′ of the second kind such
that char(R) 6= 2 and I be a nonzero ∗-ideal of R. If δ is a nonzero derivation of
R such that δ(x ◦ x∗) + [x, x∗] ∈ Z(R) for all x ∈ I , then R is a commutative
Integral domain.

Theorem 2.5. Let R be a prime ring with involution ′∗′ of the second kind such
that char(R) 6= 2 and I be a nonzero ∗-ideal of R. If δ is a derivation of R such
that δ([x, x∗]) + [x, x∗] ∈ Z(R) for all x ∈ I , then R is a commutative Integral
domain.

Proof. By the assumption, we have

δ([x, x∗]) + [x, x∗] ∈ Z(R) for all x ∈ I. (2.17)
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If δ = 0, then by Lemma 2.1 R is commutative. Now, assume that δ 6= 0. Lin-
earization of (2.17) gives that δ([x, y∗]) + δ([y, x∗]) + [x, y∗] + [y, x∗] ∈ Z(R) for
all x, y ∈ I. Taking y = y∗, we get

δ([x, y]) + δ([y∗, x∗]) + [x, y] + [y∗, x∗] ∈ Z(R) for all x, y ∈ I. (2.18)

Replacing y by yh in (2.18) and using it, we obtain ([x, y] + [y∗, x∗])δ(h) ∈ Z(R)

for all x, y ∈ I. By Fact 2.1, we have either [x, y] + [y∗, x∗] ∈ Z(R) or δ(h) = 0.

Consider the first case

[x, y] + [y∗, x∗] ∈ Z(R) for all x, y ∈ I. (2.19)

Taking yk for y in (2.19) (where k ∈ Z(R) ∩ S(R), we get

([x, y]− [y∗, x∗])k ∈ Z(R) for all x, y ∈ I. (2.20)

Multiplying by k to (2.19) and combining it with the obtained relation, we get
[x, y]k ∈ Z(R) for all x, y ∈ I. This implies that [x, y] ∈ Z(R) for all x, y ∈ I .
By the Fact 2.3, I ⊆ Z(R). Therefore in view of Fact 2.2, R is commutative.
Now, consider the second case δ(h) = 0 for all h ∈ Z(R) ∩ H(R). By Fact 2.5,
we have δ(z) = 0 for all z ∈ Z(R). Replacing y by yk in (2.18) using the fact that
δ(k) = 0, we obtain

δ([x, y])− δ([y∗, x∗]) + [x, y]− [y∗, x∗] ∈ Z(R) for all x, y ∈ I. (2.21)

Adding (2.18) and (2.21), we get δ([x, y])+ [x, y] ∈ Z(R) for all x, y ∈ I. Thus in
view of [16, Theorem 1] R is commutative.

Similarly, we can prove the following:

Theorem 2.6. Let R be a prime ring with involution ′∗′ of the second kind such
that char(R) 6= 2 and I be a nonzero ∗-ideal of R. If δ is a derivation of R such
that δ([x, x∗]) − [x, x∗] ∈ Z(R) for all x ∈ I , then R is a commutative Integral
domain.

Corollary 2.7. Let R be a prime ring with involution ′∗′ of the second kind such
that char(R) 6= 2 and I be a nonzero ∗-ideal of R. If δ is a derivation of R such
that δ([x, x∗]) + x ◦ x∗ ∈ Z(R) for all x ∈ I , then R is a commutative Integral
domain.

Theorem 2.7. Let R be a prime ring with involution ′∗′ of the second kind such
that char(R) 6= 2 and I be a nonzero ∗-ideal of R. If δ is a derivation of R such
that δ(x ◦ x∗) + x ◦ x∗ ∈ Z(R) for all x ∈ I , then R is a commutative Integral
domain.
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Proof. By the assumption, we have

δ(x ◦ x∗) + x ◦ x∗ ∈ Z(R) for all x ∈ I.

If δ = 0, then by Lemma 2.2 R is commutative. Now, assume that δ 6= 0. Lin-
earization of the above condition gives that

δ(x ◦ y∗) + δ(y ◦ x∗) + x ◦ y∗ + y ◦ x∗ ∈ Z(R) for all x, y ∈ I. (2.22)

Putting yh for y in (2.22), where h ∈ Z(R) ∩H(R), we get

(x ◦ y∗ + y ◦ x∗)δ(h) ∈ Z(R) for all x, y ∈ I.

This implies that (x ◦ y∗ + y ◦ x∗) ∈ Z(R) for all x, y ∈ I or δ(h) = 0. Consider
the first case (x ◦ y∗ + y ◦ x∗) ∈ Z(R) for all x, y ∈ I. In particular for x = y, we
have 2(x ◦ x∗) ∈ Z(R) for all x ∈ I . Since char(R) 6= 2 and in view of Lemma
2.2, R is commutative.
Now, consider the second case δ(h) = 0 for all h ∈ Z(R) ∩ H(R). By the Fact
2.5, we have δ(z) = 0 for all z ∈ Z(R). Replacing y by yk in (2.22), where
k ∈ Z(R) ∩ S(R), we obtain

(−δ(x ◦ y∗) + δ(y ◦ x∗)− (x ◦ y∗) + y ◦ x∗)k ∈ Z(R) for all x, y ∈ I.

Since Z(R) ∩ S(R) 6= {0}, and in view of Fact 2.1, we conclude that

−δ(x ◦ y∗) + δ(y ◦ x∗)− (x ◦ y∗) + y ◦ x∗ ∈ Z(R) for all x, y ∈ I. (2.23)

Adding (2.22) and (2.23), we obtain δ(y ◦ x∗) + y ◦ x∗ ∈ Z(R). This implies that
δ(y ◦ x) + y ◦ x ∈ Z(R) for all x, y ∈ I. Therefore R is commutative in view of
[22, Theorem 10]. This completes the proof of the theorem.

Similarly we can prove the following theorem:

Theorem 2.8. Let R be a prime ring with involution ′∗′ of the second kind such
that char(R) 6= 2 and I be a nonzero ∗-ideal of R. If δ is a derivation of R such
that δ(x ◦ x∗) − x ◦ x∗ ∈ Z(R) for all x ∈ I , then R is a commutative Integral
domain.

Corollary 2.8. Let R be a prime ring with involution ′∗′ of the second kind such
that char(R) 6= 2 and I be a nonzero ∗-ideal of R. If δ is a derivation of R such
that δ(xx∗)+xx∗ ∈ Z(R) for all x ∈ I , then R is a commutative Integral domain.

Corollary 2.9. Let R be a prime ring with involution ′∗′ of the second kind such
that char(R) 6= 2 and I be a nonzero ∗-ideal of R. If δ is a derivation of R such
that δ(xx∗)−xx∗ ∈ Z(R) for all x ∈ I , then R is a commutative Integral domain.
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