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Abstract

In this paper, we study the concepts of the Wijsman strongly Zo-lacunary
convergence, Wijsman strongly Z5-lacunary convergence, Wijsman strongly
Z>-lacunary Cauchy double sequences and Wijsman strongly Z3-lacunary
Cauchy double sequences of sets and investigate the properties and relation-

ships between them.
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1 INTRODUCTION

Throughout the paper N denotes the set of all positive integers and R the set of all
real numbers. The concept of convergence of a sequence of real numbers has been

extended to statistical convergence independently by Fast [10] and Schoenberg [23].

This concept was extended to the double sequences by Mursaleen and Edely
[16]. Cakan and Altay [S5] presented multidimensional analogues of the results

presented by Fridy and Orhan [11].

Nuray and Ruckle [20] independently introduced the same with another name
generalized statistical convergence. The idea of Z-convergence was introduced by
Kostyrko, Salat and Wilczyriski [14] as a generalization of statistical convergence
which is based on the structure of the ideal Z of subset of the set of natural numbers.
Das et al. [6] introduced the concept of Z-convergence of double sequences in a
metric space and studied some properties of this convergence. A lot of development

have been made in this area after the works of [8, 15, 17].

The concept of convergence of sequences of numbers has been extended by
several authors to convergence of sequences of sets (see, [2, 3,4, 19, 28, 29]). Nuray
and Rhoades [19] extended the notion of convergence of set sequences to statistical
convergence and gave some basic theorems. Ulusu and Nuray [26] defined the
Wijsman lacunary statistical convergence of sequence of sets and considered its
relation with Wiijsman statistical convergence, which was defined by Nuray and
Rhoades.

Kisi and Nuray [12] introduced a new convergence notion, for sequences of
sets, which is called Wijsman Z-convergence. Sever et al. [24] studied the con-
cepts of Wijsman strongly lacunary convergence, Wijsman strongly Z-lacunary
convergence, Wijsman strongly Z*-lacunary convergence and Wijsman strongly Z-
lacunary Cauchy sequences of sets. Diindar et al. [7] examinated the ideas of Wijs-
man strongly lacunary Cauchy, Wijsman strongly Z-lacunary Cauchy and Wijsman

strongly Z*-lacunary Cauchy sequences of sets. Nuray et al. [21] studied Wijsman
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statistical convergence, Hausdorff statistical convergence and Wijsman statistical
Cauchy double sequences of sets and investigate the relationships between them.
Nuray et al. [22] studied the concepts of Wijsman Z, 7*-convergence and Wijsman
7, I*-Cauchy double sequences of sets.

In this paper, we study the concepts of Wijsman strongly Z,-lacunary conver-
gence, Wijsman strongly Z5-lacunary convergence, Wijsman strongly Z,-lacunary
Cauchy sequences and Wijsman strongly ZJ-lacunary Cauchy double sequences of

sets and investigate the properties and relationships between them.

2 DEFINITIONS AND NOTATIONS

Now, we recall the basic definitions and concepts (See [1, 2, 3,4, 6,7, 8,9, 14, 18,
19, 22, 24, 26, 27, 28, 29]).

Throughout the paper, we let (X, p) be a metric space and A, A; be any non-
empty closed subsets of X.

For any point x € X, we define the distance from = to A by

d(x,A) = inf p(z,a).

acA

We say that the sequence { Ay} is Wijsman convergent to A if limy_,., d(z, Ay)
= d(z, A), for each € X. In this case we write W — lim A, = A.

We say that the sequence {A;} is Wijsman Cauchy sequence, if for ¢ > 0
and for each x € X, there is a positive integer ky such that for all m,n > ko,
|d(x, Ap) — d(z, Ay)

By a lacunary sequence we mean an increasing integer sequence 6 = {k,.}

<e.

such that kg = 0 and h, = k., — k.1 — o0 as r — oo. Throughout this paper the

intervals determined by 6 will be denoted by I, = (k,_1, k|, and ratio kfil will be

abbreviated by ¢;.
Let & = {k,} be a lacunary sequence. We say that the sequence {A} is
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Wijsman strongly lacunary convergent to A if for each x € X,

lim hi ,%: d(z, Ay) — d(z, A)| = 0.

In this case we write A, — A([WN],) or Ay HELYY

A family of sets Z C 2N is called an ideal if and only if

(i) € Z, (i1) Foreach A, B € 7 we have AU B € Z, (iii) Foreach A € T
and each B C A we have B ¢ 7.

An ideal is called non-trivial if N ¢ 7 and non-trivial ideal is called admissible
if {n} € Z foreachn € N.

A family of sets F' C 2N is called a filter if and only if

(i) 0 ¢ F, (ii) Foreach A, B € F wehave AN B € F, (iii) Foreach A € F
andeach B D A wehave B € F.

7 is a non-trivial ideal in N, then the set 7(Z) = {M C X : (3A € I)(M =
X\A)} is afilter in N, called the filter associated with Z.

Let 6 be lacunary sequence and Z C 2% be an admissible ideal. We say that
the sequence { A} is said to be Wijsman strongly Z-lacunary convergent to A or

Ny [Zyy]-convergent to A if for every € > 0 and for each = € X, the set

Ale,z) = {r eN: hiz |d(x, Ag) — d(x, A)| > 5}

" kel

belongs to Z. In this case, we write A, — A (Ny [Zi])

Let (X, p) be a separable metric space and Z C 2" be an admissible ideal. We
say that the sequence { A} is Wijsman strongly Z*-lacunary convergent to A if and
only if there exists a set M = {m; < mg < --- < my < ---} C N such that
M ={reN:myel,} e F(Z)foreachz € X,

.1
rliglo > Z |d(z, Apy,) — d(x, A)| = 0.

" kel,

In this case, we write A, — A (Np [Z}/]) -
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Let 0 be lacunary sequence. The sequence { A} is Wijsman strongly lacunary
Cauchy if for every ¢ > 0 and for each x € X, there exists ky = ko(¢) € N such
that

hi S ld(w, Ag) — d(z, Ap)] < <,
" k.pel,
for every k,p > k.

Let 0 be lacunary sequence and Z C 2" be an admissible ideal. The sequence
{A} is Wijsman strongly Z-lacunary Cauchy sequence if for every ¢ > 0 and for
each 2 € X, there exists kg = ko(c) € N such that

Ae,x) = {r eN: hiz |d(x, Ag) — d(z, Ay,)| > 5} eT.

" kel
Let (X, p) be a separable metric space, § be lacunary sequence and Z C 2" be
an admissible ideal. The sequence { Ay} is Wijsman strongly Z*-lacunary Cauchy
sequence if for every € > 0 and for each z € X, there exists a set M = {m; <

me < -+ <my <---} CNsuchthat M’ ={r e N:my € I,} € F(Z) and there
exists kg = ko(¢) € N such that

1
= D ld(w, Any) —d(x, A,)| <
" k,pel,
for every k,p > k.
The double sequence { A;; } is Wijsman convergent to A if

P — lim d(z,Ay;) =d(z,A) or lim d(x,Ay;) = d(z, A)

k,j—o00 k,j—00

for each x € X. In this case, we write W — lim A;; = A.
The double sequence § = {(k,, js)} is called double lacunary sequence if there

exist two increasing sequence of integers such that

ko=0, h,=k.—k,_1 =00 and jo=0, hy=7jyu—Ju_1 — 00 as r,u— oQ.
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We use the following notations in the sequel:
k'ru - krju, h'ru - hTBU7 I'ru - {(k’,j) : kr—l <k S k'r and ju—l <] S ju}y

Ju
and ¢, = —.
kr—l Ju—1

r

qr =

Let § = {(k,,js)} be a double lacunary sequence. The double sequence {Ay;} is

Wijsman strongly lacunary convergent to A if for each x € X,

rLanoo h Z Z d(z, Agj) — d(z, A)| = 0.

T k=kp_1+1 j=ju—1+1

) ) WaN,
In this case, we write Ay, [2—>9] A.

Throughout the paper we take 7, as a nontrivial admissible ideal in N x N.

A nontrivial ideal Z, of N x N is called strongly admissible if {i} x N and
N x {i} belong to Z, for each i € N.

It is evident that a strongly admissible ideal is admissible also.

={ACNxN: (Im(A) e N)(i,j > m(A) = (i,j) € A)}. Then, IV is
a nontrivial strongly admissible ideal and clearly an ideal Z; is strongly admissible
if and only if Z) C Z,.

We say that an admissible ideal Z, C 2"*N satisfies the property (AP2) if for
every countable family of mutually disjoint sets { A1, As, ...} belonging to Zs, there
exists a countable family of sets { By, Ba, ...} such that A;AB; € 79, i.e., A;AB,
is included in the finite union of rows and columns in N x N, for each j € N and
B =\J;Z, Bj € I, (hence B; € I, for each j € N).

Throughout the paper, we let Z C 2% be an admissible ideal, (X, p) be a
separable metric space and A, A, be any non-empty closed subsets of X.

We say that a double sequence of sets { Ay; } is Wijsman Z,-convergent to A, if
foreachx € X andforeverye > 0, {(k,j) € N x N: |[d(x, Ay;) — d(z, A)| > e} €
Z,. In this case, we write Zyy, — k’ljjinoo d(z, Ag;) = d(x, A).
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We say that the double sequence of sets { Ay, } is Wijsman Z;-convergent to A,
if there exists a set My € F(Zy) (i.e., N x N\My = H € T,) such that for each
reX

k‘glg%)o d(z, Ayj) = d(x, A).

(k,j)EM>
In this case, we write Zy;, — k:,ljiinoo d(z, Ag;) = d(x, A).
Lemma 2.1.(8], Theorem 3.3). Let {P,;}3°, be a countable collection of subsets
of N x N such that P, € F(Z,) for each i, where F(Z,) is a filter associate with
a strongly admissible ideal Z, with the property (AP2). Then, there exists a set

P C N x N such that P € F(Z,) and the set P\ P, is finite for all i.

3 MAIN RESULTS

Throughout the paper we take (X, p) be a separable metric space, § = {k,;} be a
double lacunary sequence, Z, C 2"*N be a strongly admissible ideal and A, Aj,; be

non-empty closed subsets of X.

Definition 3.1. The sequence {Ay;} is said to be Wijsman strongly T,-lacunary
convergent to A or Ny [ Ly, |-convergent to A if for every € > 0 and for each x € X,
the set

1

Ale,z) =q(r,u) e NxN: —
(&,2) {( ) e

S Jd(w, Ay) — d(z, A)| > 5} € Tp.

kj)Elry

In this case, we write Ay; — A (Ng [Iw,)) -

Theorem 3.2. If {A;} is Wijsman strongly lacunary convergent to A, then it is

Wijsman strongly Is-lacunary convergent to A.

Proof. Let {Ag;} is Wijsman strongly lacunary convergent to A. For every ¢ > 0
and for each x € X there exists kg = ko(g, x) € N such that

LS Jd(, Ay) — d(z, A)| < ¢,

fir (k,j)Elru
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for all k£, j > ky. Then, we have

T(x,e) = {(r,u)ENxN:hlﬁ Z |d(x,Akj)—d(x,A)|28}
TU(k7'

c{1,2,- ko—1}.

Since Z, is a strongly admissible ideal we have {1,2,--- kg — 1} € Z, and so
T (x,€) € Z,. This completes the proof. O

Definition 3.3. The sequence { Ay;} is Wijsman I} -lacunary convergent to A if and
only if there exists a set M = {(k,j) € N x N} such that M' = {(r,u) € N x N :
(k,j) € L} € F(I,) foreach x € X,
1
lim Z d(z, Ayj) = d(x, A).

7,U—00 hrhu (h3)el

In this case, we write A; — A (Ng (Z;‘Vz)) .

Definition 3.4. The sequence { A;} is Wijsman strongly L -lacunary convergent to
A if and only if there exists a set M = {(k, j) € N x N} such that M' = {(r,u) €
N x N: (k,j) € L.} € F(I,) foreach x € X,
1
lim > Jd(x, Ayy) — d(x, A)| = 0.

7, U—00 hrhu (heg)elre

In this case, we write A; — A (Ng [Iﬁ@]) )

Theorem 3.5. If the sequence {Ay;} is Wijsman strongly L;-lacunary convergent

to A, then { Ay;} is Wijsman strongly Ty-lacunary convergent to A.

Proof. Suppose that { Ay, } is Wijsman strongly Z;-lacunary convergent to A. Then,
there exists a set M = {(k,j) € N x N} such that M" = {(r,u) e NxN: (k,j) €
I,.} € F(Z,) foreach x € X,

1
" (k)€
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for every ¢ > 0 and for all k, j > ko = ko(e,z) € N. Hence, for every ¢ > 0 and

for each x € X we have

T(e,x) = {(r,u)GNXN:hlﬁ Z \d(:c,Akj)—d(:c,A)\ze}
T U(k

J)Elru
cHU (M’ N (({1,2, ., (ko — 1)} x N) U (N x {1,2, ..., (o — 1)}))),
for N x N\M' = H € Z,. Since Z, is an admissible ideal we have
HU (M' N (({1,2, ., (ko — 1)} x N) U (N x {1,2, ..., (o — 1)}))) e,
and so T'(¢,z) € Z,. Hence, this completes the proof. U

Theorem 3.6. Let T, C 2Y*N be a strongly admissible ideal with property (AP2).
If {Ay;} is Wijsman strongly Ty-lacunary convergent to A, then {Ay;} is Wijsman

strongly I -lacunary convergent to A.

Proof. Suppose that { Ay, } is Wijsman strongly Z,-lacunary convergent to A. Then,
for every ¢ > 0 and foreach x € X

1
T(e,x) = (ru) ENxN:— Y |d(x, Ayy) — d(z,A)| > e p € T,
hohy |,
(k,j)Elru
Put
1
Ty = {(r,u) eNXN:— Z |d(z, Ay;) — d(x, A)| > 1}
hT “ (k,j)Elru
and
T,={(rnu) eNxN: - < S Ja(z, Ayy) — d(z, A)| < ——
=45 (ru e N T, Agj) — alx, )
P P hehy 55 N p—1

forp > 2and p € N. Itisclear that T, N 7; = () fori # j and T; € Z, for
each i € N. By property (AP2) there exits a sequence of sets {Vp}peN such that
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T;AV; is included in finite union of rows and columns in N x N for each j and

V = |J V; € Z,. We prove that for each z € X

7=1

. 1
T,'lulgloo hohh Z |d(z, Ay;) — d(z, A)| =0,
T (kyg)E Dy

1
for M = N x N\V € F(Z,). Let § > 0 be given. Choose ¢ € N such that — < 4.
q
Then, for each x € X.

1 .
{<T7U)€NXN:hE Z |d(x,Akj)—d(x,A)|25}CUTj.
T (k,j)Elry J=1

Since T;AV/ is a finite set for j € {1,2,---, ¢ — 1}, there exists ny € N such that

q—1
<UT]-)ﬂ{(k,j)eNxN:kzno/\jzno}

Jj=1

q—1
= (UV})ﬂ{(k,j)ENXN:ano/\jan}.

j=1
If k,j > ngand (k,j) ¢ V, then

q—1 q—1

(k,5) ¢ | JV; andso (k) ¢ |J T3

j=1 j=1
Thus, for each x € X we have

1 1
— d(x, Ag;) — d(x, A)| < — < 6.
Dl Ay) — dw A) <

T (kyj)E Ly

This implies that

1
lim — > |d(z, Ay) — d(z, A)| = 0.

7,U—00 hrhu (k. Dreln

Hence, for each 2 € X we have Ay; — A (Np [Zy,]). This completes the proof.
L]
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Definition 3.7. The sequence {Ay;} is Wijsman strongly lacunary Cauchy if for
every ¢ > 0 and for each x € X, there exists ko = ko(e, ) € N such that

1

™ Y ld(z, Agy) — d(z, Ay)| <e,

“ (k’j)v(szt)el’f“

forevery k,j,s,t > k.

Definition 3.8. The sequence {Ay;} is Wijsman strongly Iy-lacunary Cauchy se-
quence if for each e > 0 and x € X, there exists numbers s = s(e,x),t = t(e,x) €
N such that

1

Ale,z) =q(r,u) e NxN: —
(€.a) {( ) =

D d(z, Agy) — d(z, A)| = 5} € To.

(k,j)Elru
Theorem 3.9. If { A;;} is Wijsman strongly lacunary Cauchy sequence, then { Ay;}

is Wijsman strongly 1,-lacunary Cauchy sequence of sets.
Proof. The proof is routine verification so we omit it. [

Theorem 3.10. If { Ay; } is Wijsman strongly Zy-lacunary convergent then { Ay} is

Wijsman strongly Ls-lacunary Cauchy sequence.

Proof. Let { Ay;} is Wijsman strongly Z,-lacunary convergent to A. Then, for every

€ > 0 and for each z € X, we have

T(%,x) = {(r,u) eNxN: hi_ Z d(z, Ayj) —d(xz, A)| > g} € Iy.

" (kg)Elru

Since 7 is a strongly admissible ideal, the set

€ 1 €
T° (51») — {(r,u) eNxN: = Z |d(x, Ap;) — d(z, A)| < 5}
(k,j)Elru
is non-empty and belongs to F'(Z,). So, we can choose positive integers r, u such
that (r,u) ¢ T'(5,z), we have
1 €
— > Jd(x, Aggy) — d(z, A)| < 5

r (kOij)e]ru
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Now, we define the set

B(e,x) = {(r, u) € NxN: hlﬁ Z d(z, Agj) — d(x, Akyjo)| > 5}.

(k.7),(ko,j0) Elru

We show that B(e,z) C T(5, z). Let (r,u) € B(e, v) then, we have

1
= Z ’d(l‘, Akj) - d($? Akojo)‘
hyhoy (k5),(kovjo) €l ra

e <

1 1
< = X ldlz Ayy) —d(z, A+ — X d(z, Aryje) — d(z, A)]
hrhu (k,j)EIry hrhu (ko,70)ELry
1

£
— d(z, Ay;) — d(x, A)| + =.
= (k,j)zelm| (2, Arj) — d(z, A)] + 3

This implies that

1
Py, *

3

D fd(x, Ay) — d(x, A)| > 3

J)Elru

and therefore (r,u) € T'(5, r). Hence, we have B(e, z) C T'(5, ). This shows that
{Ay;} is Wijsman strongly Z,-lacunary Cauchy sequence. O]

Definition 3.11. The sequence { Ay;} is Wijsman strongly I;-lacunary Cauchy se-
quence if for every ¢ > 0 and for each x € X, there exists a set M = {(k,j) €
N x N} such that M’ = {(r,u) € Nx N : (k,j) € I,,} € F(Z;) and a number
N = N(e,z) € N such that

1
3 E Z ‘d(l‘,Ak]) — d(Z’,ASt>| <€

T (kvj)v(svt)elmt

forevery k,j,s,t > N.

Theorem 3.12. If the double sequence {Ay;} is a Wijsman strongly I;-lacunary

Cauchy sequence then {Ay;} is a Wijsman strongly Iy-lacunary Cauchy sequence

of sets.
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Proof. Suppose that {Ay;} is a Wijsman strongly Z;-lacunary Cauchy sequence.
Then, for every ¢ > 0 and for each = € X, there exists aset M = {(k,j) € Nx N}
such that M’ = {(r,u) € Nx N : (k,j) € I,,} € F(Z2) and a number ky =
ko(e, z) € N such that

1

— > d(z, Ayy) — d(w, Ag)| < €
T (K,5),(8,8) €T,

for every k, j,s,t > k.

Let H = N x N\M'. It is obvious that H € 7, and
T(e,xz) = {(T, u) € NxN: ﬁ Yoo d(z, Agj) — d(x, Ag)| > 5}
(k). (5,0) €L

CHU(MWWHLZWA%—lﬂxNMMNx{Lzm(%—lﬂ»>
As 7, be a strongly admissible ideal then,
HU (M' A ({12, (ko — 1)} x N) U (N x {1,2, .., (ko — 1)}))) € Io.

Therefore, we have T'(c, z) € Z,, thatis, { A;; } is a Wijsman strongly Z,-lacunary

Cauchy sequence of sets. [
Combining Theorem 3.5 and Theorem 3.10, we have following Theorem:

Theorem 3.13. If the double sequence {Ay;} is a Wijsman strongly I3-lacunary
convergence then {Ay;} is a Wijsman strongly Iy-lacunary Cauchy sequence of

sets.

Theorem 3.14. If Z, C 2N is an admissible ideal with the property (AP2) then
the concepts Wijsman strongly L,-lacunary Cauchy double sequence and Wijsman

strongly I5-lacunary Cauchy double sequence of sets coincide in X.

Proof. If a sequence is Wijsman strongly Z;-lacunary Cauchy sequence, then it is
Wijsman strongly Z>-lacunary Cauchy sequence of sets by Theorem 3.12, where Z,

need not have the property (AP2).
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Now, it is sufficient to prove that a sequence {Aj;} in X is a Wijsman strongly
Z;-lacunary Cauchy sequence under assumption that it is a Wijsman strongly Z,-
lacunary Cauchy sequence. Let {Aj;} in X be a Wijsman strongly Z,-lacunary
Cauchy sequence. Then, for every € > 0 and for each z € X, there exists numbers

s = s(e,x),t =t(e,x) € Nsuch that

1
Ale,z) = {(r u) e NxN:— Z |d(z, Ay;) — d(x, Ast)| > 5} € I,.
Ry |, “
(k,j)Elry
Let
P = {<T7 u) € NxN: ﬁ Z(k,j)e[m |d(I7Al€J) - d(x7A5iti>| < %}a

(1=1,2,...),
where s; = s(1\i),t; = t(1\é). It is clear that P, € F(Z,), (i = 1,2,---). Since
7, has the property (AP2), then by Lemma 2.1 there exists a set P C N x N such
that P € F(Z,) and P\ P, is finite for all 7. Now, we show that

1
lim — Z |d(z, Agj) — d(x, As)| = 0,

k,n,s,t—o00
hT‘ hu (kvj)7(s»t)€IT‘u

for each z € X and for (k,j),(s,t) € P. To prove this, let¢ > 0 and m € N
such that m > 2/e. If (k, j), (s,t) € P then P\P,, is a finite set, so there exists
v = v(m) such that (k, j), (s,t) € P, for all k, j, s,t > v(m). Therefore, for each

zin X,
1 1
— D d(w, Ay) — d(x, As,,)] < ~
T (kg €l
and
1
hh Z |d(x7A5t)_d(x’ASmtm>| <=
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for all k, j, s,t > v(m). Hence, it follows that

1 1
Y Ay - d A € = Az, Ary) = d(@, Auy,)
T (khj)v(svt)e[?“u T (k7 ‘)EI”'U
1
+o—= |d(z, Ast) — d(@, Aspt,n)|
hyhoy,
(S,t)el'r'u
1 1 2
< —+—==
m m m
< e,

for all k, j,s,t > v(m) and for each z in X. Thus, for any ¢ > 0 there exists v = v(e)
such that for k, j, s,t > v(e) and (k, j), (s,t) € P € F(Z2)

1
e (k7j)7(51t)617‘u

for each x in X. This shows that the sequence { A;} in X is Wijsman strongly Z5-lacunary

Cauchy sequence of sets.
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our iteration scheme is faster than some known iterative algorithms for the
contractive mapping. We support analytic proof by a numerical example in
which we approximate the fixed point by a computer using Matlab program.

We also prove convergence results for the nonexpansive mappings.

1 Introduction

Let D be a nonempty subset of a real normed space F and let 7 : D — D be
a mapping. Throughout this article, we assume that N is the set of all positive
integers. We consider that F is real Banach space and F'(7") denote the set of fixed
points of T, i. e., F'(T) = {x € D : Tx = x}. Now, let us recall some known

definitions.

Definition 1. A mapping T : D — D is said to be:

(i) L-Lipschitzian, if there exists a constant L > 0, such that ||[Tx — Tyl <
L||z —yl|| forall z, y € D,

(ii) nonexpansive [S]if |[Tx — Tyl < |z —y||, forallz, y € D,

(iii) contraction , if constant p € (0, 1) such that || Tz — Ty|| < pllz —y||, for all
x, Yy €D.

We recall some important well-defined iterations as follows :

(1) Picard iteration
rn=x €D,

(1.1)
Tpi1 = Tx,, neN

The iterative method (1.1) is also called a Richardson iteration or method of

successive substitution.
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(i1) Mann iteration [8]

rn=x €D,
(1.2)
Tpi1 = (1 —ap)x, +a,Tx,, neN,
where {a, } is a real sequence in (0, 1).
(i11) Ishikawa iteration [7]
r1n=x €D,
Tpt+l = (1 - an)xn + anTyna (13)
Yn = (L =by)x, + b, Tx,, neN,
where {a, } and {b, } are real sequences in (0, 1).

(iv) Noor iteration (9]

;
I‘lzl'eD,

Tpy1 = (1 - an)xn + anTyn’ (1 4)

2n =1 —cp)rn +cTa,, neN,

\

where {a,}, {b,} and {c,} are real sequences in (0, 1).
(v) Agarwal et al. iteration 2]

ryn=x €D,
Tpt+1 = (1 - an)Txn + anTyny (15)
Yn = (L =by)x, + b, Tx,, neN,

where {a,} and {b, } are real sequences in (0, 1). They showed that the this

process converges at a rate that is the same as that the Picard iteration and

faster that the Mann iteration for contractions.
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(vi) Abbas and Nazir iteration [1]

(
r1=x €D,
Tp+1 = (1 - an)Tyn + anTZna

(1.6)

\
where {a,}, {b,} and {c,} are real sequences in (0, 1). They showed that
this process converges faster than the Agarwal et al. [2] iteration process.

The following definitions about the rate of convergence are due to Berinde [3].

Definition 2. Let {«,} and {,} be two sequences of positive numbers that con-

verge to o and (3 respectively, and assume that there exists

[:hmw

n—oo |3, — B]

(1) If 1 = O, then it can be said that {c,} converges faster to o than {5, } to B.
(2)If 0 < | < oo, than it can be said that {c, } and {5,,} have the same rate of

convergence.

Definition 3. Suppose that for two fixed point iteration process
[ttn = @*|| < o, V€N,

”)‘n _q*H < Bn, Vn €N,

are available, where {«,,} and {,} are two sequences of positive numbers (con-
verging to zero). If {a,} converges faster than {f3,}, than {yu,} converges faster
than {\,} to q*.

In this consequence, whenever we talk about the rate of convergence, we refer

to given by the above definitions.
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The foregoing discussion arose a natural question :

Recently, Thakur et al. [15] posed the following question :
Question 1. Is it possible to develop an iteration process whose rate of convergence
is faster than the Abbas and Nazir iteration ?

As an answer, they introduced the following iteration process:
rn=x €D,
Tpi1 = (1 —an)Txy + anT yn,
Yn = (L= by)zn + b, T 2,

(20 = (1 —cp)zn+cnTx,, neN,

(1.7)

where {a,}, {b,} and {c,} are real sequences in (0, 1). They showed that this

process converges faster then at a Abbas and Nazir iteration (1.6) for contractions.
Having this in mind, we pose the following question:

Question 2. Is it possible to develop an iteration process whose rate of convergence

is even faster than the iteration (1.7) ?

As an answer, we introduced the following iteration process:
(
r1=x €D,
Tp+1 = (1 - an)TZn + @nTyna
Yn = (1 - bv’L)Zn + bnTZna

(1.8)

\
where {a,}, {b,} and {¢, } are real sequences in (0, 1).
The following Example of Thakur et al.[15]:

Example 1.1. Ler E = Rand D = [1, 50]. Let T : D — D be a mapping defined
by T (z) = Va? — 8z + 40 forall x € D. Choose a,, = 0.85, b, = 0.65, ¢, = 0.45
with the initial value x; = 40.

From this Example 1.1 we compute that our iteration scheme (1.8) converges at
a rate faster then the existing iteration process mentioned above.
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The iterative sequence generated by the proposed method converges at
q" = 5.00000000000000. The above comparison table also shows that the iterative
sequence generated by the proposed iterative method (1.8) converges faster than

some well known iterative methods (see Figure 1 below).
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Figure 1.1: Convergence analysis of iteration schemes

We recall the following. Let R = {z € E : ||z|| = 1} and let E* be the dual of E,
that is, the space of all continuous linear functional f on E. The space £ has:

(a) Gateaux differentiable norm if

t _
i S+ 1 = Dzl
t—0

exists for each z and y in R.
(b) Fréchet-differentiable norm (see, e.g., [14]) if for each x in R, the above limit

exists and is attained uniformly for y in £, and in this case it is also well know that

1
lz+gl* < (g, J(@))+5 [l +d(llgll), ¥, g € E, (1.9)

N =

(g, J@)+5lal” <
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where .J is the Fréchet-derivative of the functional ;|| . [[*atz € E, (., .) is the
pairing between F and E* and d is an increasing function defined on [0, co) such
that lim 2 = 0.

t—0
(c) Opial condition [10] if for each sequence {z,} in F such that {x,} converges

weakly to x implies that
lim sup ||z, — x| < lim sup ||z, — y|], (1.10)
n—oo n—o0

forally € E withy # x.

2 Preliminaries

Definition 4. A mapping T : D — E is demiclosed at y € FE if for each sequence
{zp,}inDandx € E, x, — v and Tx, — yimply thatx € D and Tz = y.

Definition 5. [13] A mapping T : D — D, where D is a convex subset of Banach
space F, is said to satisfy condition (1) if there exists a nondecreasing function
f 10, c0) = [0, o0) with f(0) = 0, f(r) > 0 forall v € (0, co) such that
|z — Tz|| 2 f(d(x, F(T))) forall x € D where d(x, F(T)) = inf{||z — ¢*|| :
¢ € F(T)}

The following Lemmas play an important role in this paper:

Lemma 2.1. [12] Suppose that F is a uniformly convex Banach space and 0 <
p < t, < 1lforalln € N. Let {x,} and {y,} be two sequences of E such that

r hold for some r > 0. Then lim,, . ||z, — yu|| = 0.

Lemma 2.2. [4] Let E be a uniformly convex Banach space and let D be a nonempty
closed convex subset of E. Let T : D — D be a nonexpansive mapping, then I —T

is demiclosed with respect to zero.
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3 Convergence theorems

In this section, we give some convergence theorems using our iteration scheme
(1.8).

Theorem 3.1. Let D be a nonempty closed convex subset of a uniformly convex
Banach space E. Let T : D — D be a nonexpansive mapping on D. Let {x,} be
defined by the iteration scheme (1.8) where {a,},{b,} and {c,} are in [¢, 1 — €|
foralln € N and for some € € (0, 1). Assume F(T) is nonempty and ¢* € F(T),

then lim,,_,, ||z, — Tz,| = 0.

Proof. As ¢* € F(T). From (1.8), we get

[#n1 = ¢ = [|(1 = an) T 20 + anTyn — |
< (1 —=an)ll2n — ¢l + anllyn — ¢
< (1= an)[(1 = ea)llzn = ¢l + callzn — ¢°l]
+an [(1=ba)ll20 — ¢*|| + bnllzn — @]
< (1 =an)llzn — ¢l + anllzn — ¢
< (1= ap)llzn = ¢l + an[(1 = )20 — ¢*|| + callzn — ¢"]l]

3.1
< (1 =an)llzn — ¢*[| + anllzn — ¢°|
= o — ') 62)
Thus lim,, .« ||z, — ¢*|| exists. Assume that lim,, ., ||z, — ¢*|| = a. Again, from
(1.8)
lzn = ¢*ll < (1 = ea)llllzn = "l + cnllon = ¢l = llzn — 4",
implies that
lim sup ||z, — ¢*|| < a. (3.3)

n—oo
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Similarly, we have

lyn = ¢"ll < (1= bu)ll2n = ¢l + bullza — @[] = ll20 — 7]

< (L=c)llen = || + callen = ¢ = llzn = ¢,
implies that
lim sup ||y, — ¢*|| < o (3.4)
n—o0

Since 7 is nonexpansive mapping, it follows that

[T2n =] < llan — ¢7||

1T yn — || < llym — "
and
1T 20 — g || < |20 — "

Taking lim sup on both sides, we take

lim sup || Tz, — ¢*|| < a, (3.5)
n—oo
lim sup || Ty, — ¢*]| < «, (3.6)
n—oo
and
lim sup || 7Tz, — ¢"]| < a (3.7)
n—oo
Again,

o= Tim [z = ¢l = T [[(1 = 02)(T20 = ) + an(Ty — ¢°)],
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by Lemma 2.1, we have

nh_{rgo T zn— Tynl = 0. (3.8)
Now
[2ns1 = 'l = [|(1 = an) Tz + anTyn — ¢"||
< Tz = q*ll + anl Tyn = Tnll,
yields that
a< limniilgo Tz — ¢"|, (3.9)
so that (3.7) and (3.9) give
lim T2, — q*|| = . (3.10)

On the other hand, we take

1720 = @l < N T 20 = Tyall + 1Ty — @l < 1T 20 — Tynll + lyn — ¢"1l,
which yields

a < limniilgo lyn — |- (3.11)
From (3.4) and (3.11) we get
Tim(lgn — ¢"[| =

Similarly, we have

1Tyn = ¢ < Ty = Tanll + 1 T20 — "l < [Ty = Tnll + Iz = ¢"1,
which yields

a <lim inf |z, —¢"||. (3.12)
n—oo
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so that (3.3) and (3.12)
lim ||z, — ¢"[| = a.
n—oo
Thus
a = lim ||z, — ¢
n—oo
= lim [|(1 = cp)an + e Ton — '

= lim [|(1 = ep) (@0 — @) + (T — ¢*)|,

n—o0

by using Lemma 2.1, we have
lim ||z, — Tz,|| = 0.
n—oo
This completes the proof. 0

Lemma 3.2. Assume that the conditions of Theorem 3.1 are satisfied. Then, for any
4, ¢ € FT, limn — oo(z,, J(qf — ¢3)) exists. In particular,
(p—q, J(gf —¢)) =0forall p, q € wy,(x,), the set of all weak limits of {x,}.

Proof. The proof of Lemma 3.2 is similar to the proof of Lemma 2.3 of Khan and
Kim [6]. [

Theorem 3.3. Let D be a nonempty closed convex subset of uniformly convex Ba-
nach space E and let T : D — D be a nonexpansive mapping on D. Let {z,} be
defined by the iteration scheme (1.8) where {a,}, {b,} and {c,} are in [¢, 1 — €|
foralln € N and for some € € (0, 1). Suppose F(T) is nonempty and ¢* € F(T).
Assume that any of the following conditions hold:

(i) E satisfies Opial’s condition,

(ii)E has a Fréchet-differentiable norm.

Then {x,} converges weakly to a fixed point of F(T).
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Proof. Let ¢* € F(T), then lim,, . ||z, — ¢*|| exists by Theorem 3.1. Now, we
prove that {x,, } has unique weak subsequential limit in F'(7"). Let x and \ be weak
limits of the subsequences {x,,} and {z,, } of {z,}, respectively. From Theorem
3.1, lim,, o ||z, — Tx,]| = 0 and I — T is demiclosed with respect to zero by
Lemma 2.2, so we obtain 7y = p. In similar manner, we have A € F/(T).

Next, we show that the uniqueness.

Now, first assume that condition (i) is true. If ;1 # A, then , from Opial condition,

lim ||z, —p| = lm ||z, —pl| < im ||z, = Al| = limn — oof|z, — Al
n—o0 nj—00 N —00
= lim |[[z,, = Al < lm |[[z,, —pl = lim ||z, — p].

This is a contradiction, so . = .

Next, assume condition (ii) holds. From Lemma 3.2, (p — ¢, J(q¢i — ¢5)) = 0 for
all p, q € wy(x,). Hence, || — A||? = (u— X\, J(u—A)) = 0 implies u = ).
Consequently, {z,,} converges weakly to a point of F'(7) and this completes the
proof. [

Theorem 3.4. Let D be a nonempty closed convex subset of uniformly convex Ba-
nach space E and let T : D — D be a nonexpansive mapping on D. Let {x,} be
defined by the iteration scheme (1.8) where {a,}, {b,} and {c,} are in [e, 1 — €]
foralln € N and for some € € (0, 1). Suppose F(T) is nonempty and q¢* € F(T).
Then {x,} converges to a point of F(T) if and only if liminf,, ., d(x,, F(T)) =0
where d(x,, F(T)) = inf{||x —¢*|| : ¢ € F(T)}.

Proof. Necessity is obvious. Assume that lim inf,, ., d(x,, F(T)) = 0. As proved
in Theorem 3.1, lim,, . ||z, — w|| exists for all w € F(T), therefore lim,,_,
d(z,, F(T)) = 0 exists. However by assumption, lim inf,, ., d(x,, F(T)) = 0.
We will show that {x,, } is a Cauchy sequence in D. As lim,, ., d(z,, F(T)) =0,

for given € > 0, there exists m in N such that for all n > my,

d(zn, F(T)) < %
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In particular, inf{[|z,,, —¢|| : ¢ € F(T)} < §. Therefore, there exists ¢ € F(T)

such that [|z,, — q|| < §. Now, for m, n > my,
[Znsm = Tall < Tnem — all + llg = 2all < 2[|zm, — gl <e

Therefore, {x,} is a Cauchy sequence in D. As D is closed subset of a Banach

space E, so that there exists a point ¢ € D such that lim, , z, = ¢*. Now
lim, o d(x,, F(T)) = 0 gives that lim,_,.. d(¢*, F(T)) = 0,i. e, ¢" €
F(T). [

Theorem 3.5. Let D be a nonempty closed convex subset of uniformly convex Ba-
nach space E and let T : D — D be a nonexpansive mapping on D. Let {x,} be
defined by the iteration scheme (1.8) where {a,}, {b,} and {c,} are in [¢, 1 — €|
foralln € N and for some € € (0, 1). Suppose F(T) is nonempty and ¢* € F(T).
Let T satisfy Condition (I), then {z,,} converges strongly to a fixed point T .

Proof. We proved in Theorem 3.1 that
lim ||z, — Tz,| = 0. (3.13)
n—oo

From Condition (I) and (3.13), we get

lim f(d(z,, F(T)) < ILm |xn, — Tax,|| =0,

n—oo
i. e., lim, o0 f(d(zn, F(T))=0. Since f : [0, co) — [0, 00) is a nondecreasing
function satisfying f(0) =0, f(r) > 0 for all » € (0, co), hence we have

lim d(z,, F(T))=0.

n—o0

Now all the conditions of Theorem 3.4 are satisfied, therefore , by its conclusion

{z,,} converges strongly to a point of F'(T"). O
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4 Comparison results

In this section we show that our iteration scheme (1.8) converges faster than other

known scheme.

Theorem 4.1. Let E be a norm space and let D be a nonempty closed convex subset
of E. Let T : D — D be a contraction with a contraction factor p € (0, 1) and
fixed point ¢*. Let {u,,} be defined by the iteration scheme (1.7) and {x,} by (1.8),
where {a,},{b,} and {c,} arein|e, 1 —¢€| foralln € Nande € (0, 1). Then {z,}
converges faster than {u,}. That is, our iteration scheme (1.8) converges faster
than (1.7).

Proof. As proved in Theorem 3 of Abbas and Nazir [1]

[tni1 = @[] < p"[1 = (1 = plabe]"luy — ¢"[|, VneN.

Let
a, = p"[L — (1= p)abe]"||ur — q*||.
Now we get,
120 — ¢" [ = |1 = cp)wn + cuTan — ¢
< (1 - Cn)”‘rn - q*H + panajn - q*H
<1 -1 =pea)llzn — |,
so that

[yn — "l = |(1 = bu)z + 65T 20 — ¢
< (1 =ba)llzn = ¢l + pbullze — ¢l
< (1= (1= p)bn)llzn — ¢*]|
< (L= (1= p)bu)(1 = (1= p)ea)lzn — g |-
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Thus
|Znt1 — ¢l = |1 — an) T 20 + anTyn — ¢ ||

< (1= an)pllzn — || + panlly. — q°||

< (T =an)p(l = (1= p)en)|lzn — ¢ || + pan(l — (1 = p)bu)(1 — (1 = p)cy)

[z — 47|

< pl(1 = an)(1 = (1 = p)en) + an(l = (1 = p)bp) (1 = (1 = p)en)lflzn — ¢
< p(1= (1 =p)en)[(1 = an) + an(l = (1 = p)bp)][lzn — ¢
< p(1 = (1= p)en)[(1 = (1= planbn)]llzn — 7|
< pl(1= (1 =plen) = (1= (1= p)ea) (1 = planbn)]|lzn — "]
< o[l = (1= p)en — (1 = p)anby + (1 = p)*anbucy)]llzn — ¢
< o[l = (1= p)anbucn — (1 = p)anbacy + (1 = p)*anbuca)]llzn — ¢
= pll = (1= p)(I + planbncnlllzn — ¢"||
= p[l = (1 = p*)anbucnlllzn — ¢’
Let
Ba = p"[1 = (1 = p*)abe]"|lz1 — ¢"]|.
Then
B _ L= (1= pPabe"las — '
ay /1)"[1 | (1 . ZZ?:]\QM ;*(\J\*H
e e MRLEURES
Consequently {z, } convergence faster than {u,, }. O

Now, we present an example which shows that our iteration scheme (1.8) con-
verges at a rate faster than iteration process mentioned above in (1.7), (1.6), (1.5),
(1.4),(1.3), (1.2), (1.1).
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Remark 4.2. (1) Sahu [11] has already given an example that Agarwal et al. iter-
ation process (1.5) converges at a rate faster than both Picard iteration (1.1) and
Mann iteration process (1.2).

(2) Abbas and Nazir [1] established that the iteration process (1.6) convergence
faster than Agarwal et al. iteration process (1.5) and Picard iteration (1.1).

(3) Thakur et al.[15] established that the iteration process (1.7) converges faster
than mentioned above iteration process in (1.6), (1.5), (1.4),(1.3), (1.2), (1.1).

Example 4.3. Let E = R be the set of real numbers, D = [1, 50| and let a,,, b,, c,
be three sequences in [0, 1] define by

a, = 0.75, b, = 0.55, ¢, = 0.35.

Let T : D — D be an operator defined by T = /1% — 4x + 20 for all x € D.
Suppose initial value v1 = 40. The corresponding iteration process, mentioned
above in (1.7),(1.6), (1.5), (1.4),(1.3), (1.2), (1.1) are respectively given below.
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The iterative sequence generated by the proposed method converges at
q" = 5.00000000000000. The above comparison table also shows that the iterative
sequence generated by the proposed iterative method (1.8) converges faster than

some well known iterative methods (see Figure 2 below).

15

40 5

35 18
a —+—  Picard
30 | '..i- —&—  Mann
Uiy
25 | %‘.'l, ——  Ishikawa

L] —*—  Noor

W
20 A f?r"{
Lk —+—  Agrawal
. N
15 "\i‘j. —— Abbas
r“‘,k,x..b
10 A '.__‘_L'g Thakur
'% Our [teration

Figure 2: Convergence analysis of iteration schemes

5 Conclusion

In the foregoing discussion, our iterative scheme is proposed which enable us to
prove rate of convergence faster then some known iterative algorithms for con-
tractive mapping. We prove existence and some weak and strong convergence re-
sults for nonexpansive mappings in real Banach space. A comparison of our it-
erative scheme (1.8) to some known iterative algorithms such as (1.7),(1.6), (1.5),
(1.4),(1.3), (1.2), (1.1) reveals the fact that the iterative sequence generated by our

iterative scheme converges to common fixed point faster than to iterative sequence
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generated by some known iterative algorithms as shown in Example 4.3 and Exam-

ple 1.1 above.
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function g when generalized relative type (respectively generalized relative

weak type) of f and g with respect to another entire function h are given.

1 Notation and Preliminary Remarks.

We denote by C the set of all finite complex numbers. Let f be an entire function
defined on C. We use the standard notations and definitions in the theory of entire

functions which are available in [16]. In the sequel the following two notations are

used:
log[k] xr = log <log[k_” yc) fork=1,2,3,---;
log%z = =z

and
exp[k] r = exp (exp[k_” x) fork=1,2,3,---;

exp[o} T = .

Taking this into account the order (respectively, lower order) of an entire

function f is given by

log!? M
oy — limsup-2& 24 (1)
r—00 log r

log!? M () )

( respectively Ay = ]
ogr

The rate of growth of an entire function generally depends upon order (lower
order) of it. The entire function with higher order is of faster growth than that of
lesser order. But if orders of two entire functions are same, then it is impossible
to detect the function with faster growth. In that case, it is necessary to compute
another class of growth indicators of entire functions called their fypes. So the type

oy of an entire function f is defined as:
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Definition 1. The type o; and lower type G ¢ of an entire function f are defined as

log M log M
of = lim supog—m and o= liminf og f(r)

r—00 rPf 7—00 ’r‘pf

,O<,0f<OO.

In this connection Datta and Jha [4] introduced the definition of weak type of

an entire function of finite positive lower order in the following way:

Definition 2. [4] The weak type 7 and the growth indicator T ¢ of an entire function
f of finite positive lower order \¢ are defined by

_ . log M (r) .. Jdog My(r)
Tf_hf"n—iljpT and Tf—llgéglf oy 0<Af<o0.

Let us recall that Sato [14] defined the generalized order and generalized

lower order of an entire function f, respectively, as follows:
U

log M
py = limsup—og f(r) <

r—00 log r r—00 log r

log! M
respectively /\Bf] = lim jnfog—f(r>>

where [ is any positive integer. These definitions extended the order ps and lower
order \s of an entire function f since these correspond to the particular case p?] =
pr and )\502} = Ay

An entire function f of is said to be of regular generalized growth if its gen-
eralized order coincides with its generalized lower order, otherwise f is said to be
of irregular generalized growth.

The following two definitions are natural consequence of the above study:

Definition 3. [/0] The generalized type a}l] and generalized lower type ng] of an
entire function f are defined as
log"™! M (r)

0
rPs

logl=1 pr
ol = lim Supog—mfm and ) = lim inf
r—00 ’]”pf r—00

,O<p¥]<oo.

(2]

where | > 1. Moreover, when | = 2 then of and 5?]

are correspondingly denoted

asoyandTy.
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Similarly, extending the notion of weak type as introduced by Datta and Jha
[4], one can define generalized weak type to determine the relative growth of two
entire functions having same non zero finite generalized lower order in the follow-

ing manner:

Definition 4. [10] The generalized weak type T}” for 1 > 1 of an entire function f

of finite positive generalized lower order /\Ef] are defined by

logl=4 s
T][cl] = lim inf—og H / (r)
r—00 ’f’)\f

7O<)\Bf]<oo.

Also one may define the growth indicator Tgf] of an entire function f in the following

way :

logl=1 ps
Fgf] = lim S.up—Og / (T>

A
r—00 rf

For | = 2, the above definition reduces to the classical definition as established by

Datta and Jha [4]. Also T¢ and Ty are stand for 7}2} and ??].

Given a non-constant entire function f defined in the open complex plane C,
its maximum modulus function My is strictly increasing and continuous. Hence
there exists its inverse function .M]?1 : (|f (0)],00) = (0, 00) with 811_)110101\/[]71 (s) =
00.

Then Bernal {[1], [2]} introduced the definition of relative order of f with
respect to g, denoted by p, (f) as follows:

pg (f) =inf{p>0:Ms(r) < M, (r*) forall r > ro(u) > 0}

‘ log Mg_le (r)
= lim sup .
r—00 10g T

This definition coincides with the classical one [15] if ¢ = exp 2. Similarly,

one can define the relative lower order of f with respect to g denoted by A, (f) as

log MM
A (F) = liming 28 Me M (1)

700 log r



Some results on generalized relative type and generalized relative weak type- - 47

To compare the relative growth of two entire functions having same non zero
finite relative order with respect to another entire function, Roy [13] introduced the

notion of relative type of two entire functions in the following way:

Definition 5. [13] Let f and g be any two entire functions such that 0 < p, (f) <
oo. Then the relative type o, (f) of f with respect to g is defined as :

aq (f)
= inf {k >0: Mg (r) <M, (k:rpg(f)) for all sufficiently large values ofr}
Mg My (r)

= lim supW .

r—00

Similarly, one can define the relative lower type of an entire function f with respect
to an entire function g denoted by G, (f) as follows :
My My (r)

7, (f) = liminf—2Z

r—00 rpg(f) ’ 0< Py (f) <00

Analogously, to determine the relative growth of two entire functions having
same non zero finite relative lower order with respect to another entire function,
Datta and Biswas [9] introduced the definition of relative weak type of an entire
function f with respect to another entire function g of finite positive relative lower

order A, (f) in the following way:

Definition 6. [9] The relative weak type 7, (f) of an entire function f with respect
to another entire function g having finite positive relative lower order \, (f) is de-

fined as:
My My (r)
o . . g
o () = It
Also one may define the growth indicator 7, (f) of an entire function f with respect

to an entire function g in the following way :

_ . My Mg (r)
T, (f) = hmsupW, 0< A (f) <o0.

T—00
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Considering g = exp z one may easily verify that Definition 5 and Definition
6 are coincide with the classical definitions of type (lower type) and weak type of
entire functions respectively.

For entire functions, the notions of the growth indicators such as order and
type (weak type) are classical in complex analysis and during the past decades,
several researchers have already been exploring their studies in the area of compar-
ative growth properties of composite entire functions in different directions using
the classical growth indicators. But at that time, the concepts of relative order; rel-
ative type and relative weak type of entire functions and as well as their technical
advantages of not comparing with the growths of exp z are not at all known to the
researchers of this area. Therefore the studies of the growths of entire functions in
the light of their relative order, relative type and relative weak type are the prime
concern of this paper. In fact some light has already been thrown on such type of
works by Datta et al. in [3], [5], [6], [7], [8], [9] and [10]. Actually in this paper
we study some relative growth properties of entire functions with respect to another
entire function on the basis of generalized relative type and generalized relative
weak type.

Lahiri and Banerjee [12] gave a more generalized concept of relative order in

the following way:

Definition 7. [12] If | > 1 is a positive integer, then the |- th generalized relative
order of [ with respect to g, denoted by p[gl] (f) is defined by

pg] (f) =inf {u>0: My (r) < M, (exp[l_l] ™) forallr > 1o (u) >0}
. log"! MMy (r)
= lim sup d :

r—00 log r
Clearly py (f) = py (f) and pey,. (f) = py.
Likewise one can define the generalized relative lower order of f with respect
to g denoted by )\g} (f) as

log! M 1M (r)
1 ..
/\[g] (f) = liminf g :

r—00 log T
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Further to compare the relative growth of two entire functions having same
non zero finite generalized relative order with respect to another entire function,
Datta et al [10] give the definition of generalized relative type and generalized rel-
ative lower type of an entire function with respect to another entire function which

are as follows :

Definition 8. [/0] The generalized relative type a&” and generalized relative lower

type Egﬁ of an entire function f are defined as

log[l*” MM, (r)
4 = limsu g 7

ag (f> r%oop rpg](f)

Ty lim i flog[l_l] Mg_le (r)
7 (/) = limn rP5 ()

and

, 0 <Pl (f) < oo,

where | > 1.

For [ = 1, Definition 8 reduces to Definition 5.

Similarly to determine the relative growth of two entire functions having
same non zero finite generalized relative lower order with respect to another en-
tire function, one may introduce the concepts of generalized relative weak type of
an entire function with respect to another entire function in the following manner:

Definition 9. [/0] The generalized relative weak type T_(El] (f) of an entire function

f with respect to another entire function g having finite positive generalized relative
lower order )\g] (f) is defined as:

log!"=Y MM, (r)
[ — lim inf g f
T, imin ,
s () =limn A )
where | > 1.
Further one may define the growth indicator fg] (f) of an entire function f with
respect to an entire function g in the following way :
log!" =Y MM (r)
=y =1 g f
T = limsu
o (/) =limsup P (1)

!
,O<)\g}(f)<oo,

where | > 1.
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Definition 9 also reduces to Definition 6 for particular [ = 1.

Now a question may arise about the values of relative type (respectively rel-
ative weak type) of f with respect to an entire function g when generalized relative
type (respectively generalized relative weak type) of f and g with respect to another
entire function h are given. In this paper we intend to provide this answer under

some certain condition.

2 Lemma.

In this section we present some lemmas which will be needed in the sequel.

Lemma 1. [11] Let f, g and h be any three entire functions such that 0 < \}" (f) <
o (f) < ocoand 0 < /\gn] (9) < pgn] (9) < oo where m is any positive integer.
Then

N [m] [m)
- { AMCI. 0N Y. WO
M (9) ey (9) M (9)
The following two lemmas are immediately follows from Lemma 1:
Lemma 2. [11] Let f, g and h be any three entire functions such that 0 < \}" (f) <

P (f) < coand 0 < )\gn} (9) = pgn] (g) < oo where m is any positive integer.
Then

[m] [m]
) ) and \ = A (f) .
P = ey D= e

Lemma 3. [11] Let f, g and h be any three entire functions such that 0 < \J" (f) =
P (f) < oo and 0 < /\%m] (9) < pZn} (9) < oo where m is any positive integer.

Then ] -
NG oy A
Pg(f)— )\Zn(g) d Ag(f) pg”] (g) .
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3 Main Results.

In this section we state the main results of the chapter. We include the proof of
the first main Theorem 1 for the sake of completeness. The others are basically
omitted since they are easily proven with the same techniques or with some easy

reasoning.

Theorem 1. Let f, g and h be any three entire functions such that 0 < A" (f) <
[m]

P (f) < ocoand 0 < /\En} (9) = p;,  (g) < oo where m is any positive integer.
Then

lﬁgn] (f)]pg”](g) <7, (f) < min lagn] (f)]% [m&m] (f)]%
[m] =9 = ;
o (9)

[a&i’” (f)] Kl

7" (g)

ng} (f)] T <o () < lagm] (f)] (o)
[m] -9 - ’
Oy (9)

Proof. From the definitions of agm] (f) and Egn] (f) we have for all sufficiently

large values of r that

My M () < exp 1 { (o () 4+2) 7O ]
i.e., My(r) < M, [exp[m’” {(a,[lm] (f)+ 5) rp[hm}(f)}] (3.1)

and

MMy () 2 exp U { (B () — ) "

ie., My (r) > M, [exp[m’l] {(5271} (f) — 5) 'r’p[hm](f)}] : (3.2)

Also for a sequence of values of r tending to infinity we get that

M, My (r) > exp™! {(0,[;"} (f) - 5) rpg:n](f)}
]

i.e., My (r) > M, [exp[m’” {(a,[zm] (f)— 8) rfh (f)H (3.3)
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and

M, My (r) < expl™ ! {(5271] (f) + 5) r,,;;nl(f)}

i.e., My (r) < M, [exp[m_u {(5?1 (f)+ 5) rp;meH . (3.4)

Similarly from the definitions of U}[Lm] (g9) and Egn] (g) it follows for all sufficiently

large values of r that

M, M, (r) < exp™~1 {(U;[Lm] (9) + 6) r"glm](g)}
)+e

i M, (r) < My |exptm {(U;Lw (g )Tp;:'%g)H
(m]

r 1
log[m—l] P ey, (9)

ie, My(r)> M, || —/——— , (3.5)
(o1 () +2)
—1 [m—1] § (Flm] o™ (g)
M, "My (r) > exp {(Uh (g)—&?)rh }
e 020 o ()0
logm—1] e (9)
i, My (r)< M, | [ —2—"_ (3.6)
(ﬁn ') - 6)
and for a sequence of values of 7 tending to infinity we obtain that
—1 [m—1] [m] il (g)
M My (1) = exp™ 1 (o (g) — &) ro" @)}
e 00230 o (1)) )
logm—1] i (9)
i, My(r) < M, | [ —2— " , 3.7)
(ol (9) -~ ¢)
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M; ' M, (r) < expt™ " { (52” H9) + s) rﬂi"”(g)}

e 201530 o (0 +2) )

1
[m]

log[mfl] r ey, (9)

i.e., My (r) > M, W

(3.8)

Now from (3.3) and in view of (3.5) we get for a sequence of values of r tending

to infinity that
MMy (r) > MMy, [exp™ 0 L (I (1) — &) ")
; f(r)> ; My |exp o, (f)—¢])r
i.e., M;le (T)

1
logm=4 explm—1i {(0;[;%] (f) — 8) rpw(f)} A g)

(o () +¢)

> MM,

_ <U}[lm] (f) - 5) 7 e p[?:]]m
1.€., Mg_le (T’) > S Ph (@
(o1 () +¢) |
1
o MM () (Uzﬁm] (f) = 6) o)
e Al = [m]
kI CAUED)

As ¢ (> 0) is arbitrary, in view of Lemma 2 it follows that

1

MMy (r [m] @
lim sup g f< ) Th ()|
. ol ()]
ie., og(f) > T 3.9
Loy, (9) ]
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Analogously from (3.2) and in view of (3.8) it follows for a sequence of values of

r tending to infinity that
;0002 28,40 3 50 2) )
ie., My My (r)

log[m_l] exp[mfl] { <6£’Lm] (f — 5) Tﬂ[hm](f)} P;:n] (9)
> MM,

[m]

RO o)
. TpL’” (9)

ie., M "My (r) >

p[hm] (9)

M My (r) _(55”] (f)—e
[m]

= [m]
o T (@) +e)
rry (9 L -

1.€.,

Since € (> 0) is arbitrary, we get from above and Lemma 2 that

MM () [5 (5]
lim sup—~ s (r) > T ()|
r—00 frpg(f) Egn} (g)
- 2y ()] A
ie., og(f) > — (3.10)
LT (9)_

Again in view of (3.6) we have from (3.1) for all sufficiently large values of r that
M My (r) < MMy, [exp[m_” {(U;Em] (f)+ a) rf’%m](ﬂ}]

ie., M7 My (r)

g
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I (Ul[lm} (f) +€> o) p%:]](f)
ie., M "My (r) < - e @)
(o (9) <)
1
B m 1 bl
o MMy (r) (02}(1’)%) N
i.e., o < ]
riim]ig (U" (9) _€>-

Since € (> 0) is arbitrary, we obtain in view of Lemma 2 that

~ _ 1
M_le (7“) agm] p[hm](g)

g

lim sup
r—00

(

<
Tﬂg(f) — | =[m] (
(

- 1
)

ie., aq(f) < (3.11)

Again from (3.2) and in view of (3.5) we get for all sufficiently large values of r

that
020530 e o )
ie., My My (r)
log!™ =1 explm—1l { (Egn] () - 5) et f)} s
> MM,

(o (9) +2)

1
A Mo
T

P (@

ie., MMy (r) >

g

Py, (9)

MM ()| @m] (f)—e
[m]

>
P () ((7,[Lm] (9) +¢

i.e.,

[m]

rrp (9 -

)
)
) [m]
)
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As € (> 0) is arbitrary, it follows from above and Lemma 2 that

[m] (9)

MMy (r) _ [
lim inf —Z ~ (ff( ) > U’[l ](f)
e r Loy (9) ]
— 1
—[m] Tl
) N o Py (9)
ie, 7, (f) > |2 (F) | (3.12)
Loy, (9) ]

Also in view of (3.7), we get from (3.1) for a sequence of values of r tending to

infinity that
My My (r) < MM, [exp[m ! {( " (f) +6> r”%m](f)}]

ie., MMy (r)

'(Ugm] (f) +5>_ o) [["L]](f)
ie., My "My (r) < - @)
(ol (9)~ <) |
1
m 7
[ () ]
i.e., - < —
r:jﬁm]ig L <U’[“‘ | (9) = 6) .

Since € (> 0) is arbitrary, we get from Lemma 2 and above that

M=YM. (r [ _[m] 7] [7n](g)
lim inf —2 (f]:( ) < Th ()
e 73" (9)
S g][lm] (f)— pL’"l](g)
ie., a4 (f) < T (3.13)
L%h (9)_
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Similarly from (3.4) and in view of (3.6) it follows for a sequence of values of r

tending to infinity that

M) 30,08, el { (o 1)) )
i.e., MMy (r)

1
log!™ =1 explm—1] {<E[f:n] (f) + ) o (f)} olo)

pgj’”(m o
A (g)

ie., My "My (r) <

[m]

My "My (r) _ _@?ﬂ (f) +e @

Ay T <5£:n] (g) — 5)

[m]m)

1.€.,

As e (> 0) is arbitrary, we obtain from Lemma 2 and above that

MMy (r)  [E™ ()] e

g

lim inf
r—00

(

<
rﬂg(f) - E[WL] (
(

[m] (9)

ie., Ty(f) < |2 (3.14)

Thus the theorem follows from (3.9), (3.10), (3.11), (3.12), (3.13) and (3.14) .
O

Theorem 2. Let f, g and h be any three entire functions such that 0 < \;* (f) =
P (f) < coand 0 < /\[m] (9) < pgﬂ} (9) < oo where m is any positive integer.
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Then
[55" ' >] T () < i [62”] (f)] T [aiz“] (f)] T
oy (9) T 7" (9) )
=m0 [0 ] e ml ey T
< max [i?m} (f)] E“‘]U ) U}[Lm} <f)] El]() S?g (f) < [i?m] (f)] L]() .
7, (9) o, (9) a, (9)

Proof. From the definitions of ?Zn] (f)and T}[Lm] (f) we have for all sufficiently large

values of r that

M; (r) < M, [exp[m 1 {(TL () + 5) MWWH , (3.15)

My (r) > M, [exp[m—u { (T}Lm} (f) — 5) rALT'”(f)H (3.16)
and also for a sequence of values of 7 tending to infinity we get that

M, (r) > M, [exp[m_l] { (?[m] (f) — 5) et >}] , (3.17)

M; (r) < My, [exp[m—” { ( Il (f) 4 5) A ]<f>H . (3.18)

Similarly from the definitions of ?%"] (g9) and T,[Lm] (g) it follows for all sufficiently

large values of r that

Mh_lMg (r) < eXp[m_l] {( ) Al (g }
) +

i.e., My (r) < My [exp™ {( v (g > H

log[m—l] A[m](g)
i.e., My (r) > M, ol , (3.19)
(71 (9) +<)
M, My (r) > expl™ {(T}[Lm] (9) — 6) r)‘gwm](g)}
023 o () )|
Jogl™ 1 N
ie., My (r) < M, - (3.20)
(7 (9) <)
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and for a sequence of values of 7 tending to infinity we obtain that

M, M, (r) > expt™ ! {(ﬂzn] (9) — 6) TAE:H](Q)}

02 (- )
I T
loglm—1] g
ie., My(r) < M, _;’j ! , (3.21)
(7 (9) <)
M My () < expt™ (71" (g) + 2) 700}
ire My (r) < My [exp!™ 1 { (7" (g) ) @ 1]
logl™ 1 il (g)
i.e., My (r) > M, il (3.22)
(7 (9) <)
O

Now using the same technique of Theorem 1, one can easily prove the con-
clusion of present theorem by the help of Lemma 3. Therefore the remaining part
of the proof of present theorem is omitted.

Similarly in the line of Theorem 1 and Theorem 2 and with the help of Lemma
2 and Lemma 3, one may easily prove the following two theorems and therefore

their proofs are omitted:

Theorem 3. Let f, g and h be any three entire functions such that 0 < A\ (f) <

o (f) < oo and 0 < )\gn} (9) = ,02 % (g9) < oo where m is any positive integer.
Then

[m] W W —[m] [m]
T (f) | @ . < min [ (f)] A (9) [ 1 (f)] A g
LZ’“ <g>] = o] A

1 1
[ ] (f) )\[m](g) _[m] f m](g) ?En} (f) A[hm](g)
7" (g) g Tﬁ" (9)

< max [
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Theorem 4. Let f, g and h be any three entire functions such that 0 < ' (f) =
P (f) < ocoand 0 < Aﬁj”] (9) < pEf” (9) < oo where m is any positive integer.
Then

R S - 1 1
[T,E"” (f)] O " (f)] o rﬁ’:“ (f)] )

— ] <m1n ]
Th (9) T (9)

" (9) (g>_ - T A )

Now we state the following two theorems (proofs are left to the interested
readers) which can easily be carried out in the line of abve theorems and with the

help of Lemma 1:

Theorem 5. Let f, g and h be any three entire functions such that 0 < \J* (f) <
P (f) < ocoand 0 < )\Zn] (9) < pgn] (9) < oo where m is any positive integer.
Then

_iml (] T ol .
max lo—ﬁn} (f)] e [ [m] f ] () (f)

7 (9) (9)

—1 1
< min [T%:]] (f)] o | [i’ﬁ:}} (f)] Tl | [:%:]] (f)] I g)
T (9) 7" (9) 7" (9)
and
o ) F
—[m] S Og f)
h (9)
1 1 1
[U[hm](f)] o) [Uém](f)] o™ (g) {T}[Lm](f)‘| NI
<mind L@ L@ ") ’

1 1 1
2 [ e |7 [ eame [ | e e
=) ") "7 @)
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Theorem 6. Let f, g and h be any three entire functions such that 0 < A\ (f) <

P (f) < ocoand 0 < Aﬁj”] (9) < pEf” (9) < oo where m is any positive integer.
Then

7" (9)
and
AT S ST T T
o, (f) | e |7 (f) | e [T (f) | e
max [ ?m] ] ’[—}ET —?T <o ()
0y, (g) T (g) 7 (g)
< min [Tf[l«m] (f)] W [w] %
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1 Introduction

The Szdsz-Mirakyan operators are generalization of Bernstein operators to infinite
intervals. Szasz [9] introduced linear positive operators on non-negative semi axes

known as Szdsz-Mirakyan operators

Su(f;x) :e—nmz(?kx))'kf(g) ,xt € Ry =[0,00),n €N (1.1)
k=0 '

f € C(Ry), the space of real-valued functions continuous on Ry. Many generaliza-

tions of these operators have been studied by different researchers([1, 2, 3, 4]).

Schurer([7, 8]) type generalization was given for these operator (1.1) as follows.

e = (0 + p k

Smp(f ( ) Z (ﬁ) , T € RQ
k=0
=1[0,00),n € N,p € Ny = NU{0}.

Firlej and Rempulska [5] introduced a modified Szasz-Mirakyan operators:

5. (i) = f(O) N .1 Z (na)2+ ; (Qk—i— 1) |

1 +sinh(nz) 14 sinh(nx) £ (2k + 1)! n

x € Ry,n € N. (1.2)

In [6] a Voronovskaya-type theorem was given for these operators.

We consider the following Szdsz-Mirakyan type operators of Schurer-type

An,p(fﬂ?):
/(0) ! = (0t pa) 2k 41
T (T ) Tr e e & @+ ( n )<1-3>

forx € Ryp,n € N,p € Ny, f € Cp, the space of real-valued functions uniformly
continuous and bounded on R,,. Clearly these are linear positive operators. For p=0

these operators reduce to the operators given in (1.2).
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Let
CL={feCgnNC*Ry): f;f"€Cg}

and let the norm in C'p be given by the formula
/Il = sup [f(z)]-
z€Ry
In the present paper we discuss approximation properties as well as Voronovskaya
type theorem for these Schurer ([7, 8]) type modification of Firlej and Rempulska
[S] type Szasz-Mirakyan operators.

2 Auxiliary Results

In this section we give some basic results on the operators A,, ,. We will use the

following notations

sinh((n + p)x)

and S((n+p)z) = 1 + sinh((n + p)z)

2.1

cosh((n + p)z)
TWHWﬁﬁ:1+gm«n+M@

where sinh x and cosh x are elementary hyperbolic functions.

Thus we can see that

0<S((n+pzx)<land0<T(n+p)x) <1l,neN,peNyzeR, (2.2)

Firstly we give some properties of functions 7'((n + p)x) and S((n + p)z).

Lemma 1. Forn € N,p € Ny, z € Ry, T((n+p)zx) and S((n+p)x) have following

propetrties.

lim T'((n +p)z) =1 (2.3)

n—oo

lim S((n+p)x) = (2.4)

n—o0

lifaz>0
0Oifz=0
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lim nz[T((n + p)x) — 1] =0 (2.5)
n—oo
lim [S((n + p)z) = T((n + p)z)] =0 (2.6)
lim nz[S((n+p)z) — T((n+p)z)] =0 (2.7
lim n*2°[S((n + p)x) — T((n + p)x)] =0 (2.8)
n—oo
Proof. By (2.1) we get
. . 1+ 6—2(n+p)3?
A T((n +p)z) = lim {1 + 2e-nime — 62(n+p)z] =1
From (2.1) clearly for z = 0, S((n + p)z) = 0. For z > 0 we have
. . 1— e—Q(?’L—l—p)CE
dim S((n+p)z) = lim L gy <>} =1
and
lim,, 00 nx[T'((n+p)x)—1]
B 2nx 2nx _ 0
o e2(n+p)z + 2e(ntp)z _ 1 o 2+ e(ntp)z _ g—(ntp)z o
Again from (2.1)
—2
[S((n + p)SL’) - T((n + p)ﬁ)] = 2t 4 Qp(ntp)r — |
So that
. ) -2
Jim [S((n +p)z) = T((n +p)o)] = lim e e —7 = ©
lim nz[S T — i 2 —0
M na[S((n + p)e) = T((n+ p)z)] = lim, e2(n+p)e 4 Qp(ntp)r — ]
and
—2n2z?
S92 _ 5 _
Jim n*27[S((n + p)a) = T((n+p)2)] = lim —cme et =1 =0
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Lemma 2. For eachn € N,p € Ny and v € Ry we have,

App(liz) =1, (2.9)
Anp(t;z) = (n np )IT((n +p)) (2.10)
At = CEDD g gy Dy
Ay (5 1)

= % {((n+p)2)’ + (n+p)z}T((n + p)z) + 3((n + p)z)*S((n + p)z)]
2.12)

and
App(t2) = & [{((n + p)a)t + 7(n + p)2)}S((n + p)a)

+{6((n+p))’ + (n+ PR} T((n+p)a)] . @13)

Proof. The first equality can be easily obtained by the very definition of the opera-
tors (1.3). Again from (1.3)

1
1t sinh((n + p)x)

1
1 sinh((n + p)x)

A, p(t; ) ((n + p)a)*+ (2k: + 1>

(2k + 1)! n

((n +p)a)**
n(2k)!

e 10

i

0

_(ntp 1 (0 + p)a)*
~n 1+sinh((n+p)a) Z (2k)!

(n+p)z _cosh((n + p)x)
n 1+ sinh((n+ p)x)

U JLE N

k=0
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o 1 = ((n+p)x)? 2k 1)
Anplt50) =775 2 o) ( n >

B 1 L ((n+p)a) 1 {(2k)(2k + 1) + (2k + 1)}
- 2GR =

B 1 i((n+p 2k+1+i n+p 2k+1
1 +sinh((n + p)z) “—~ n?(2k - 1)! — n?( 2k:

<<n+p>x>2§:<<n+p>x>%+l n+px§: n+p % ]

£ 2k + 1)

“ 1 +sinh((n + p)z)
Fm+m@2

n2

smMW+M@+7T%xmmMW+M@}

_(n+p)?

S((n+p)x) + ——=—=T((n+p)z)

Similarly again
1
1 + sinh((n + p)z)

1
"1 +sinh((n + p)z) &

Mg

An,p(t:}; x) =

e ()

((n +p)a)*
n3(2k + 1)!

k=0

Mg

{ (2k +1) 2k)(2k — 1) + 3(2k + 1)(2k) + (2k + 1)}
|

) [t s
1 + sinh((n + p)x) n3

—i—?)((%f)x)? x sinh((n + p)az)}

cosh((n + p)x)

= [{@+p)2)* + (4 D)) T(( + )

+3((n+p)a)S((n + p)a)|
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. 1 o ((n 4 p)a) 2k 41!
Appl(t ,:c)—HSinh((ner)x); (2k + 1)! ( n )
1 o ((n+p):l?)2k+1

:1+sinh((n+p)$) ; nt(2k +1)! {(2k+1)(2k)(2]€—1)

(2k — 2) + 6(2k + 1)(2k)(2k — 1) + T(2k + 1)(2k) + (2k + 1)}

_ | {(n+po) +7((n+p)a)?}
T T 7 [ A h((n +p)z)
I CICESLEIURSIY B

= [{(+ p)a)* + 7+ P2} S (4 p)a)

+{6((n +p))* + (n+ p)2}T((n + p)a)]

]
Using above Lemma 2, we can easily get the following lemma.
Lemma 3. The following equalities hold for all x € Ry, p € Ny and n € N:
px
App(t —zz) =z[T((n+p)x) — 1] + ET((R +p)x) (2.14)

Anp((t — )% 2) =

P (S(n-+ p)a) — T((n+ )

22[S((n + p)x) — 2T((n + p)z) + 1] +
e

+n2

S((n+p)x) + %T((n +p)z) + %T«n +p)z) (2.15)
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An,p((t - x)4; )

—a'[7S((n + p)a) — 8T((n + p) + 1] + 4o [% T Z_}

(Sl -+ p)a) = T((+ 9ol = 2= |24 22 4 22 (50t g

n
Ta? 2p 2p?
=Tt e+ o |14 2] (Sl +p)a) = (0 + ) + 2
7 1 , 10z%p  62%p® px
{6x+5} S((n+p)x)+ﬁ {33: + - + 5 +F T((n+p)x)
(2.16)
Lemma 4. For every p € Ny, x € Ry, we have
(i) nh_glo nA,,(t —z;z) = px (2.17)
(i) lim nA,,((t—2)%z) =2 (2.18)
(i31) lim n*A, ,((t — )% x) = 32° (2.19)

n—oo

Proof. From (2.14) we have
nA, ,(t —z;z) =nz[T((n + p)z) — 1] + pzT((n + p)x)
thus using (2.3),(2.5)

lim nA, ,(t — z;2) = lim (nz[T((n + p)x) — 1] + pzT((n + p)x)) = px

n—oo n—oo

From (2.15) we get

nA,,((t — )% x)

=a[nz{S((n +p)z) = T((n +p)x)} +na{l = T((n + p)z)}]

+200”[S((n + p)a) = T(n + p)a)] + == S((n + p)a) + «T((n + p)x)

+ %T((n +p)x)
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Using (2.3)-(2.7) of Lemma 1 we get the desired result.
Finally from (2.16)

nzAn,p((t - x)4;x)
=2?[Tn*e*{S((n + p)x) — T((n + p)z)} + n*z*{1 = T((n + p)x)}]
+4(4p2® — 32%) x [nx(S((n + p)x) — T((n + p)z))]

43 4 1832 142
+ 12p2x4+ﬁ—24x3p— P + Tz° + xp}
n n

% [S((n + p)a) = T((n + p)a)] + + [3352 Loz

102%p  62%p®  px
T3
n n n

T((n+p)z)+ ? {61: + H S((n+p)x)

Again using (2.3)-(2.8) of Lemma 1 we obtain (2.19). []
Now we give some results in the lines of results proved in [6].

Lemma 5. For n,r € N and fixed p € Ny, x > 0

IS ((n +p)r) = T((n +p)a)] < 2rl(n +p)~" (2.20)
2|1 =T ((n+p)z)| <2rl(n+p)~" (2.21)
21 =S((n+p)x)| <2rl(n+p)~" (2.22)

(2.23)

Proof. By definition of S(nx) and T'(nx), we have forevery n € N, € N,p € Ny
andx >0

2'|S((n+p)r) = T((n+p))l

= 2 e_(n_‘—p)w < 27 < 927! —r
B 2+ e(ntp)z _ o—(n+p)z — p(ntp)z +1 - T‘.(?’L + p)
22" 20"

"1 = S((n+ p)x)| <2rl(n+p)™"

T 94 entn)z — o—(ntp)z < clntp)z {1 =
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similarly

21 =T((n+p)x)| < 2rl(n+p)~"

]

Lemma 6. The following inequality holds for every fixed p € Ny and xy € Ry and
foralln € N

8(1 + xo + p) + pro(1 + pxo)

An,p((t - xO)Q; 1:0) S n

(2.24)

Proof. From (2.15)

Anp((t = 20)*; 20) < 25| S((n + p)zo) — T((n + p)zo)| + 25|11 — T((n + p)zo)|

2 1'2 2x2
1S ((n -+ pao) = T((n + phao)| + 230

. S((n+ p)ao)|
+ Z2UT((n+ pao)| + 2 IT((0 + p)ao)

Using (2.2), (2.20) and (2.21)

2
A p((t = x0)%20) <2(2!1(n+p)72) +2(21(n +p) %) +2(2!(n + p)’z)gp
L PG %o P
n? n n?

Since for all n € N and fixed p € Ny, n%p < % and n—12 < % we obtain

8(1 + xo + p) + pro(1 + pxo)
n

An,p((t - zO)Q; $0) S

3 Convergence of Operators A,

In this section we prove the convergence of the operators A, ,( f) to the function f

with the help of the well known Korovkin’s theorem.
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Theorem 1. Let f € C[0,00)] and fix p € Ny then A, ,(f)) converge uniformly to
fon[0,00).

Proof. From Lemma 1 and 2 we get

lim A, ,(e;x) = e;i(x)
n—oo

fori =0,1,2, where ¢;(x) = z'.

On applying Korovkin’s theorem we get the desired result. 0

4 Voronovskaya Type Theorems

In this section we give Voronovskaya-type theorem for the operators A, ,. Firstly

we give a lemma that will help in establishing the Voronovskaya-type theorem

Lemma 7. Let x( be a fixed point in Ry and p(t; x¢)is a given function belonging

to C'g and such that

lim o(t;20) = 0 (lim o(t;0) = o>

t—x0 t—0t

Then for each fixed p € Ny

lim A, ,(p(t; 20); 20) = 0.

n—oo

Proof. By (1.3) we have for n € N and fixed zyp > 0,p € Ny

e\ 1 = ((n+p)zo)* ! [(2k+1
Anp(p(t: 20); 20) = 1 + sinh((n + p)zo) kzzo (2k + 1)! ( n ,a:o)

Choose € > 0. Since ¢(+;z) € Cp, there exists a positive constant 6 = J(¢) such
that
p(tizo)] < 5, if [t — o] <6, 20
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Moreover there exists a positive constant M such that |o(t; zo)| < M for all ¢ > 0.

Set ob 1 1
P:{keN()I’ + — X <5}

and 2k +1
Q:{keNO:' n+ —xoza}.

Then for every n € N

1 ((n + p)xg)*+t 2k +1
Anp(p(t;20); 20)| < . ;
| 717(90( «TO) «TO)‘ 1 +Slnh((n+p>$0) kezp (2]{?—1— 1)| (2 n Zo
N 1 > ((n+p)we)® | (2k+1 .
1 + sinh((n + p)xo) ot (2k + 1)! Y o To
=X+ 2 4.1
Then
n+px02’“+1 2k +1
Y, — .
! (1+sinh n+p)xg)) z}; (2k +1 7 n
(n+ p)ao) e
= 4.2
<2(1—|—smh ((n +p)xo)) kz:; 2/~c—|—1 2 (42)
" ! ((n-+ phry
Yo <M 4.3
2= (1 + sinh((n + p)zy)) Z (2k +1)! (4-3)

ke@

. o B 2 .
Since | 2L — 4] > § implies 1 < §2 (2E£L — 4)”, we can write,
n 0 n

Z n+p l’o 2k+1 2k +1 2
-
(1 + sinh(( n+px0 (2k+1 n 0

keQ
S M5_2An7p((t — Io) ,Io)

Yo < M2

which by Lemma 6 gives,

M(8(1 + zo + p) + pro(1 + pxy))
no2

2y <



A Schurer Type Generalization of Szasz-Mirakyan Type Operators 77

It is obvious that for given ¢ > 0,0 > 0, M > 0 and zy > 0, we can choose

no = no(e;0; M; x0) € N such that for all natural numbers n > ng

M (8(1 + zg + p) + pxo(l + pao)) <€
no2 2
Hence

Yo < g forn > ng 4.4)

So from (4.1), (4.2) and (4.4) we get

lim A, ,(¢(t;20); o) = 0.
n—oo
This completes the proof. ]

Now we give the Voronovskaya -type theorem.

Theorem 2. If f € C%, then for every fixed v € Ry, p € Ny one gets
. x
T n{Awy(f50) — f()} = prf () + 5 (). @5)
Proof. Let xg € Ry, p € Ny be fixed. Then by Taylor formula for every ¢ € Ry,

f(@t) = f(xo) + f'(2o)(t — o) + %f”(%)(t —20)? + Y (t;20)(t — 20)%,  (4.6)

where ¥ (t; z9) € Cp and lim ¥(t;x9) =0 (lim W(t;0) = O)
t—xo t—0+
Applying the operator A,, , on both sides of (4.6), we obtain
n
n[A,p(fi20) — f(20)] =f'(20)nAnp(t — 203 20) + §f”(x0)An,p((t — )% )

+ A, (Y (t; 20) (t — 20)%; 20) 4.7)

By Holder’s inequality we get

1/2

(1A ($(t; 20) (E—20)% w0)| < { Anp (W2 (8 20);.20) 2 {02 A, (8 — 70)%; 70) }
4.8)



78 M. A. Siddiqui, Rakesh Tiwari and Nandita Gupta

Since the function p(t; ) = ¥?(t; 1), t > 0 satisfies the assumption of Lemma 7,
we have
lim A, ,(1*(t; 70); 70) = 0 4.9)

n—oo

From (2.19) , (4.8) and (4.9) we get

lim nA, ,(¥(t; z0)(t — 20)*; 20) = 0 (4.10)

n—oo

So we get from (4.7), (4.10), (2.17) and (2.18)

Jim [ A, (fi20) — f(x0)]

= (o) { tm ndp(t = i z0) | + 5" o) { i Ay o))}

=pao'(x0) + I (o)

This completes the proof. ]
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1 Introduction and Main Results

Let T' = [—m, 7]. A measurable 2m—periodic function w : 7" — [0, oo] is called
a weight function if the set w™!({0, c0}) has the Lebesgue measure zero. Given a

weight function w and a measurable set e we put

w(e) = /w(a:)da:. (1.1)

We define the decreasing rearrangement f*(¢) of f : 7" — R with respect to the

Borel measure (1.1) by

fot)=inf{r >0: w{x e T |f(x)| >71} <t)}.

w

Let ¢t > 0. Then the avarage function of f is defined as follows:

= / [ty

Let ¢t > 0. Then the avarage function of f is defined as follows:

o =g [ s

Letl < p,g<ocand f: T — R be a2m-periodic measurable function. Then
the weighted Lorentz spaces LP9(T') is defined [5, p.20], [1, p.219] as the set of all

measurable functions f such that || f||,,.. < oo where

i\ o
11l oy = {fr 11l = (/T(f**(t))"tpyt) }

If p = ¢, LP9(T) turns into weighted Lebesgue space LP (1) [5, p.20].
By E,(f)rr« we denote the best approximation of f € LPI(T) by trigonometric

polynomials of degree < n, i.e.,

En(f)[f,q = inf ||f - Tkaq,w )
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where the infimum is taken with respect to all trigonometric polynomials of degree
k <n.

The weight functions w used in the paper belong to the Muckenhoupt class
A,(T) [11] which is defined by

1 / 1 - Pt .
sup — [ w(x)dx (— /w P (x)dx) <oo,p =——,1<p< oo,
1] J; 1l J; p—1

where the supremum is taken with respect to all the intervals / with length < 27
and |I| denotes the length of /.
The modulus of continuity of the function f € LPI(T) is defined [8] as

Q(f7 5)[/5‘1 = sup HAhf”qua o> 07

|h|<6

where
h

15 +0) - fa)

0

(Anf)(z) =

SRS

is the Steklov operator.

The modulus of continuity 2(f,0)r« is defined in this way, because the space
LP4(T') is noninvariant, in general, under the usual shift f(z) — f(x+h). Whenever
we A,(T),1 < p,q < oo, the Hardy Littlewood maximal operator of every f €
LPY(T) is bounded in LP4(T) [3, Theorem 3]. Therefore the Steklov operator A, f
belongs to LP(T"). Thus, Q(f, ) »« makes sense for every w € A,(T"). Moreover
the modulus of continuity Q(f,d) s is non-decreasing, non-negative, continuous

function satisfying the conditions
ggéﬁ(fa 0)pe = 0, Q(f1 + fo, 6) ppe < Q(f1,6) ppe + Qf2,0) ppa.
In weighted Lorentz spaces, Lipschitz class Lip(a, LP?) is defined as

Lip(a, L) == {f € LPIT) : Q(f,0)pa = O(6%), 0 < a < 1}.
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Since LPY(T) C LY(T) whenw € A,(T), 1 < p,q < oo [5, the proof of Prop.

3.3], the Fourier series and the conjugate Fourier series of f € LP?(T) are given as

f(z) ~ aoéf) —|—Z(ak(f) cos kx + bi(f) sin kx) (1.2)
f(x) ~ aoéf) + Z (ag(f)sinkx — be(f) coskz) .
k=1

Here ao(f), ax(f), bx(f), k = 1,2, ..., are Fourier coefficient of f. Let S, (f, z), (n =
0,1,2,...) be the nth partial sum of the series (1.2) at the point z, that is,

Sa(f,7) =Y Us(f)(@),

where

Ue(f) () := ag(f) coskx + b (f) sinkx, k = 1,2, ....

Let (p,) be a sequence of positive numbers. We consider Norlund and Riesz

means of the series (1.2) defined by

1 n
Nolf,2) = 5= D PumSnl(f,) (13)
" m=0

and

1 n
where P, = Y"" _ pm, p—1 = P_1 = 0.Inthe case p, = 1,n > 0, both of N,,(f, x)
and R, (f,z) yield the Cesaro mean of the series (1.2)

1 n
on(f,2) == D Smlf,2)
m=0

Let A = (a,x) be a lower triangular regular matrix with nonnegative entries

and row sums ?,. The operator A is defined by Aya,, = ang — Gpg+1. Such a
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matrix A is said to have monotone rows if, for each n, {a,} is either nonincreasing

or nondecreasing in k,0 < k < n. We define

Tn(f7 ZE) - Zanksk<f; .%')7 n=0,1,2,...
k=0

Note that, in the case of p, = 0, n > 0, N,(f,z) and R,(f,z) yield o,(f, x).
Furthermore 7,,( f, x) is a generalization of N, (f,z) and R,,(f, x).

Quade [12] investigated the approximation properties of the o, Cesaro mean in
Lebesgue spaces. Similar results were studied by many researchers [2, 4, 9, 10].
In [2], Chandra gave some conditions on the sequence (p,), and investigated ap-
proximation problems of /V,, mean and R,, mean to approximate f function in the
Lebesgue spaces. In [9], Leindler weakened the conditions given by Chandra on
the sequence (p,), and investigated same approximation properties in Lebesgue
spaces. In [4], Guven obtained the generalizations of Chandra’s [2] results for
weighted Lebesgue spaces. Mittal et al. in [10] have generalized the results ob-
tained by Chandra [2] to more general classes of triangular matrix methods.

In this work, we generalize the results obtained by Chandra [2] and Mittal et al.
[10] to weighted Lorentz spaces. Our main results are the following.

Theorem 1. Ler 1 < p,q < oo, w € A,(T),0 < a < 1 and let (p,),; be a

monotonic sequence of positive numbers such that
(n+ 1)p, = O(P,). (1.4)

then
||f—Nn(f)||pq7w:O(n_“),n: 1,2,... (1.5

Theorem 2. Ler 1 < p,q < co,w € Ay(T),0 < a < landlet (p,), be a sequence
of positive real numbers satisfying the relation

S
m+1 n+1

n—1

2

m=0
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then
1f = Ru(f)l g = O(n™%),n=1,2,... (1.7)

where

A Pm . Pm Pm+1
m+1) m+1 m+2
Theorem 3. Let f € Lip(c, LP?) and let A have monotone rows and satisfy
Ity — 1| = O(n™®). (1.8)
(D)If 1 <p,q<o0,0<a<1,and A also satisfies
(n + 1) max {ang, an-} = O(1), (1.9)

where r .= [g} , then
Hf - Tn(f)Hpq,w = O(n*Oé)' (110)

(i) If 1 < p,q < 0o, a = 1, then the estimate (1.10) is satisfied.
Lemma 1. Let f € Lip(1, LP?). Then for n = 1,2, ... the estimate

o (f) = S ()l pge = O™

holds.
Proof. If f € Lip(«a, LP?), from Lemma 4.6 of [7] it can be deduced that f is

absolutely continuous and f € LP1_If the Fourier series of f is
fl@) ~ > U(f)(@),
k=0
then the conjugate function f’(x) has the Fourier series

fl(@) ~ ) kUL(f) ().
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On the other hand,
SN — o)) = DU
R
L]

Since the partial sums and the conjugate operator is uniform bounded in the space
LP4(T) (see [7]), we get that

182(f) = o)y = O™

for n=1,2,....
Lemma?2. Let0 < a < 1,1 <p,q <ooand f € Lip(c, LP?), w € A,(T). Then

||f - S?’L(f)”pq,w = O(n_a) 7n = 17 2’
Proof. Let t(n = 0,1, ...) be a trigonometric polynomial of best approximation to

f, that is
Hf - t:;Hpq,w = inf Hf - thpq,w )

where the infimum is taken over all trigonometric polynomials ¢,, of degree at most

n. From Lemma 2.3 of [13], we have

1f = thll g = O, 1/0) pe)
and hence
1f =ty = O(™%).

By the uniform boundedness of the partial sums S,,( f) in the space L”Y(see [7, Prop.
3.4],[6, Th. 6.6.2],[14, Chapter VI]), we get

1f = S0 lpge < WS = tallpges + 16 = Sl g
= f = tallpge + 1150 (8 = g
= O(lf = 3l pge)
= 0O(n ).
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Lemma 3. (2| Let (p,) be a non-increasing sequence of positive numbers. Then

Z miapnfm = O(niapn)
m=1
for0<a<l1.
Lemma 4. [11]| Let A have monotone rows and satisfy
(n + 1) max {ang, a,-} = O(1).

Then, for 0 < a < 1,
anp(k+1)7=0(n"").

m=1

2 Proof of Main Theorems

Proof of Theorem 1. Case I. Let 0 < o < 1.
By (1.3), we have

No(f) (@) - f(z) = ,% S o {Sulfi0) — F@)}
By (1.4), Lemma 2 and Lemma 3,
15 = NPl < 5 S P I = SOl

1 = —Q pTL
= 5 D om0 ™) + -1 = So(F) g
nm*l n

1 1
- o)+ O
= O(n™°).

Casell. Leta = 1.
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Since
Nol£)(a) = 3 3 panUn()(a).
from Abel’s transformation,
Su(1)(a) = Nu(D)@) = 3 (o= o) Unl(P)@)
" m=1 k=1
1 n
+n 1 ;kUk(f)(x)
Hence,
19,0) = Ml = 3 2 [ (222 Y k1))
" m=1 k=1 Pg,w
1 n
T ;’%(ﬁ(m) y @.1)
Since
o)) = Sl P)@) = —5 S KU)(), @2
k=1
By Lemma 1, we get
> kUL(f) () = (n+1) lon(f) = Su(H)ll,. = O1).  (2.3)
k=1 pg,w

Combining (2.1) and (2.2), we have

152(F) = Na(f)lly, = O (,%) 3 oM. 24)

m=1

m
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In the other hand,

Am Pn_Pn—m Pn—m—l_Pn—m+Pn_Pn—m—1
m m m(m + 1)
Pn - Pnfmfl Pn—m
m(m+ 1) m
1

= D {(Py = Poom1) = mppm}

1 n
= m{ Z pk_mpnm}-

k=n—m-+1

P _p n+1
{ m }mzl

is non-increasing whenever (p,,) is non-decreasing and non-decreasing whenever

This equality implies that

(pn) is non-increasing. This implies that

A, (M)‘ -
m

by using convention P_; = 0. Using (2.5) and (1.4) in (2.4), we obtain

n

2.

m=1

P,
n+1

1 JR—
n+1

Pn O(F), (25

152 (f) = Nu(f)llpgo = O 71). (2.6)
Finally, by using (2.6) and Lemma 2, we get
||f - Nn(f)”pq#u = O(n_a)

with o = 1.
Proof of Theorem 2. Case I.Let 0 < o < 1.
We have

f@) = Rul0)(@) = 5 3" b 1F(2) = Sl )

By Lemma 2,

1 = Rl < - D2 7 = S Dl
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1 n
= <Fn) m=pp, (2.7)
m=1
By Abel’s transformation
n—1
Zm P =Y Pulm = (m+1)"*+n"P, (2.8)
m=1
n—1

by (1.6)
S P "Z—l ( Pn pmH) (i’”) . B ”Z‘lm .
— m+1 = \m+1 m+2 — n+1e~
This implies
i m pm =0 (n"°F,).
From (2.7) and (2.8), we obtain
1 = Rl = O~
Case Il. Let o = 1. By Abel’s transformation,
Rif@) = 5 Z (P (Su(£)(@) = Sy (D) + PuS, (1))
- = ZP (~Unis(N@) +Su(H@)

and so
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Once again, by Abel’s transformation, we get

m=0 m= k=0
n—1 m
P, P,
- Y () (Z(k + 1)Um+1(f)(ﬂf)>
m=0 k=0
Pn n—1
+ (k+1) Upnsr(f)(2)
n+1 pr
and so
n—1 n—1 Pm Pm+1 m
D Pnlmn(D| = Y| = D (k4 1)U ()
m=0 pq,w m=0 k=0 pq,w
n—1
— Z(k+1)Um+l(f)
n—+1 —
= Pg,w
n—1
Pm Pm+1
= ) - (m +2) [[Sma1(f) = mt1 ()l g
—|m+ 1 m+2 pq
+ P [|Sn(f) — U”(f)“pq,w
n—1
Pm Pm+1 Pn
= 1 — .
O()mz::o m+1 m+2 O(n+1)
Therefore

IR (f) = Sn(f)llpg = O (n7F). (2.9)

Applying (2.9) and Lemma 2 to

1 = B g = 1 = Sl g + 150(F) = Bu()ll g

we get
1 = B = O0™%)

fora =1.



On the trigonometric approximation in weighted Lorentz spaces

93

Proof of Theorem 3. Case L. Let 0 < o < 1.

n

(f)—f = Zan,ksk(f) —tuf + (= 1)f

k=0

= Zan,k(sk(f) — )+ (. — 1.
k=0
From (1.8), Lemma 2 and Lemma 4,

170 () = Fllpge < D anallsilF) = Fllpg + ltn = 111l
k=0

= Y ansO((k+1)"") +O0(n™®)

= O(n™9).
Casell. Letaw = 1.

170 () = Fllpgw < 17 (F) = SnlDllpge + 190 (F) = Fllpge -

by Lemma 2,
||f - Sn(f)”pq,w = O(n_l)‘

Hence it remains to prove that
17a(f) = Sa(f)llq0 = O(7H).

If we define A,,; := > a,;, and use the fact that A,y = ¢,, then we have
i=k

n n

() =Y anSk(f) =Y am > Uil F)(@) =D AulUi(f)(2).

k=0 k=0 =0
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Sa(f) = Z Ue(f)(x) = ZAnOUk<f)(x> + Z(l — Ano)Ur(f) ()

= 3" AUi(N)(@) + (1= 1) Y U(f)(2)

k=0

= > AnUi(f)(@) + (1= ta)Su(f).

Hence

n

Z(Ank — Ano)Ur(f)()

k=1

170 () = S (Pl g < + 1 =tallI£1],,..

Pg,w

We define
Ank - AnO

- 2

bnk -
for each 1 < k < n. If we use summation by parts, then we get

> (e~ A ) = 3 (FE) 1))

= S Zm(f)(x)—iwj(f)(x)]

=0
n k n k—1
= Z b ZjUj(f)(m) — Z bk ZjUj(f)(m)
k=1 =0 k=1 Jj=0
n n—1 k
= bun Y _JUH(N@) + D Dibur Y iU (f)(@).
j=1 k=1 j=0
Hence
n n—1 k
I70() = Fllges < [bwn SGTD| -+ (|32 Asbus Y_GUD|| - +O).
j=1 k=1 §=0

pg,w pq,w
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Also
R Su(f) = — Sy U
on(f) = n+1kzo M)—nHM; i(£)(w)
- - 1 & ,
= n+lz;Uj(f)($)k_j1=n+12;(n—3+1)Ug(f)(l‘)
n 1 n
= 2 Ui(f)(x) — e jZOJUj(fﬂx)
By Lemma 4,
Zj@(f)(x) = [[(n+1)(Su(f) = 0u(f)) + Su( )y
= (10 + [l = O(1).
Note that
ban| = (n+ 1) [Apo — Apn| = (0 + 1)ty — ann| = (n+ 1)1 O(1).
Therefore

We can write

Akbnk =

bon 33U (@) = 0.
J=1 Pg,w
1 An k+1 — AnO
_A A _ A s TR
o (Ane = Ano) + =0y

1 B n n
kE+1ALA —
k(k + 1) ( + ) kAnk + Z Anyr ;anr]

r=k+1

1 k
) (k4 Dap, — Zam] .

r=0

If {a,x} is nonincreasing in k, then Apb,, < 0, and if {a,} is nondecreasing in k
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then A.b,, > 0, so that
n—1
Ann - An Qpp — tn
’Akbnk’ = |bn1 - bnn’ = Anl - AnO S < |an0| + —’
k=1
O(1
= 0w+ W _ o,

and (1.10) is satisfies.
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1 Introduction

The notion of I-convergence was studied at initial stage by Kostyrko et al. [14]
(see also [11], [12], [13]) as a generalization of statistical convergence which had
formally been introduced by Fast [5], Steinhaus [28], Schoenberg [27] and has still
been discussed and investigated in the theory of Fourier analysis, ergodic theory,
number theory under different names and varied points of view in many fields of

mathematics.

Kostyrko et al. [11] gave some of basic properties of /-convergence and dealt
with extremal /-limit points. Later on it was studied by Salat et al. [23], Hazarika
and Savas [6], Tripathy [31], Tripathy and Hazarika [30], [32] and many others.
For further results we may suggest to see [1]-[4], [7]-[8], [15]-[18], [24]-[25], [29],
[31].

Let wy be the set of all real or complex double sequences. By the convergence
of a double sequence we mean the convergence in the Pringsheim sense, that is,
the double sequence = = (x;;) has a Pringsheim limit L denoted by P-lim z = L
provided that, given € > 0, there exists N € N such that |xij — L| < & whenever

1,7 > N, we will describe such an z more briefly as " P-convergent" (see [22]).

Recently, Konca and Basarir [9] have obtained a new lacunary sequence and a
new concept of statistical convergence for double sequences which is called weighted
lacunary statistical convergence of double sequences by combining both of the def-
initions of double lacunary sequence and Riesz mean for double sequences, and
Konca [10] has extended this new concept to locally solid Riesz spaces for double

sequences.

The concept of weighted lacunary statistical convergence of double sequences
lead us to introduce the notion of /-weighted lacunary statistical convergence of
double sequences. In this work, we introduce the concepts of /-weighted lacunary

. I
statistical convergence and [R?, 0,, p] -convergence of sequences of real numbers
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based on the notion of the ideal of subsets of N x N and examine some inclusion

relations.

2 Definitions and Preliminaries

In this section, we present some definitions and preliminaries which are needed

throughout the paper.

Recall the concept of asymptotic density of set A C N ([21], p. 71, 95-96).

If A CN={1,2,..,n,..}, then x4 denotes characteristic function of the
set A, i.e. xa(k) = 1if k € Aand xa(k) = 0if & € N\A. Putd,(A) =
S xa (k). 0, (A) =30 48 (n=1,2, ), where S, = Y}, L (n =
1,2, ...). Then the numbers d (A) = liminf,_,.d, (A), d (A) = limsup,, , . d, (A4)
are called the lower and upper asymptotic density (or density) of A, respectively.
Similarly, the numbers § (A) = liminf, .0, (A), 0 (4) = limsup, ., 6, (A)
are called the lower and upper logarithmic density of A, respectively. If there exist
lim, o d, (A) = d(A) and lim,,_,, 0, (A) = § (A) then d (A) and § (A) are called
the asymptotic and logarithmic density of A, respectively. It is well known fact that
foreach A C N

d(A) <3(A) <o(A) <d(4).

Hence if exists d (A), then  (A) exists as well and d (A) = § (A). Note that d (A),

d(A), §(A), 0 (A) belong to the interval [0, 1].

Definition 1. [31] Let 7' = (¢,x) be a regular non-negative matrix. For A C N,
define di.(A) =)>",2, taxxa(k), for all n € N. If lim,,_,ood}(A) = dr(A) exists,
then dr(A) is called as T-density of A.

Recall the concept of statistical convergence ([5], [27], [28]):
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A sequence x = (z,,) of real numbers is said to be statistically convergent to

L € R provided that for each £ > 0 we have d (A(g)) = 0 where A(e) = {n € N:
|20 —&| 2 €}

Definition 2. [17] Let X # (). A class I C 2% of subsets of X is said to be an ideal

in X provided that [ is additive and hereditary, i.e. if [ satisfies these conditions:
L.Oel
2. A BelimplyAuBel,
3. AcI,BC Aimply B € [.
An ideal is called non-trivial if X ¢ I, thatis, [ # 2X.

Definition 3. [20] Let X # (). A non-empty class F' C 2% of subsets of X is said
to be a filter in X provided that:

L. 0¢F,
2. A Be Fimply ANB € F,
3. Ac¢ F,BDO Aimply B € F.

The following proposition expresses a relation between the notions of ideal and

filter:

Proposition 1. Let [ be a non-trivial ideal in X and X # (). Then the class
F()={MCX:3A€l: M= X\A}

is a filter on X. It is called the filter associated with the ideal I [13].

A non-trivial ideal [ in X is called admissible if {x} € I for each x € X.
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Definition 4. [13] Let [ be a non trivial ideal in N. A sequence x = (x,,) of real
numbers is said to be [-convergent to £ € R if for every ¢ > 0 the set A (¢) =
{n |z, — & > €} belongs to I.

If x = (x,) is I-convergent to £ we write [ — limx,, = & (or [ —limx = &)

and the number ¢ is called the /-limit of z = (z,,).

A question arises whether the concept of /-convergence satisfies some usual
axioms of convergence [13]. The most known axioms of convergence are the fol-
lowing axioms (formulated for /-convergence):

(S) Every stationary sequence = = (§,¢, ..., &, ...) I-converges to &.

(H) The uniqueness of limit: If / —limx = ¢ and [ — limx = 7, then £ = 7).

(F) If I-lim xz = &, then for each subsequence y of x we have [-limy = &.

(U) If each subsequence y of a sequence = has a subsequence z, /-convergent to &,

then x is /-convergent to .
Theorem 1. [13] Let / be an admissible ideal in N. Then
1. I-convergence satisfies the axioms (S), (H) and (U).

2. If I contains an infinite set, then /-convergence does not satisfy the axiom

F).

Remark 1. [13] If an admissible ideal I contains no infinite set, then / coincides
with the class of all finite subsets of N and the /-convergence is equal to the usual
convergence in R, therefore it satisfies the axiom (F) (see ideal Iy in (III) in what

follows).

Example 1. [13] Several examples of /-convergence can be given as follows (see
in [13]):
(I) Put Iy = {@}. This is the minimal non-empty non-trivial ideal in N. Obviously

a sequence is [y-convergent if and only if it is constant.
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(I) Let ® # M C N, M # N. Put I); = 2™ Then I, is a non-trivial ideal N. A
sequence (x,,) is I/-convergent if and only if it is constant on N\ M, i.e. if there is
a ¢ € R such that z,, = £ for each n € N\ M. (Obviously (I) is a special case of
(1) for M = 0.)

(IIT) Denote by I; the class of all finite subsets of N. Then /; is an admissible ideal
in N and I;-convergence coincides with the usual convergence in R.

(IV) Put I; = {A C N : d(A) = 0}. Then [, is an admissible ideal in N and
I,-convergence coincides with the statistical convergence.

(V) Put [ = {A C N : §(A) = 0}. Then I is an admissible ideal in N and

Is-convergence coincides with the logarithmic statistical convergence.

Without loss of generality, we will use the limit notation in Pringsheim’s sense

lim, ; instead of lim, ;_,, for brevity.

Mursaleen and Edely [19] presented the notion of a statistical convergence for

double sequence = = (x;;) as follows:

A real double sequence © = (x;;) is said to be statistically convergent to L,

provided that for each € > 0
1
P—lim— |{(k,)):k<m and [ <n:|zy—L| >¢e}|=0.
m,n 1NN

By a double lacunary sequence 6,.; = {(k,,ls)} where ky = 0 and [y = 0, we
shall mean two increasing sequences of nonnegative integers with h,. = k,—k,_; —
oo and hy = I, — I,_; — oo. Let us denote k,, = kL, h,s = h,h, and the intervals
determined by 6,.; will be denoted by I, = {(k,1) : k,—1 < k < k,and 1,y < <},

ke = o
G = 7505 = .5 and ¢rs = ¢, Gs.

Definition 5. [26] Let 6, be a double lacunary sequence, the double number se-

quence z is Si-convergent to L, provided that for every & > 0,

1
P -1
im =

7,8

H{(k,1) € Is : |z — L| > e} = 0.

TS
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. . . P
In this case, we write Sa-limx = L or z; — L(S3).

Definition 6. [26] Let 0, be a double lacunary sequence. A double sequence x =
(1) of numbers is said to be Nj-P-convergent to a number L if
P—limmh—is Z(k,z) cr,. |7 — L| = 0. We denote the set of all double NZ-P-convergent

sequences by N7.

Using the notations of lacunary sequence and Riesz mean for double sequences,
Konca et al. [9] have presented the following notations which will be used through-

out the paper:

Let 0., = {(k,,ls)} be a double lacunary sequence and (py), (p;) be sequences
of positive real numbers such that Py, := Zke(o,kr] P B, = Zle(o,ls] p; and
HT‘ = Zke(k?7»71,kr} pk, ES = Zle(l,gfl,ls] ﬁl. Clearly, H?" = Pk"r — Pkr—l’ P_[S =
B, - B,

H., = PF, — P, _, — ocasr — oo, Hy = pzS—Pz

.- If the Riesz transformation of double sequences is RH-regular, and

., —» 00 ass — oo,

then 0, = { (P, P,)} is a double lacunary sequence. Throughout the paper, we

assume that P, = p1+...4+p, = o0 (n = ), P, = p1+...4+Dm — 00 (M — 00),
suchthat H, = P, — P, _, — ooasr — oo and H, = Pls—lf’lsfl — 00as s — 00.

Let P,,, = P, P, H, = HH, I', = {(k,l) : P, <k < P, and
B, <l<P}Q = g, Qo= 7 and Qr, = Q.Qu. If we take py = 1,

]
Pkrfl s—1

p = 1forall k and [, then H,, Py, ., Qs and I/ reduce to h,, ks, ¢, and I,..

Definition 7. [16] Let I be a non trivial ideal in N x N. A double sequence z =
(xx;) of numbers is said to be /-convergent in the Pringsheim sense to a number
L, if forevery e > 0, {(k,1) e Nx N: |z — L| > ¢} € I. In this case, we write
I-P-limy = L.

Definition 8. /2] Let I C P(N x N) be a non-trivial ideal. A double sequence
x = (xj;) of numbers is said to be I-statistically convergent or S?(I)- convergent
to L, in the Pringsheim sense, if for each ¢ > 0 and § > 0,

{(m,n)ENXN: {1§k§m,1§l§n:|xkl—L\25}\2(5}6[.

o |
mn
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In this case, we write z3; — L (S?(I)) or S* (I)-P-limy xy; = L. Let S? (1)

denotes the set of all /- statistically convergent double sequences of numbers.

Definition 9. [/5] Let 6, be a double lacunary sequence and / be a non trivial
ideal in N x N. A double sequence © = (xy;) of numbers is said to be /-lacunary
statistically convergent or S7(I)- convergent to L, in the Pringsheim sense, if for

eache >0 and 6 >0

1
hrs

In this case, we write zy; — L (S5 (I)) or Sz (I)-P-limy,jzy; = L. Let S3(I) de-

notes the set of all /-lacunary statistically convergent double sequences of numbers.

{(T,S)GNXN: |{(k:,l)€Irs:|xkl—L|2€}|25}€[.

Definition 10. [/5] Let 6,; be a double lacunary sequence and / C P(N x N) be
a non-trivial ideal. A double sequence x = (x;) of numbers is said to be N7 (I)-
convergent to L, if for every ¢ > 0 we have
{(7"7 s) ENxN: h%s D (kDelr
L (Nj(I)) or Nj (I)-P-limy; xy; = L. Let N7 (I) denotes the set of all Nj (I)-

convergent double sequences of numbers.

xp — L] > 5} € I. In this case, we write x; —

3 Main Results

Definition 11. Let / be an admissible ideal in N x N. A double sequence = = ()
of numbers is said to be /-weighted lacunary statistically convergent or S?Rﬂ)(l )-

convergent to L, in the Pringsheim sense, if for each e > 0 and § > 0

1
HT‘S

{(’I",S) e NxN: |{(k’,l) € I/rs Zpk]_)l |[L’kl —L| > €}| > (5} el

In this case, we write x3; — L (S?Rﬁ) (])> or Str ) (I)—P—l}gl r = L. Let

S(QR,G)([ ) denotes the set of all /-weighted lacunary statistically convergent double
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sequences of numbers. If p, = 1,p, = 1 forall £, € N, then S?R,G)(I )-convergence

reduces to S} (I)-convergence (see, [15]). For
I=I,={A: ACNXN:dgg(A()) =0}, 3.1)

which is also an admissible ideal, S(QRye)(I ) convergence coincides with S(QRﬁ) con-
vergence which can be given as follows:

A double sequence = = (xy;) of real numbers is said to be weighted lacunary
statistically convergent or S?Rﬂ)—convergent to L € R, provided that for each ¢ > 0
we have d(g2 g) (A(e)) = 0 (weighted lacunary asymptotic density of the set A(c))

where

A(€) = {(k’,l) € N x N, (k‘,l) € ];S ka]_?l|l‘kl — L| > 6}, 3.2)
that is; for every ¢ > 0, P-lim, 4 % {(k,0) € I'vs : prpy|xp — L| > €} = 0.
Definition 12. Let / C P(N x N) be an admissible ideal. A double sequence

& = (zx) of numbers is said to be [R2, ,, p|' -summable to L if for every & > 0

we have

(r,s) e NxN: !

Z piby |z — Ll > € p € 1.

"5 (k)€ s

In this case, we write zj; — L ([RQ,GTS,p]I> or [R%,6,,,p) -limz = L. Let
[R%,0,s, p]I denotes the set of all [R?, 0., p}l—convergent double sequences of num-

bers.

Theorem 2. Let / C P (N x N) be an admissible ideal and 6, be a double la-
cunary sequence and I/, C [, . Then z — L <[R2,9r5,p]1> implies z;; —

L (S?Rﬂ)(l)).

Proof. Suppose that xy; — L ([RQ, 0,5, p]l) and let A(e) be defined as in equation
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(3.2). Then we have

i > Dblew —LI> 5= > iy low — L
(k1Y (kDI

> 5= > Dby low — L
(kD)els
(k)EA(e)

> e [{(k,1) e Nx N: (k,1) € A(e)}],

which implies

1

I [{(k, 1) € I : pay |om — L] > €}

Z oDy |x — L] >

(k7l)€Irs

€ H,,
Thus for any 6 > 0, we have the following
{(r,5) € Nx N g [{(k,1) € I, : iy o — L] > }| > 6}

Q{(T,S)ENXN:H%S > pkﬁl]xkl—MZa(S}.

(k1) Elrs

Since zy; — L ([RQ, O, p]]>, it follows that the latter set belongs to I and hence

the result is obtained. O]

Theorem 3. Let / C P (N x N) be an admissible ideal and p;p, |z — L| < M
forall k,] € Nand I, C I',. Iz = (1) — L(S?Rﬁ)([)) then 71y —

L (172, 0,0.9]").

Proof. Suppose that pyp, |z — L] < M forall k,l € Nand I, C I' . Let 2y —
L (S(2R,9) (I)) and A(e) be defined as in (3.2). For each ¢ > 0 we have

m > bilew =Ll < g X pibilow — L

(k1 ETs (kDEIT,
<u- > oblew—Li4+5- X piblow — L
(k)ETL (kD)ETL,
(k,1)€A(e) (k)¢ A(e)

< M= |A(e)| +e.
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Consequently, we obtain

{(T,S)GNXN:H%S > pkﬁl|xkl—L|25}

(k) el s
C {(T,S) ENXN: g-[{(k1) € I}, : piy low — L] Z €} = ﬁ}

Since zy; — L (S?Rﬁ)(l )) in the Pringsheim sense, it follows that the latter set

belongs to I, which immediately implies

(r,s) e NxN: Z piDy |xe — Ll > e p € 1.

"8 (k)€

This shows that x;; — L <[R2, O, p]I) in the Pringsheim sense.

If anyone wants to show that the converse of the previous theorem is strict, then
for I = I; the class of all finite subsets of Nx N, p, = 1,p; = 1 forall k,/ € N and
0 = (k1) = (27,3°) for all r, s > 0. Consider the sequence x = (x3;) = (—1)"
for all [, of course the inequality pyp,; |z — L| < M holds for all k,] € N. The
double sequence = = (1) € [R2, 0,,,p]" but z ¢ Stray()- O

Definition 13. A double sequence = = (z;) is said to be (R, 6,,, p)’-summable
to L, if I-lim, ;W,s(x) — Li.e for any € > 0,

{(r,s) e NxN: |[Wys(x)—L| >e} el

where

Wis(z) := ;TS (k%m DkPi Xk
In this case, we write (R?, QTS,p)I—P—lim:v =Lorazy — L ((RZ, Qrs,p)l) in the
Pringsheim sense for I = I; the ideal of all finite subsets of (N x N), (R?, 0,5, p)" -
summability becomes (R?, 0,,, p)-summability [9].
In the following theorem, we examine the relation between 5(23,9) (I)-convergence

and (R2, 0,,, p)"-summability.
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Theorem 4. Let p;p, |vi — L] < M for all k,l € N and I, C I!.. If a double
sequence x = (z) is S(QR,G) (I)-convergent to L, in the Pringsheim sense, then it is
(R2,6,,,p)"-summable to L.

Proof. Let pyp; |z — L| < M forall k,l € Nand I, C I.,. Suppose that x5 —
L (S(ZR’G) (1 )), in the Pringsheim sense. Then we have the following, where A(¢)

is defined as in equation (3.2).

7 2. PrDitm — L

‘Wrs - L’ = ‘ 1TS
(kDELs

= le > by (T — L)
(kD)El s

<l X b (z—L)

" (kper,

<liz= X op(eu—LD)|+|g X wb (e — L)
(keI (keI
(k,)eA(e) (k,1)¢A(e)

= Mg~ [{(k.1) € I, - piy | — L] > €}| + <.

If we take

A(e):{(r,s)eNxN:;

rs

£
(D) € 2o il — Ll 2 ) 2 7 b,

then the set (N\ A (¢)) belongs to F'(I) where F'(I) is a filter on N x N. For (r, s) €
(N\A (g)) we obtain |W,; — L| < 2¢. Hence {(r,s) e Nx N: |W,s — L| > 2} C
A(e) belongs to I. This shows that [-lim,I¥,s; = L and hence
zw = L (B, 00,0)" ). 0

Theorem 5. The following statements are true:
() Ifpp < landp, < 1forall k,] € Nand x;y — L(S3(I)) then zp; —

L (Sk)(1)).
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(2) Let IZ—: and ™ be upper bounded. If p, > 1 and p; > 1 for all £,/ € N and
x — L (S?Rﬂ)(])) then x; — L (S3(I)) in the Pringsheim sense.

Proof. (1)Ifp, < 1landp, < 1forall k,I € Nthen H, < h, and H, < h, for all
r,s € N. So, there exist M; and M5 constants such that 0 < M; < g—: < 1 for all
TENandO<M2§7

which converges to the P-limit L in S3([), then for an arbitrary £ > 0

2= < 1forall s € N. Let x = (w) be a double sequence

H%s {(k, 1) € I, pupy lom — L] > €}
L {Pe,., <k <P, and P_, << P, :pipi|ei— L| > e}

H, 1,
< M11M2 hrlﬁs {Pi._, <k_1<k<P, <k
and P,_, <l,y <1< P, <ly:|og—L| >¢e}
= Mlmh%s {kr—1 <k<kyandls,_ 1 <1 <l;: |z — L| > e}
= M11,2 = H(k0) € I oy — L] > €}

where M, o := M;Ms. Thus for a given 6 > 0

H%S (k1) € Iy ey lom — L] > €} >0
= = [{(k,1) € L : Jam — L > €} > M.

Hence

{<7~s) ENXN: 7= [{(k,1) € Iy : iy o — L] = €}] 2 5}
c{(r9) eNX N L [{(k]) € Ly : fowa — L] > }| = Ma}.

Since zy; — L (S3(I)), in the Pringsheim sense, the set on the right hand side
belongs to / and so it follows that z; — L (S?Rﬂ) (1 )> in the Pringsheim sense.

(2) Let I}f—: and g— be upper bounded and p, > 1 and p; > 1 for all £,/ € N.
Then H, > h, and H; > h, for all , s € N. So, there exist N; and N, constants
such that 1 < I}f—: < Ny <o0,1< g < Ny < oo forall r,s € N. Assume

s

that the double sequence z = (z4;) converges to the P-limit L in S7, (1) with
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Strgy(1)-P-limz = L, then for an arbitrary ¢ > 0 we have

i (k1) € Lg - | — L] > €}
= h_rlE Hk,1 <k <k.andl, 1 <l <lIs: |z — L| > e}
<Rk <Py <k <k < P, and

{ls—1 <P, <1<l <Py :peprlew — LI > 5} |

= Nio- g H(k D) € I, o pupi o — L] > €}
where N; 5 = N1 Ns. Thus for a given § > 0,

1

{(k,0) € Ls : |z — L| > e} > 6

TS

1 o
(D) € Try i lows — 1] 2 2} 2 o

rs 1,2

EN

Since xy; — L <S(2R’9)(I )), the set on the right-hand side belongs to / and so it
follows that 2y, — L (S7(I)) in the Pringsheim sense. O]

Theorem 6. Let 0, , = {(k,,[s)} be a double lacunary sequence. Then we have the

followings:
L. If liminf,@Q, > 1 and liminf,Q, > 1 then S}(I) C SZ; (1)
2. If limsup, @, < oo and lim sup,@, < oo then Stroy(I) € SE(D).

3. If 1 < liminf Q, < limsup @, < oo and 1 < liminf Q, < limsup Q, < oo
then S?y 5 (1) = S&(I).

Proof. The item (3) is a consequence of (1) and (2).
(1) Suppose that lim inf,Q, > 1 and liminf,(), > 1 then there exists a v > 0 such
that Q. > 1+ v and Q, > 1 + v for sufficiently large values of r and s, which

Hy, - He - 2(-P-li -
oAl v and P > 15 Let S%(I)-P-limy xy; = L. Then for

implies that
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sufficiently large values of r and s, we have

Pkrplg {k < Py, andl < P, : pypy lag — L| > €}

= P,WlPl‘ {(k,1) € I, : prpi |wp — L] > €}

= PZ% {(k,1) € I, - prpy |2 — L| > €}

H_
2
> <1-7-'y> - kD) € Iy o pupr |ow — L > €}

So for a given 9 > 0

pkDy |2m — L] > 8}‘ >4

2
|{k < Pk and [ < Bs pkpl |$kzl L| 26}‘ Z (IL)

PkPl + 7y

Hence,

{(T,S) € X : H%g |{(l€,l) €l pepr|rm — L > 5}‘ > 5}

2
C {(r,s)e X Pker Hk;<Pk and [ < P, : ppy |om — L >€}| (1“) }

Since z; — L (S%(I)), the set on the right-hand side belongs to I and so it follows
that zy; — L <S(2R’9)(] )) in the Pringsheim sense.

(2) Suppose that limsup (), < oo and limsup (), < oo. Then there exists H > 0
such that Q, < H and Q, < H for all r and s. Suppose that z;; — L (S(QR,B)(I)>

and

Nos = |{(k,1) € I, : pxp; |z — L] > €}]. (3.3)

By (3.3) and the definition of S(QR’Q) (1) given £ > 0, there exists 79, so € N such that
Z—: < eforallr > rgand s > sg. Let M = max {N,s: 1 <r <rg and 1 <s <sg}
and let n and m be any integers satisfying k,_; < n < k,andl,_; < m < [,. Hence
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we have the following

}{k<P and [ < Py, : pppy | w0 — L\ze}’

Pkr 1 l.s 1
70,50
Sp 2 ZN”:kll 'ZNZJ—FP]C N Nz’,j
Fr-1tts—1 1,7=1,1 Tl el =11 1 (ro<i<r)U(so<j<s)
Mrgsg 1
SN Y A T 2 etys
rehoeT T OSTE (ro<i<r)U(so<j<s)
e( Py, P ,—Pg, P 5
< Mrgso ( brts ij ZSO) < Mrgso el Py
Pk'f‘—lpls—l Pk7'—113ls—1 - Pkr—lpls—l Pkr—lP)ls—l
< Moo 4 cf2,
- Pk7.71Pl571

So, for a given § > 0
{(n,m)ENxN: =

c{(n,m)eNxN;%g;jﬂKza}.

b |ax — L] > ¢} 25}

Since x; — L <S( R 9)(] )) , in the Pringsheim sense, the set on the right-hand side
belongs to I and so it follows that 2, — L (S%(1)). O
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Abstract

The spectral problem for a discontinuous second order differential
operator is considered. The basicity of eigenfunctions of spectral problem

in Morrey type spaces is proved.

1 Introduction

One of the commonly used methods for solving partial differential equations is

the method Fourier (the method of separation of variables). This method yields the
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appropriate spectral problem and in order to justify the method, it is very important
the question of the expansion of functions of certain class on eigen- and associa-
tion functions of the discrete differential operators. The study of spectral properties
of some discrete differential operators motivates the development of new methods
for constructing bases. In this context, much attention has been given to the study
of basis properties (completeness, minimality and basicity) of systems of special
functions, which are frequently eigen- and associated functions of differential
operators. Additionally, various methods for examining these properties were pro-
posed. Examples of such works are [2,3,9,11,12]. In the case of discontinuous dif-
ferential operators, there appear systems of eigenfunctions whose basicity cannot
be investigated by previously known methods. To explain this situation, we con-
sider a model eigenvalue problem for the discontinuous second order differential
operator

—y" () =My (z), z € (-1,0)U (0, 1), (1.1)

with boundary conditions
y(=1) =y (1) =0;y(-0) =y (+0);¢' (=0) =y (+0) = Amy (0). ~ (1.2)
This spectral problem has two series of eigenfunctions [8], where

Uy () = sinmnz,z € [-1,1] ,n=1,2, ..., (1.3)

i 1 _
iy (2) = { sintnz + O (n) , x€e[-1,0], (1.4)

—sinmnz+0 (%), z€(0,1], n=0,1,2,....

Such spectral problems arise when the problem of vibrations of a loaded string
with fixed ends and a load placed in its middle is solved by applying the Fourier
method [1,14]. To justify the Fourier method, one needs to examine the basis prop-
erties of the double system {,; ﬂgn}ne  in suitable function spaces (as a rule, in
Lebesgue or Sobolev spaces). As usual, one first studies the basis properties of the

unperturbed system{w,,; ua,, } which is the principal part of the asymptotics

neN
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of the system {1} Uan } e v

Uy () = sinnx,z € [-1,1],n=1,2, ...,

() sintnx, x€[-1,0],
Uoy (T) =
’ —sinmnz, x€[0,1], n=0,1,2,....

Then various perturbation methods are applied. This direction has been well
developed (see [9, 2, 6, 13]). It is easy to see that the principal part {u1,; ton}, ey
is not a standard system. It turns out that the explicit expression for the system
{1n; U2n },,c v is DOt exceptional, but obeys a certain general relation. In the work
[4] is considered an abstract approach to the problem described above and is pro-
posed a new method for constructing bases, which has wide applications in the
spectral theory of differential operators.

In this paper, we show that the proposed in [4] an abstract method can be used

in non-standard spaces such as Morrey type space.

2 Necessary information

Recall the definitions of the p-bases and p-close systems in Banach space X.

Definition 1. The bases {uy}, .\ of Banach space X is called a p-bases, if for any
reX

P

(Z !<ﬂfﬂ9n>|p> < M |zff,

where {0,,}, v is a conjugate system of {un}, . -

Definition 2. The sequences {u,},, . and {¢n}, .\ of Banach space X is called a

neN
p-close if

9
>t = ul” < 0.
n=1

The following theorem is proved in [3].
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Theorem 1. Let X be a Banach space with p-bases {xn}ne ~ and a system {yn}nE N
is q-close to {xn}, v ( }D + % = 1). Then the following properties are equivalent:
a) {yn},cn is complete in X;
b) {yn} ey is minimal in X;
¢) {Yn} e is w-linear independent in X,

d) {yn} e is a bases in X, which is isomorphic to the system {x,}, -

Suppose that X can be represented as a direct decomposition X = X; @ ... @
X, where X;, @ = 1,2, ..., m, are Banach spaces. For convenience, the elements of
X are identified, with vectors: © € X & x = (xy;...;2,,) Where z € X, k =

1,2, ..., m. The norm in X is defined by the formula

m
>l
i=1

It is clear that (see e.g. [10]) X* = X7 ® ... @ X, andfor f € X" andz € X it
holds

2
o]l x = X,

m
<I;f>zz<l’z‘;fz‘>
i=1

(< - ; - >is the value of the functional), where f = (f1,..., fi,) and f € X}, k=
1,2,...,m. For x;, € X} let us denote by 7} the element from X, which is defined

by the formula

k
Suppose that a system {u;,}, ., is given in each space Xi , i € 1 : m. Consider

the following system in X
7jl'in - (ailulna A;2U2n, ~-~7aimumn) ; { S 1: m; n c N7 (21)
where a;; are some numbers. Let

A =det A.

i, j=1,m’

A = (ay)

The following theorem is proved [4].
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Theorem 2. Let X;, i € 1: m, be pairwise isomorphic Banach spaces, and let the
systems {p },,c y be isomorphic bases of the corresponding spaces. If A # 0 then

the system defined by (2.1) is a basis in X that is isomorphic to the bases {Ty } . -

Let X, be a Banach space with a norm ||-| .. Then X = X,+C™ is also a
Banach space and for @ = (u; aq, ..., o) € X, whereu € Xo, o € C, k=1, m,

the norm is defined by the formula

m
~ 2 2
lallx = (HUHXO + ) Jau )
=1

X* = X§4—Cm is a dual space of X, and latter means that the each vector
(95 B, ..., Bm) € X & C™, defines the element Je X* by the formula

2

<, 9 >= (u, V) + Zak@,

k=1

where v € X, B € C, k = 1, m. The following theorem is proved [7].

Theorem 3. Let {,}, .y form a basis for X, where i, = (Uy; 1, ..., Oy, ), and

{19”} , where U, = (0 Bus vy Bam ), IS a biorthogonal conjugate system, J =
neN

{n1, ..., nm} C N is the set of m different natural numbers, N; = N\J. Put

0 = det ”ﬁmd”:,j:l :

Then, for the basicity of the system {u,}, ~,in space Xy it is necessary and suffi-
cient the fulfillment of the condition § # 0.
If 6 = 0 then the system {u,}

system {un }, ¢, is not complete and not minimal in X.

nen, does not form a basis for Xo, moreover the

We will also need some facts about the theory of Morrey-type spaces. Let I'
be some rectifiable Jordan curve on the complex plane C' . By |M|. we denote

the linear Lebesgue measure of the set M/ C I'. By the Morrey-Lebesgue space
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LP*(T),0 < a3 < as <1,p> 1, we mean a normed space of all functions f (-)

measurable on equipped with a finite norm || f{| ..oy

(T pp—— (|B it [ irer |d§|) " oo
B BN

L (T) is a Banach space and P! (T') = L, (T"), LP° (T') = L, (T'). The embed-
ding L (T') € L»*2 (T) is valid for 0 < ay < g < 1. Thus, L (T") C L, (T),
Va € [0,1], Vp > 1. The case of I' = [—m, | will be denoted by LP* (—7, 1) =
LPe,

Denote by L” the linear subspace of LP* consisting of functions whose shifts
are continuous in L, i.e. || f (- + 0) — f ()|l ;p.« — 0, as 6 — 0. The closure of
L@ in P will be denoted by M? . In [5] the following theorem is proved

Theorem 4. The exponential system {ei"t}nE 5 forms a basis for MP*,1 < p <
400, 0 < < 1.

Using this theorem, it is easy to obtain the following
Statement 1 Each of the trigonometric systems {sinnx} - and {cosnz} ~  forms

a bases for M7, 1 < p < +00,0 < a < 1.

3 Main results

In this section we consider the question of the basicity of the system {u, (z)} -,

of eigenfunctions of the problem (1.1), (1.2) in the spaces M?* (—1,1) & C and
MP® (—1,1) . The operator . which linearized the problem (1.1), (1.2) in the
space L, (—1, 1) @& C'is constructed as follows

D(Z)={aeL,(-1, )@C = (u; mu(0)), ue W2(-=1,0)U(0, 1),
u( 1) =u(l) =0, u(=0)=u(+0)},

and for i € D (&)
L= (—u";u (—=0) —u' (40)).
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It is clear, that .Z is densely defined operator with compact resolvent. The system
of eigenvectors of operator .Z {1, } -, is minimal in the space L, (—1, 1) ® C and

its conjugate system {19”} is the system of eigenvectors of the adjoint operator
n=0
Z* and it is of the form

Up = (0n, m0, (0)) , n=0,1,..., (3.1)
Here 9, (z) , n = 0,1, ..., are the eigenfunctions of adjoint spectral problem
¢ () + A0 (z) = 0, (3.2)

9(=1) =9 (1) =0; 9(=0) =9 (+0) ; ¥ (=0) — 9 (+0) = Amd (0) . (3.3)

Carrying out similar arguments for the problem (3.2), (3.3) we obtain that for
Yy (x) , n=0,1,..., the following formulas are valid
Von_1(x) =sinmnx,z € [-1,1] ,n=1,2,... (3.4)

and

19271 (l’) =

{ Con sin Thx + (%) 5 MRS [_L 0]7 (3 5)

—Cop SIN TN + (%), re(0,1],n=0,1,2,..,

where c,,, are the normalization numbers and for which the asymptotic relation

1
C2n:1+o<ﬁ)>

holds.
Denote

e1n () =sinmnz, x € [-1,1],

() sinnx, if ze€[-1,0],
ean (1) =
8 —sinmnx, if x €0, 1],

o

o » Where

and consider the system {é,,}

éo = (0;1), €2, = (e20;0), €01 = (€1,,;0),n € N
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o0

Theorem 5. The system {4}, forms a bases equivalent to the system {é,},
for space MP* (—1,1)®C,1<p<oo, 0<a<l.

Proof. By virtue of the decomposition
MP*(=1,1) = MP(—1,0) & MP*(0,1),

(which is easy to set in a standard way), and also due to the fact that the trigonomet-
ric system is a bases in both spaces M?* (—1,0) and M?* (0, 1) (see. Statement
1), Theorem 2 implies that the system {é,,} -, forms a bases for M/?* (—1,1) & C
forl <p<oo,0<a<l.

Let 1<p<2 and f € MP*(—1,1) @ C be an arbitrary element. Then, using the
embedding M?* (—1,1) C L, (—1,1) it is not difficult to establish the validity of
the Hausdorff-Young type inequality

(Eleer) =<

This means that the system {é,,} -, forms a g-basis for M?* (—1,1) & C'. More-

<C
Lpy(-1,1)&C

/

Mpa(—11)&C

over, from the asymptotic formulas (1.3), (1.4), with

1
—re)
n

where 4, = (u,, (x) ; mu, (0)), it follows that
Z [, — én”?wp,a(_LU@c < +00.

This means that the systems {4, }, -, and {é,} - are p—close. On the other hand,
by Theorem 2 the system {,} -, forms a bases for the space L, (—1,1) & C,

therefore, it is minimal in this space and in view of the embedding

(Ly(—-1,1)®C) Cc (MP*(-1,1)® )",
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we find that it is minimal in M7 (—1,1) @& C. Thus, all the conditions of Theorem
1 hold and by this theorem, the system {a,} ., forms an equivalent basis to the
system {é, } -, for space MP(—1,1) & C.

Now let p > 2 and f € MP® (—=1,1) @ C be an arbitrary element. Then fe
L, (—1,1)®C, and by Hausdorff-Young inequality and by virtue of the embedding

Ly(—1,1) C Ly(—1,1),

we obtain the following inequality

(Slef) <l

A

<cl|f

LQ(_lvl)@C

LP(_lvl)@C

<4

This means that the system {é,,} -, is a p-bases in M?* (—1, 1)@ C, and the system

Mpa(—11)&C

{a,},2, is g-close to {é,} - ,. Consequently, in this case, we can apply Theorem

1, which completes the proof of the theorem. [

Now, let us consider the basicity of the system {u,, ()} -, with a remote function
in space MP* (—1,1).

Theorem 6. If ny — is an arbitrary even number, the system {u,, (z)},~, ng JOTMS

an equivalent bases to the system {e, (x)} ~,, for MP*(—=1,1), 1 < p < oq,

n=1’

0 < a <. If ng — is an arbitrary odd number, then the system {u,, (x)} " does

n=0;n#ng

not form a bases for MP* (—1, 1), moreover, it is not complete and minimal in this

space.

Proof. From the formulas (3.4), (3.5) for the eigenfunctions {¢,, (z)} - of the con-
jugate problem, it follows that ¥, (0) # 0 for even n and ¥, (0) = 0 for odd

n. On the other hand, the formula (3.1) is valid for the system of eigenvectors of

oo
n=0’

d = md, (0) # 0 for even n, 6 = mv,, (0) = 0 for odd n and all statements of the

the adjoint operator .Z*. Applying Theorem 3 to the system{u,, } we see that

theorem follow from the corresponding statements of the Theorem 3. [
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Abstract

A hemiring is a ring without subtraction may not have identity and
commutativity of multiplication. If we replace binary multiplication by ternary
multiplication in a hemiring, it is called a ternary hemiring. Three different
approaches of Jacobson radical is already studied by us. We improve those
results to ternary hemirings. Dutta and Kar have studied some results on Ja-

cobson radical of a ternary semiring. Our results are much more improvised.
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1 Introduction

Lister [9] defined a ternary ring as an additive subgroup of a ring which is closed
under ternary multiplication. Dutta and Kar [2],[3] defined ternary semiring as a
ternary ring where additive inverse is absent in additive subgroup structure namely
it is a monoid. We generalize ternary semiring by ternary hemiring where multipli-
cation identity is not necessary. For example Z;, the set of non-negative integers is
a semiring, Z , the set of non-positive integers, is a ternary semiring and 27, is a

ternary hemiring.

2 Right quasi regularity

From our paper [5], we recall some definitions.

Definition 2.1 An ideal A of a ternary hemiring H is said to be semi subtractive if
and only if h € AN V(H), with V(H) = {h|h + I/ = 0 for some h' € H} implies
that ' € ANV(H)

Definition 2.2 An ideal A of a ternary hemiring H is called subtractive (k-ideal) if
a+beAac Hbe Aimply thata € A

Definition 2.3 An ideal A of a ternary hemiring H is called strongly subtractive if
a+be Aimply thata € Aand b € A.

Definition 2.4 Let A be an ideal of a ternary hemiring H. Then the k-closure of A, is
defined as

A={a€ H|a+b=cforsomeb,cec A}

Remark2.5ACB=AC Band A = /:1, A is always a subtractive ideal.
Definition 2.6 An element & of a ternary hemiring H is said to be right quasi-regular
(r.q.r) if for each ¢t € H there exists i’ € H suchthat h ® b’ = h + h' + hth' = 0.
Note that element 0 acts as an identity of operation ® and an element %’ is called
right quasi-inverse (r.q.i) of h. Dually if A’ ®h = h+h'+ h'th = 0, then h is called

left quasi-regular (1.q.r) and i’ as left quasi inverse (1.q.i).
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h is called quasi-regular (q.r.) if it is r.q.r and l.q.r.

Definition 2.7 A proper ideal P of a ternary hemiring / is called a prime ideal of
H if and only if for any ideals A, B,C of H, ABC' C P implies that A C P or
BCPorC CP.

Proposition 2.8 An element h € H is r.q.r. iff subtractive ideal

A = {hth' + Wlforall t € H andsome h' € H} = H. 2+ 2 = 4aa

Proposition 2.9 A right subtractive ideal A of H is r.q.r. then it is q.r.

Definition 2.10 An element i € H is nilpotent if for each i’ € H there exists a
positive integer n depending on A such that (hh')"h = 0.

3 Right Semi-regularity

Definition 3.1 An element / of a ternary hemiring H is said to be right semi-regular
if for each t € H there exist hy, ho € H such that

h + hl + hthl - hg + hthQ

An element A of a ternary hemiring H is said to be left semi-regular if for each

t € H there exist iy and hy in H such that
h + hy + hith = ho + hath

An element h of a ternary hemiring H is said to be semi-regular if it is both right
and left semi-regular.

Remark 3.2 Right quasi regular is a special case of right semi-regular if we choose
he = 0.

Proposition 3.3 Every nilpotent element in a ternary hemiring is right semi-regular.
Remark 3.4 Counter example for an right semi-regular element in a ternary hemir-
ing need not be nilpotent.

Let H = {0,—1,—2}. H is ternary hemiring under binary addition modulo 3 and

ternary multiplication modulo 3 operations. Clearly, all elements of [ are right
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semi-regular. But —1 and —2 are not nilpotent elements.

Definition 3.5 An ideal A of a ternary hemiring H is said to be right semi-regular
if for each h € H and for every pair of elements a;,as € A there exist by, by € A
such that

ay + b1 + alhbl + (lghbg = a9+ b2 + alhbz + aghbl C (1)

An ideal A of a ternary hemiring H is said to be left semi-regular if for each h € H

and for every pair of elements a;, ay € A, there exist by, by € A such that
a1 + b1 + blhal + thCLQ = ay + bQ + bghal + blhag e (2)

Anideal A of H is called semi-regular if it is both right semi-regular and left semi-
regular.

Remark 3.6 If we put a; = 0 in equation (1), we get a; + by + a1hby = by + a1 hb,.
This shows that a, is right semi-regular.

Theorem 3.7 An element a € H is right semi-regular if and only if for each h € H
and t € H there exist elements /.y, ho in H such that

h + h1 + ath1 = h2 + ath2

Lemma 3.8 (lemma 3.10,[3]) The sum of two right semi-regular ideals is right
semi-regular ideal.

a ternary hemiring H over a countable set €2, then right Jacobson radical of H is
defined by

‘]T‘(H) = ZAM

Theorem 3.10 The right Jacobson radical J.(H) of a ternary hemiring H is right
semi-regular.

Lemma 3.11 For right semi-regular ideal A, if a;, as € A such that

(1) a1 + by + a1tby + agtby = ag + by + atby + asth;
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(11) a; +c + cltal + Cgtag = a9 + cy + Cltag + Cgtal where bz‘, C; (Z = 1, 2) € A
and ¢ € H, then there exists an element d € A such that

b1+02+d:b2+01+d

Theorem 3.12 The right Jacobson radical J,.(H) is a left semi-regular ideal of a
ternary hemiring H.

Corollary 3.13 J, is a right semi-regular ideal of a ternary hemiring .

Theorem 3.14 J,. = J,

Definition 3.15 A ternary hemiring H is semisimple if and only if J(H) =0
Definition 3.16 A ternary hemiring  is a radical ternary hemiring if and only if
J(H)=H

Theorem 3.17 For a ternary hemiring H, H|J(H) is semisimple.

Theorem 3.19 Nil ideal N of a ternary hemiring H is contained in J(H).
Remark 3.20 Since J(H) is largest nil ideal and J(H) = 0 where H = H/J,
therefore there exists no non-zero left or right nil ideal in /. That is there is no non-
zero idempotent in J(H ) or a non-zero idempotent can not be right semi-regular.
Theorem 3.21 A nilpotent ideal U of H is contained in .J(H).

Lemma 3.22 J(H) is a semiprime ideal of a ternary hemiring H.

Lemma 3.23 Prime radical of a ternary hemiring H is contained in the Jacobson
radical i.e. P(H) C J(H)

Lemma 3.24 If « € H such that HaH C J(H), thena € J(H).

4 Representation hemimodule and Jacobson radical

Definition 4.1 An additive commutative monoid M is called right hemimodule over
a ternary hemiring A if the mapping M x H x H — M satisfies the following

conditions

1. (m1 + m2>h1h2 = m1h1h2 + mghlhg
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2. mlhl(hg + hg) == mlhlhg + m1h1h3
3. ml(hl + hg)hg = m1h1h3 + m1h2h3
4. (mlhlhg)h3h4 = ml(h1h2h3>h4 = mlhl(h2h3h4)

5. OMh1h2 = OM = m1h10H = m10Hh2 forOM,ml,mg € M, OH,hl,hg,hg,h4 S
H

Example 4.2 Let M,(Z, ) be the ternary hemiring of all 2 x 2 matrices over 7,
b
the set of all non-positive integers. Then M = { [g 0] la,b e Z } forms a right

ternary hemimodule over M(Z;).
Definition 4.3 A non-empty subset /V of a ternary hemimodule M of H is called
right ternary subhemimodule of M if

1. a+bée N and
2. ahihy € N forall a,b € N and hy,hy € H

Definition 4.4 An equivalence relation p on a [ ternary hemimodule M is called

linear if it is additive and homogeneous with regard to /1, that is
1. zpz’ and ypy' = (z +y)p(z' + )

2. xpx’ = xhihgpx'hihsg
forall x,y,2',y' € M and hy,hy € H

Definition 4.5 A linear equivalence relation p admits the cancellation law of addi-
tion if and only if

(z +y)p(z’ +y') and ypy' = wpa’

Definition 4.6 Let N be a H-ternary subhemimodule of H-ternary hemimodule M.
Then z,y € M are called strongly congruent module N, denoted by = = y(N) iff

T+ ny =y + ny for some ny,ny € N
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Definition 4.7 For a ternary subhemimodule N of a ternary hemimodule M are
called weakly congruent modulo N, denoted by z =, y(N) iff z + n; + z =
y+ng+ zforny,nyg, € Nyze M
Definition 4.8 The closure of a ternary subhemimodule N, denoted by N, is defined
as

N = {x € M|z + ny = n, for some ny,ny € N}

and the strong closure of /N, denoted by N , 1s defined as
N = {z € M|x+ny + 2z =ns + 2 for some ny,ny € N and z € M}

N is called closed in M if N = N and is called strongly closed in M if N = N.
Definition 4.9 )M is called representation hemimodule of a ternary hemiring H if

and only if
1. M is an H-ternary hemimodule

2. Cancellation law of addition holds i.e.  +y = 2+ 2z = y = z for all
‘/L" y7 z 6 M

Definition 4.10 The zeroid of a ternary hemiring H, denoted by Z(H ), is defined
as

Z(H)={a € H|la+ h = hfor some h € H}. Clearly, the zero element of H is in
Z(H).

Definition 4.11 Let M be a right ternary H-hemimodule. The annihilator of M in
H, denoted by Anng (M), is defined as

Anng (M) ={h € HIMhx =0 = Mxhforallz € H}

Definition 4.12 A representation hemimodule M of a ternary hemiring H is called
faithful iff Z(H) = Anng (M)
Definition 4.13 A representation hemimodule A of a ternary hemiring H with

M # 0 is called irreducible iff for each fixed pair of distinct elements m;, my €
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M and for all t € H, and for any x € M there exist hy,hs € H such that
T + mlthl + mgthg = mlthg + mchl
Definition 4.14 A representation hemimodule )M over a ternary hemiring f is

called semi-irreducible iff
1. MHH # {0}
2. there exist no non-zero proper closed subhemimodule of M.

Definition 4.15 Let (2 be the set of all irreducible representation hemimodules of a

ternary hemiring H. Jacobson radical of H, denoted by J'(H), is defined as

J(H) = () Anny (M)

Remark 4.16

1. IfQ = ¢, then J'(H) = H since H itself is the annihilator of only irreducible

hemimodule (0). In this case H is called radical ternary hemiring.

2. If € is the set of all possible irreducible representation hemimodule then
J'(H) = (0) i.e. any non-zero irreducible representation hemimodule M

is annihilated by 0 € H. In this case H is called simple ternary hemiring.

3. Z(H) C J'(H).

Definition 4.17 A ternary hemiring /7 is called primitive iff it has a faithful irre-
ducible representation hemimodule.

Definition 4.18 An ideal A of a ternary hemiring H is called primitive iff H/A is
primitive.

Lemma 4.19 For a representation hemimodule A of a ternary hemiring H and
ideal A of H with M HA # {0}

1. M is semi-irreducible and m € M then m = 0 iff mta = 0 for all @ € A and
forallt ¢ H
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2. M is irreducible and my, ms € M then m; = my iff mita = msta for all
a€ Aandforallt € H

Lemma 4.20 A representation hemimodule M # 0 of a ternary hemiring H is
semi-irreducible iff mH H = M for all m € M. That is for every 0 # m € M and
for any x € M there exist ¢y, {2, hy, ho € H such that

T+ mt1h1 = mt2h2

Corollary 4.21 If a right ternary hemimodule M is irreducible then it is semi-
irreducible and M HH = M.

Lemma 4.22 If M is an (semi) irreducible representation hemimodule of H and
N = 0 is an H-subhemimodule of M, then N is (semi) irreducible and representa-
tions of H with regard to endomorphism hemirings £(M) and F(N) are isomor-
phic.

Lemma 4.23 Let A be an ideal of a ternary hemiring H.

1. If M is (semi) irreducible representation hemimodule of H then either M AA =

{0} or M is (semi) irreducible representation hemimodule of A.

2. If M is an irreducible representation hemimodule of A then there exists an
irreducible representation hemimodule M’ of H such that ¢(A) = ¢/(A) via
correspondence ¢(a) <> ¢'(a) with¢p : A - E(M),¢' : H — E(M’) and
ac A

Theorem 4.24 J'(H) is strongly closed ideal of a ternary hemiring H.

Theorem 4.25 For an ideal A of a ternary hemiring H, J'(A) = An J'(H).
Corollary 4.26 J'(J'(H)) = J'(H)

Corollary 4.27 If J'( H) is a Jacobson radical of a ternary semiring (hemiring with
identity) then HaH C J' implies a € J'.

Lemma 4.28 An irreducible representation H-ternary hemimodule M is faithful
H/A hemimodule where A = Anny(M).



140 R.D. Giri and B.R. Chide

Lemma 4.29 [Theorem, 3.15, [2]] A strongly closed ideal A of a ternary hemiring

H is primitive if and only if A = Anng(M).

Lemma 4.30 J'(H) = () A; where A’s are strongly closed primitive ideals of a
i€

ternary hemiring H.

5 A unique equivalence relation yielding generalisa-

tion of both r.q.r. and r.s.r. properties

An equivalence relation a; pas on a ternary hemiring H is denoted by p(ay, as).
Definition 5.1 A pair of elements (a, b) is united with respect to p(a;,as) if and
only if for all ¢ € H, there exist by, b, € H such that

a —+ bl + altbl + Clgtbg =b -+ bg —+ &1tb2 -+ Gthl Ce (1)

holds.
We consider the following special cases:

Case 1: If we choose pair (a, b) as (a1, as), then (1) becomes
a1 + b1 + altbl + agtbg =as + bg + altbg + (lgtbl ce (2)

This defines right semi-regular right ideal.

We redefine right semi-regular right ideal as follows

Definition 5.2 A right ideal A is right semi-regular if and only if a pair a;,as, € A
is united with respect to p(a;, as).

Case 2: Similarly choosing pair (a4, 0) in place of (a;, as) in equation (2), we get
ay + b1 + altbl = bg + altbg Ce (3)

This rephrases definition of right semi-regular element.
Definition 5.3 An element a; is right semi-regular if pair (a;,0) is united with

respect to p(ay, 0).
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Case 3: The definition 2.6 of right quasi regularity can be redefined as follows.
Definition 5.4 The pair (aq, 0) is united with respect to p(aq, 0) if there exists a pair
(b1, 0) such that

a; + by + aytby =0...(4)

for all t € H. The equation (4) states that a; is right quasi regular and b; is right
quasi inverse of a;.
Lemma 5.5 Let £ = E(M) be the set of all endomorphisms of an irreducible

representation ternary H-hemimodule M. Then

1. If p(hy, hy) € E then for any a1, as in H, (a1 + hitay + hatas)p(hy, ha)(ag +
hitas + hotay) holds for all t € H.

2. If hq, hy are united with respect to p(hq, ho) then p(hy, he) = p1, a maximal

element of F.

Remark 5.6 a;p(ay, az)as does not hold is denoted by almag

Lemma 5.7 If almag, then there exists an irreducible representation ternary
H-hemimodule M such that at least one of a;, as does not belong to Anng(M).
Theorem 5.8 Jacobson radical J'(H) of a ternary hemiring H is semi-regular
namely it is right semi-regular and left semi-regular.

Corollary 5.9 J'(H) C J(H)

Theorem 5.10 Jacobson radical J'( H) of a ternary hemiring H is the largest right
semi-regular ideal (hence right quasi regular ideal) of H.

Corollary 5.11 J(H) C J'(H)

Theorem 5.12 J(H) = J'(H)

6 Examples

Example 6.1 Let H = Z; — {—1} with usual addition and ternary multiplication

be a ternary hemiring. Then M = 2Z; is ternary H-hemimodule.
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Example 6.2 Let I = Z; be a ternary hemiring under usual addition and ternary
multiplication. M = My(Z, ), set of all 2 x 2 matrices over Z, and N = My(2Z;).
Then N is a H-subhemimodule of M. M is also representation hemimodule.
Example 6.3 Let H = Z; — {—1}, M = 2Z; . Let E(M) be the set of endomor-
phisms A, defined as h,. : M — M given by x — xhh withx € M, h € H. Then
homomorphism

¢ : H — FE(M) defined by h — h, is a representation of H. Clearly E (M) is
commutative if /1 is commutative.

Example 6.4 Let H = {0, —1} we define binary addition and ternary multiplica-
tion on H as follows

0+40=0,0+(-1)=(-1)4+0=—-1, (-1)+(-1)=—1

0(=1)(~1) = (=1)0(~1) = (~1)(=1)0 = 0, (~1)(~1)(~1) = ~L.

Clearly, Z(H) = H and J(H) = H.

Example 6.5 Let [/ = Z; (set of non-positive integers) be a ternary hemiring un-

der binary addition and ternary multiplication.
Let M =275 and N = 6Z; , Clearly z =, y(N) and N = N
Example 6.6 Let H = {0, —a,—b, —c}. We define binary addition and ternary

multiplication by the following composition table.

+ 0 —a —b —c * 0 —a —b —c

0 0 —a —-b —c 0 0 0 0

—a | —a —a —b —c —a |0 0 a

-b | -b —-b b b —b |0 a b c

—c | —c —c —-b —c —c |0 0 c c
0 —a —b —c

0 0 0

a 0 —a

b 0 —a —b —c

c 0 0 —c —c

Note that * is binary and . is ternary multiplication.
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Clearly H is a ternary hemiring
Z(H)=Hand Z(H) C J(H) and hence J(H) = H
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Abstract

We write f) for the space of generalized almost convergence defined by

de la Vallée Poussin mean. In this paper, we characterize the matrix classes

(c(p), fx) and (£(p), f)-

1 Definitions and Notations

Let p = (px) be a sequence of strictly positive numbers with sup,, py < co. The

following sequence spaces have been introduced and studied by various authors
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(See Maddox [9], [10], [13]).

co(p) = {x:|zgP* — 0} (1.1)

c(p) = {z:|x, -1} — 0} forsomel e C (1.2)

lo(p) = {xrsgplrrklp’“ < oo} (1.3)

Up) = {z:> |wfp < oo} (1.4)
k

If H = sup,pr and M = max(1, H), the space {(p) is linear metric space
paranormed by g(z) = (3, |xx[h)*/*, and w(p) is a linear metric space with metric

function:
1/M
h(x) = sup {2’" Z |xk]p’“} (1.5)

where ) is the sum over 2" < k < 2"*! and it has been proved that w(p) is
complete (see Lascarides and Maddox [6]). If p, = p Vk, we have ¢o(p) = co,

e(p) = ¢, Loalp) = Lo and £(p) = 0.

2 Introduction

The notion of almost convergence is a generalization of (C,1)— summability
(see [4]) and it is observed that every almost convergent sequence is also (C,1)—
summable but converse is not true, (see Connor [2]).

In the same manner, we generalize the concept of (V, \)—summabilit to al-
most A\—convergence. We also define almost A\—conservative, almost A—regular
and almost A—coercive matrices in this chapter, analogous to the notion of almost
conservative, almost regular, and almost coercive matrices due to King [5], Eizen
and Laush [3].

Let A = (\,) be a nondecreasing sequence of positive numbers tending to oo,
such that \,;; < A\, +1and \; = 1.
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Write |
() = 5= D @ @.1)
kel
where I,, = [n — A\, + 1,n].
We define the following
Definition 1. A bounded sequence x = (xy) of complex numbers is said to be

almost \—convergent to a number | (see Leindler [1]) if and only if

lim t,;(z) =1, (2.2)

n—oo

uniformly in i; and write | = f) — lim .

We denote by f, the space of almost A—convergent sequences. If i@ = 0, the
expression in (2.2) reduces to the well known de la Vallée Poussin mean, or (V, \)-
mean, of the sequence () generated by the sequence (\,,) (see Leindler [7]).

If \, = nor (n+ 1), the space f, reduces to the space ¢ of almost all con-
vergent sequences (see Lorentz [8]), and if i = 0 and \,, = n or (n + 1), almost
A—convergence is reduced to (C, 1) —summability.

In this paper, we characterize the matrices of the classes (c¢(p), f), (¢ (P), f2)
and (¢(p), f) which generalizes the matrix classes obtained by Nanda ([11], [12]).

3 Main Results

Theorem 1. Let p € (.. Then A € (c(p), f») if and only if

(i) there exists some integer B > 1 such that, for each i,
6 = sup, Xy [t b, n)| B < o0,

(ii) awy € [fx for each k;

and

(iii) a € fy.
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In this case the fy-limit of Az is (limx) [u — Y, ug] + Y, uxy for x € c(p).

Proof. Let A € (c(p), f»). Since €*, e € c(p), necessity of (ii) and (iii) is obvious.
It is easy to see that (c(p), fr) C (co(p), fr). Therefore, for necessity of (i) we
observe that A € (co(p), fr) whenever A € (¢(p), f).

It is obvious that, for each i (f,, ;) is a sequence of continuous functionals in 7.
Then, by the uniform boundedness principle, there exists a sphere S[0, 6] C ¢o(p)
with0 < d < 1,0 =(0,0,0,...,0,...) and a constant K such that

foi(z) < K,

for each n,i and for every x € S[f,0]. For every integer » > 0, we define a
sequence (")) of elements of cy(p) as follows:
Mk sgn(t(i,k,n)), 0 <k <r;

xp = then 2" € S0, d], for every r and
0, r<k;

> |tli kon)| BTV < K,
k

for every n and i, where B = §~. Therefore, ¢; < oco.

Conversely, suppose that conditions (i), (ii) and (iii) are satisfied and = € ¢(p).

Then, there exists [, such that
|37k — l|p k— 0.
It is easy to check that (uy) € co(p). Given € > 0, there exists kg, such that

|$k—l|p"'/M< c

— <1
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for each k£ > k. Therefore, we have

Bl/pk|$k —l‘ < BM/pk’.Tk —l|

€ M/py,
2Ci + 1

e
26i+1’

for each k > ko, where M = max(1,sup,, ). By (i) and (ii) we have

Z t(i, k,n) — up| B~VP* < 2¢;.
k

Whence
1> (G, kyn) = we) (@, — D <Y1t kn) — w)(zp — )] + e,

and

hgn Z |(t(i7 k?”) - uk)(xk - l)| =0,

k<ko

uniformly in 7. Therefore,

lim > (i, kyn)ae = lu+ Y wg(zy, — 1),
k

k

uniformly in 7. This completes the proof. 0

Theorem 2. (a). Let 1 < py < oo, for every k. Then A € ({(p), f») if and only if

(i) there exists an integer B > 1 such that for every 1,

sup »  [t(i,k,n)|"B™% < oo, (py1+gyl=1);
n
k

(ii) awy € f», for every k.
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In this case the f) — lim Az is ), uixy, for every x € {(p).
(b). Let 0 < py < 1forevery k. Then A € ({(p), f)) if and only if

(i) sup, . [t(i, k,n)|P* < oo, for every i,
and
(ii) awy € fy forevry k.
Proof. Part (a) Suppose that A € (¢(p), f1). Necessity of (ii) is obvious, since

e € ((p). Since f, ;(z) exists for each n,i and z € {(p), therefore (f,,:(x)), is a

sequence of continuous real functionals on ¢(p) and further on ¢(p)

sup [ fni(z)] < o0,

for every .
Now, condition (i) follows by arguing with uniform boundedness principle.

Conversely, suppose that the condition (i) and (ii) are satisfied and = € {(p).

Now, we have, for every r > 1,

> " li kn)|% BT < sup Y [t(i, k,n)|% B~%;
k

k=1 "

and therefore

> Ju|*B* = limlim» |T(I, K, n)[*B~*
k k=1

< supz |t(i, k,n)|%* B~%*
"k
< o0

Thus the series ), t(i, k,n)xy and ), uyzy converge for each n,i and x € {(p).

For a given ¢ > 0 and x € /(p), choose ko, such that,

~ 1/H
(Z ka\p’“> <e, 3.1)

k=ko+1
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where H = sup pi. Since (ii) holds, therefore there exists ny such that for every

n > no,
ko
Z(t(i, k,n)—u)| <e.
k=1
By equation (3.1) it follows that
k=ko+1

is very small. Therefore

lign Z t(i, k‘, n)$k = Z ULk,
k k

uniformly in ¢, and hence the proof is complete.

Part (b) The case 0 < p; < 1 as similar proof as in part (a). Hence theorem is

completely proved. [
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