
I

I

Volume 30, Number l-2 (2011)



THE ALIGARH BULLETIN OF MATHEMATICS

Editorial Board

Chief Editor
Afzgl Beg

begafzal@yahoo.com

Managing Editor
Zafar Ahsan

zafar. ah san (@red iffmai l. com

S.S. Alam, Kharagpur, India
alam @maths. iitkgp.ernet. in

Q.LI. Ansari, Aligarh, lndia
qhansari@kfuPm.edu.sa

P.K.Banerji, JodhPur, India

baneriipk@yahoo.com

J. Bicak, Czech RePublic

bi cak@mbox.troj a. m ff. cuni. cz

Huseyin Bor, TurkeY

bor@erciYes.edu.ff

M. Bresar, Slovania
bresar@univ-mb.si

Luisa Carini, ltalY
lcarin i (rldipmat.unime. it

U.('. De, Kolkata, lndia
uc de@yahoo.com

T.R. Gulati, Roorkee, India
trgmai itr@redi ffinai l. com

C laus H aetin ger, Brazil
chaet@univates.br

Mohd. lmdad, Aligarh, India
mhimdad@yahoo.co.in

Huzoor H. Khan, Aligarh, India
huzoorkhan@yahoo.com

M.Z. Khan, Aligarh, India
m, alig@yahoo.com

Sunder t.al. Agra. lndia
sunder lal2@rediffmail.com

E. Malkowsky, Yogoslavia
eberhard.malkowsky@math. uni-giessen.de

Members

Managing Editor
M. Ashraf

mashraf80@hotmail.com

H. Marubayashi. JaPan

marubaya@naruto-u.ac jP

Fazal Mehdi, Aligarh, India
fazal-mehd i @redi fftnai l. com

Mursaleen, Aligarh, India
mursaleen@gmail.com

S. Natesan. Guwahati, India

natesan@i itg.ernet. in

P. Panigrahi, KharagPur. India

pratima@maths. i itkgP.ernet' in

R.P. Pant, Nainital. India

pant rp@rediffmail.com

S. Parvathi. Chennai, lndia

sparvath i@)hotm ai l.com

V. Popa, Romania
vpopa@ub.ro

S.M. Tariq Rizvi, U.S.A.
rizvi.l @osu.edu

Ekrem Savas, 'Iurkey

ekremsavas@yahoo.com

H.G. Sharma, SaharanPur, lndia
Irg.stdt milrri i itcrnct. ilt

Suthep Suantai, Thailand
scnti005@ch iangmai.ac.th

R.Tikekar, Vallabh Vidyanagar, India
tikekar@gmail.com

Jen-Chih Yao, Taiwan
yaoj c@math.nsysu.edu.tw

S.M.A. Zaidi. Aligarh, lndia
zaidim ath @red i ffm a i l. co m



Contents of Vol. 30, Numbers l'2 (2011)

Hydromagnetic flow of a two-phase fluid through
porous medium near a pulsating plate

Vimol Ktunar anrl S. S. Yadat' l-13

A new method for solving Fuzzy interval integer

transportation problem with mixed constraints

S.C. Shunna and Abha Bansal

1- Lacunary vector valued sequence spaces in
2- normed spaces Via Orlicz function
Ekretn SavaS

l5-24

25-34

Bianchi type-I cosmological model filled with viscous

fluid in a modified Brans'Dicke cosmology

L.N. Rai, Pri\enke Rai and R. K. Pra'satl 35-44

An Anisotropic Homogeneous Bianchi type-I cosmological

model in self-creation cosmologY

Priy-anku Rui tutd L.N. Rai 45-50

On 6-centralizers of semiprime rings

Mohurrunacl Nagv Daif, Mohuntmad Saved Tammum El-Suviad

ctnd Claus Hctetinger 5l-59

A Class of a- uniformly analytic functions

Vtnita .lain 6l-68

Numerical solution of transient MHD free convection flow of

an incompressible viscous fluid through porous medium along

an inclined plate with Ohmic dissipation
Htrrshborclhon Singh und S. S. Yada' 69-82

on generalized coupled fixed point results in partial metric spaces

Almtecl H. Soliman 8J-97

Additive mappings of semiprime rings with involution

Ntuleem ur Rehntutt nncl Abu Zuid Ansari 99- 104



The Aligarh Bulletin of Mathematics

Volume 30, Numbers 1-Z (2011) I -13

ISSN:0304-9787

Copyright @ Department of Mathematics

Aligarh Muslim University, Aligarh-202 002, India

HvonoMAGNETIC Fr,ow oF A Two-PHASE Fr,uro
THnouGH PoRous Mroruvr Nn.lR A PULSATTNG

Pr,arn

Vimal Kumar and S. S. Yadav
Department Of Mathematics, N.D. College (Shikohabad, UP)

(Received December 17, 2010)

Abstract

An initial value investigation is made of the motion of an incompressible, viscous,

conducting fluid through porous medium with embedded small inert spherical particles

bounded by an infinite rigid non-conducting plate. The unsteady flow is supposed

to generate from rest in the fluid-particle system due to velocity tooth pulses being

imposed on the plate in presence of a transverse magnetic field. It is assumed that

no external electric field is acting on the system and the magnetic Reynolds number

is very small. The operational method is used to obtain exact solutions for the fluid
and the particle velocities and the shear stress at the plate. Quantitative analysis of the

results is made to disclose the simultaneous effects of the magnetic field, porosity of
porous medium and the particles on the fluid velocity and the wall shear stress.

Introduction

The fluid flow generated by the pulsatile motion of the boundary is found have immense

importance in aerospace science, nuclear fusion, astrophysics, atmospheric science, cosmi-

cal gasdynamiqs, seismology and physiological fluid dynamics. The investigation in this

direction was initiated by Ghosh [5] who examined the motion of an incompressible vis-

cous fluid in a channel bounded by two coaxial circular cylinders when the inner cylinder

is set in motion by pulses of longitudinal impulses. Subsequently, Chakraborty and Ray

[2] studied the unsteady magneto hydrodynamic couette flow between two parallel plates

when one of the plates is subjected to random pulses. Makar [10] presented the solution of
magnetohydrodynamic flow between two parallel plates when the velocity tooth pulses are

imposed on the upper plate and the induced magnetic field is neglected. Bestman and Njoku

Keywords and phrases : Hydro magnetic; Pulsatile Flow; Dusty Fluid, porosity of porous medium.

AMS Subject Classification : 76R10, 76W05.
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I I ] constructed the solution of the same problem as that of author [ 10] without ignoring the
effect of the induced magnetic field and using the methodology different from that of au-
thor I l0] to arrive at the solution of the problem. Most recently, Ghosh and Debnath [6]
considered the hydro magnetic channel flow of a dusty fluid induced by tooth pulses while
Ghosh and Ghosh [7] solved the same problem as that of authors [6] replacing the boundary
condition at the upper plate of the channel by rectified sine pulses instead of tooth pulses as

encountered by authors [6]. On the other hand, Datta et al. [3, 4] examined the heat transf'er
to pulsatile flow of a dusty fluid in pipes and channel with a view to their applications in the
analysis of blood flow. Recently, Ghosh and Ghosh [8] have studied on hydromagnetic flow
of'a two-phase fluid near a pulsating plate. In spite of the above works it is noticed that the
development of the unsteady flow in a semi-infinite expanse of fluid due to pulsatile nrotion
of the boundary has hardly received any attention although such problems are important for
the analysis of suspension boundary layers. The main objective of this paper is to study
these problems with a view to physical applications.

The present paper is concerned with the unsteady hydromagnetic flow of a semi-infinite
expanse of an incompressible, electrically conducting, and viscous fluid through porous
medium containing uniformly distributed small inert spherical particles bounded by an in-
finite rgid non-conducting plate. The motion is supposed to generate from rest in the fluid-
particle system due to velocity tooth pulses irnparted on the plate. The analysis is carried
out to obtain exact solutions for the fluid through porous medium and the particle velocities
and the shear stress exerted by the fluid on the pulsating plate. The quantitative analysis
is made to examine the effects of the particles and the magnetic field, porosity of porous
medium on the fluid velocity and the wall shear stress.

2 Mathematical formulation

Based upon the two-phase fluid flow model of Saffman Il], the equations of unsteady
motion of an electrically conducting viscous fluid through porous medium with embedded
identical small inert spherical particles in presence of an external magnetic field are in usual
notation.

0rt

i)t
* (ri.A)'u : -)Oo *,L2tt * 

Tn,, - 
u) + 

)O "
B\ - !t,,K (2.1)

l) ,\

(2.3)

*1*+ (, 
^),]

: ll(u - t,)

Az:0

Where

'u : (rr,1,, tto, u,") : fluid velocity

'rr : (?.rr, ur,u"): particle velocity

and #.A.(Nu):s

.>



Hydromagnetic flow of a two-phase . . .

R : (Br,llu, Br) : magnetic flux density

j : (jr, ja, j=) : Current density

P :fluid pressure

N == nurnber density of the particles

p,'tr: density and kinernatic viscosity of the fluid

rn : mass of the individual particles

ft : Stokes resistance coefficient which for spherical particles (of radius ais 6trprtl

fi -- permeability of porous medium

In the above set of equations the particles are assumed sufficiently small so that gravi-
- tational action on them in equation (2.2) may be neglected compared with the fluid velocity.

The Maxwell equations with usual MHD approximations are:

tlit, 13:(1. rot B: Hj. ,nt E: -ff (2.1)

Where

F) .,. tE*. E!t, I')r) :electric field

j:o(E:;uxI))

o : electrical conductivity

l/ -- magnetic permeability

We take r-axis in the direction of flow with origin at the plate and y-axis perpendicular
to the plate. The motion is generated in the fluid-particle system due to velocity tooth pulses

irnposed on the plate. Is the strength of the external magnetic field acting parallel to y-axis.
Since the motion is a plancr one and the plate is inlinitely long, we assume that all the
physical vimahles are indepenilcnt of t: and ir,. then fiom the equations (2.3) of continuity
and lrom the physical conclition of the problem, we have

,11 ,,= ir.Lt 
,.i!1 , i).0,01, .Lt : l,.ur.(t1. r),0.0] , lv- : 1y'0 : constant (2.6)

Further liom the first equation uf (4). !# :0 gives

3
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By: Constant - Bs (2.7)

It is also obvious from the physical situation that and will vanish. Second equation of

then gives

ja:0 and
. AB*

ll.Jz : - û?t
(2.8)

field, E canAgain the fluid flows in the z-direction and there is no external electric

have z-component onlY.

It therefore tbllows from (2.5) that

(ixB),:-oBo(E"*u*Bs) (2.e)

We assume at this stage that o is small so that the perturbation in the magnetic field

rnay be neglected. We also assume that the current is mainly due to the induced electric

field j : o(u x B) so that E, can be neglected. Therefbre, from equations (2.1), (2.2) and

(2.9), we have

#:,,?# * okr(,- u) - +"- +" (2.10)

(2.11)

(2.13)

(2.t4)

represents the Hartman

0u1..-:-(z-tr)
0tr

Where (,ur,ur) are replaced by (r, u), A. : ,P : ratio of the mass density of the par-

ticles and the fluid density = mass concentration df the particles and r : ? : Relaxation

time of the particles.

Introducing the non-dimensional variables

and

and

for 0
number.

rU
l' :: 

-.tl
r'11,t

9-r1 o-. 
JUT T

,UKK ---T

in (2.10) an6 (2.1 I ) and dropping the primes, we get the non-dimensional equations in the

form

0u 02u

*: UF*k(u-u)-nu

rU'u -- (J,

*:tu-,,\
dt

1A 3 x, t > 0, where n: (M + +),M _ oBBr
p

4



Hydromagnetic flow of a two-phase ' ' '

The problem now reduces to solving equations (2.13) and (2.14) subject to the bound-

ary conditions given by

u(A,t):f(t) on g:0, t>0

{u(u,,t),u(y,t)} -+ {0,0} as s -+ oo, , > t)

and the initial conditions

(2.15)

(2.16)

z(y,0) :0: u(g,g) for 0 S A < 6 (2.17)

Where /(t) represents the tooth pulses which is an even periodic function with period

2 and strength ET.

3 Solution of the problem

In view of nature of /(t) mentioned above the mathematical form of u(0, t) may be written

as 
p( oo ')

u(o,t):*{rrV) +2ip= 1(-1)e (t-e\H(t-p:r) } (3 1)
/[ )

Where H(t) is the Heaviside unit step function deflned as .F/(t * T) : 0,, < T and

H (t - T) : l,t >_ T . By using half-range Fourier series the condition (3.1) may also be

expressed as

. E 4Es ^ 1 {(zp+l)rtlu(o,v) : ; - A LP : o 
12o 412""t t-?-i (3.2)

The use of Laplace transforms method for the solution of (2.13) and (2.14) with initial

condition (2.17) gives the transformed equation for the fluid velocity in the form:

a'y _1 (t + s)(s + r +n) - r\ o : n
@-\ 1+s

With
u-+0 as .q-+oo

And

n : #t*, (f;) mbor at a : o

Where s is the Laplace transform variable.

The transformed solution for the fluid velocity u(y,s) becomes,

u(a,s): #*", (f) ""r{-, [,".r",1',.'']*]
Where

": rftr, * n) + {al * 2n(a1 - 2) + n'}L),

(3.3)

(3.4)

(3.5)

(3.6)

5
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- 2) +"')i] ,o:;l@, * rr.) - {a! + Z"("y

with

nt:1+/c

The inversion of (3.6) gives

c) a1> l> d.

s*1

llicnEf
u(y,t) : 2niT .l

^i -iu:

e"t
;

sin

COS

(f)
B

h

h, ]*)" 
(3 7)

(s+r:)(s*d)
",0{-,

The inversion integral has a pole at s : 0 and a series of poles at ,s : *'i/p, Ap :
@+b, p : 0.1,2,... and branch points at s : -c,-t|. - 1 as shown in the contour

drawn in figure 1 in the complex .s-plane.

Evaluating (3.7) with the help of Cauchy's residue theorem applied to the contour in

figure l, we get

!* : )"-o'r;a #nh"., {#\ ""1# - u,,)

),,

(c-r)(r-d)
l-r dt: (3.8)

where L\, LI,2 -- ---r-JTTq, {+\ca + glk + d - 1)l

+ tf l,a + \fik + d - 1)l' + gfilr' + rt - cd + tJil'')..'

It is to be noted here that when -E : 2 and T --+ 0 the result (3.8) coincides with the

dimensionless form of the result corresponding to uJ -+ 0 case of authors Yang and Healy

[12] and describes the fluid velocity for hydro magnetic flow of a particulate suspension

near an impulsively moved plate.

The particle velocity for the corresponding motion can be obtained from (2.l4) as

t
,f

u(y,t) : e-' I u(y,r1)endr1
J
0

(r-c)(r-d,)

# jY#"'*i'{u
d

which on using (3.8) becomes

(3.e)

6

t V tanh*
rT .l rz



Hydromagnetic flowof atwo-phase... 7

where 
e_tan_tgp

In particular when ,k -+ 0, the result (3.8) provides the solution for the clean fluid
velocity in the form

u(a,t) :!,-oJi- 4 S 1 on-{v"t\"^* lYr, I
E : ," "n'. - r, kq*o \e j *" lA - p,r)

r V ann*-# I :+ze-""i"{al@ -'l\a" (3'11)

Where

*1,e2: {*r, + XF af
Further, when .E : 2 and T -+ 0, (3.1l) reduce to

r 7 o-rt
u(a,t) : s-at/n - ; J 

:- sin{r/r - n}dr

: 
f,{"ofr"rf "(rl + t/nt) + e-afrerf c(rl - \/nt)}, ,l : h (3.12)

which is the well-known solution of hydro magnetic Rayleigh problem (cf. authors

tl2l).
On the other hand, if n -+ 0 we get from (3.12) the classical Rayleigh solution as

\0"
(3.10)

u(y,t) : erf c(q) (3.13)

The fluid velocity given by (3.8) attains the steady-state in the limit t -+ oo and the

ultimate flow becomes

(r-c)(r-d)

(c-r)(r-d)

-1

.#j*F{+i}*{
d,
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u(Y,t):
E

""-0, 
hnh* { #} *"1# - a,') (3.14)

(3.16)

and the particle velocity in this situation is

Comparing (3.14) with (3.15) we find that the particles in the steady-state move faster
than the fluid with a phase lead due to the presence of po. But when 0p -+ x, i.e. 7 -+ 0,

we have lL : u. This shows that the particles attain the fluid velocity in the steady motion
generated by impulsively rnoved plate in an inertial system. This result is known from
Michael and Miller's analysis [9]. Moreover, the ultimate flow given by (:.14) consists
of two distinct boundary layers. One is a Hartman layer of thickness of the order 1/ff
and the other is a Stokes-Hartman layer of thickness of the order ,ffi Since ,411 ) n
the thickness of the Hartman layer is greater than that of the Stokes-Hartman layer which
decreases with the increase of the particles and the magnetic field. However, in the lin-rit
T -+ 0(p, -+ oo) there exists only the classical Hartman layer in the vicinity of the plate.

The exact solution of the shear stress at the plate A : 0, in dimensionless form, is
given by

""o(-#) {*,(# - o,t+e)} (3 15)

4 $ MlcoslJp-t- M2sinflrt
rrzl@

u(a,t) :
E

!"-u,f"t'- 1S
2- '-12 L

P:0
a2
Pp

JA

i_.
I I tanh#

* * J ,,:'"
d

-rr{ -d)T

TIt

1

(c-

Which when k -+ 0 yields

ro Ji 4 S a1 cos 9p - t - tu2sin ljrt_:___!E-2'F4@

.#i r=#"-,, 
{/1. - a} a, (3 12)

However, when E' : Z unlf-> 0, we have iiom (3.17)

oo
1 f e-'trs:Ji+:1:-,-1/@l,t*
TJ {I

!7

(3.18)

8

,0:
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Hydromagnetic flow of a two-phase . . .

Which is the shear stress at the wall corresponcling to hydro nragnetic iiayleigh prob-

lem and when n --+ 0, provides the familiar result

TO-
{cn

(3.1e)

4 Numerical results

The quantitative analysis of the results (3.8) and (3.16) when T : 2 are presented in the

figures (2) and (3). From figure - (2), it is seen that the magnetic field (11l) has a diminishing

effect on the flow which reduces with the increase of particles (ft) in the fluid and enhances

with the increase of time (t). For instance, when t : 2.5 and If increase from 0.01 to 0.1

the fluid velocity decreases when k : 0 and the fluid velocity increases with increasing

porosity (/{) of porous medium. Similar results fbr t : 25 they are respectively.

Regarding the elfect of particles on the flow, we notice that, for small values of time

when the effect of pulsation is reasonably small, the particles produce diminishing effect on

the fluid velocity near the plate which is a consequence of inertia of the particles. But for
large values of tirne, when the effect of pulsation is significantly high, the particles increase

the fluid motion near the pltte which is further enhanced with the increase of the magnetic

field. In this situation, the particles attain the non-equilibrium process of relaxation due to

the effect of pulsation. This stage continues up to a certain distance from the plate. As a
result, the particulate motion near the plate cannot settle down as quickly as the clean fluid
for large values of time. For example, if the unsteady motion is generated in a two-phase

fluid system due to impulsively moved plate, the particles diminish the fluid velocity for all

values of time owing to the effect of inertia of the particles playing a vital role to resist the

motion (cf. Ref. 10). In this context, we would like to mention that the increasing effect

produced by the particles in the fluid motion near the plate due to pulsation at large values

of time can be controlled by introducing solid body rotation on the whole system. This
phenomenon will be discussed in a subsequent paper of the authors.

Finally, we observed that the magnitude of the shear stress exerted by the fluid on the

plate increases with the particles, the magnetic field and porosity which is expected up to

moderately large values of time as shorvn in ligure-(3).

The shear stress decreases with increasing porosity parameter (1(). This figure fur-
ther shows the appearance of negative sheirr stresses on the wall before the end and at the

beginning of consecutive pulses acting on the plate. This is due to the fact that, during
decelerating rnotion of the plate, the positive shear stress acting on it, exerted by the fluid,
goes on diminishing and a stage will come when the fluid in motion drags the plate towards

its destination by applying shear stress in opposite direction (negative shear stress) on it.

Such a condition prevails till the plate acquires sufficient momentum to overcome the effect

of the negative shear stress dudng its next accelerated motion caused by the pulse. lt may

also happen that there appears no negative shear stress on the plate if the strength of the

magnetic ficld be further increased which damps the fluid motion sufficiently so that the

L [ {1a,:
rJ 1/r

9



l0 Vimal Kumar and S. S. Yadav

plate can come to rest without the assistance of a negative shear stress produced by the fluid
on it. This is consequence of the effect of the magnetic field on the motion of the fluid.

Fig. -l: Counter integral path for (3.7)

-c -1 -d
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MKTK
I 0.o1 2 2.5 A
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Fig.2 : Velocity distribution for different values of M, K, t and /c.
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Abstract

In this paper we proposed a new method, namely Separation method based on zero

method is used to find a solution of fuzzy interval integer transportation problem with
mixed constraints. This method is very easy to understand and apply. The separation

method can be served as an important tool for the decision makers when they are

handling various types of logistic problems having interval parameters. This method

can be illustrated with a numerical example.

Introduction

The transportation problem is to transport various amounts of a single homogeneous com-

modity that are initially stored at various origins to different destinations in such a way

that the total transportation cost is minimum. It is a spccial class of a linear program-

ming problem. Let us consider a production in which a transportation is from rn-sources

to n-destinations and their capacities o.1, a2, ayt " ' , arn and b1 ,b2,by, " ' ,b, respectively.

Various efficient methods were developed for solving transportation problems with the as-

sumption of precise sources, destination parameters, and the penalty factors.

Many researchers see, e.g., [3, 4, 5] have solved transportation problems with inexact

coefficients by fuzzy and interval programming techniques. Das and other researchers [5]

Keywords and phrases z Fuzzy integers, Transportation probtem.

AMS Subiect Classification: 90806.
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proposed a method, called fuzzy technique to solve interval transportation problem by con-
sidering the right bound and the mid point of the interval. A new method have proposed
by Sengupta, Pal [7] to solve Interval transportation problems with the mid point and width
of the interval in the objective function.Adlakha et. al. [1] proposed a heuristic method for
solving the transportation problems with mixed constraints which is based on the theory
of shadow price. Recently, Pandian and Natarajan [6] have proposed a new algorithm for
Iinding afuzzy optimal solution for fuzzy transportation problem.

ln this paper, we use separation method for finding optimal solution of fuzzy interval
integer transportation problem with mixed constraints where all parameterc are trapezoidal
fuzzy numbers. This new method is based on zero method and also, it is very simple, easy

to understand and apply. The solution procedure is illustrated with the help of numerical
example.

2 Fuzzy integer transportation problem with mixed constraints

Consider the followingfuzzy integer transportation problem with mixed constraints.

(P) nrin.z =fiuo,ou,
i:r j:r

s.t.

n
!:..-

Lioi x d.i,i :1,2,3,.... ,m
j:7

n

Dr,, ) d.i,i -- \,2,2, .. . . ,m
j:1

.1-
Liri I d.;,i : 1,2,3,....,2
j:1

m

Li4 = bi, j :1,2,3,..-- ,n
i:t

n'L

Li4 2 bi,j : 1,2,3,....,n
i:t
fn

Dr4 aii,j : 1,2,J,....,n
i:l

iq 26,i : 1,2,3,...,nx alrtd i : 1,2,3,... tn andare integers
where

2 : ("r,22, zg, z4)
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m = the number of supply points;

n = the number of demand points;

rtu : @1a,r7,rto,rl) rs the uncertain number of units shipped from supply point r. to

demand point j;

eq : ("rr,"?,"|,cf ) is tfre uncertain cost of shipping one unit from supply point i to the

demand point j;

6,i: (a|,af,,ari,of ) is the uncertain supply point i;

bo : (4,btr,btr,bf ) is ttre uncertain supply point /,

3 Fazzy interval integer transportation problem with mixed con-

straints

A trapezoidal fuzzy number (a,b,c,d) can be converted as an interval number form as

follows.

(a,b,c,d) : [a+ (b- a)a,d - (d- c)a];a: 0 and 1 (3'1)

Using relation (3.1), we can convert the given fuzzy integer transportation problem with

mixed constraints into a fuzzy interval integer transportation problem with mixed con-

straints. Such that rn n

min.lz1, zz): I ltcii, "!,1e1"!,,r!,1t:1 j:t

s.t.

it-i,, r?i) = lol, o?1,'i : t,2, J,''', m;
j:1

n

ll"l,,, "?il 
>_ [ol, "?1,,i 

: !,2,3,. . ., m;
j:t

n

\1"1,, "?i s lol, o?1, i : 7,2,3,. . .,'m;
j:L

n

11"|,,"?i * lq,q),i :7,2,3,... ,n;
j:t

n

ll"l,,, "7i 2 lbl,b?1, i : 1,2,2,. . ., n;
j:r

t1
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n

ll"l,, "?i a [b],q), j : t,2,2,. . .,n;
j:1

,1, Zo,r?r 2o,i: \,2,3,... ,m,and, j :1,2,J,... ,nandare integers.
where rl, and r!, are positive real numbers for all i and j, al and a! are positive real
numbersfo, all iblandblare alsopositiverealnumbersforall j. Usingtheseparation
method, we can solve the interval transportation problem with zero method.

4 upper and lower bound integer transportation problem of
fuzzy interval integer transportation problem with mixed con-
straint

The upper bound integer transportation problem of the fuzzy interval integer transponadon
Problem is 

n n.

min.z2: t Lr?i,r?i
i:1 j__1

s.t.
TL

D,"?, * af, ,i. : t,2,2,...,ffi;
j:r
n

D,*?, > o?,i:1,2,J,... ,ffii
j:1

rL

L,r?, < o?,i. : t,2,J,.' .,m;
j:1

rn

D*?, x b], j :1,2,J,... ,n,
i:1
rn

L*?, > u?,i : 1,2,J,...,n)
i:l
rn,

L,r?, <u:j, j :1,2,2,... ,D,
i:t

Then the set {zli for all i and j} is an optimal solution of the upper bound integer
transportation problem.

The lower bound integer transportation problem of the fuzzy interval integer transporta-
tion problem is

min.z1: i i"1,,*1,
i.:1 j:7



A new method for solving fuzzy interval '''

s.t.
n

L,rl, x al,i : 1,2,3,...,ffi,
;:1

i"l, > ol,i: t,2,2,.-. ,ffii
j:r

n

D,"1, < ol,i:1,2,3,... ,ffii
j:1

fn

L,"1, x b),i : 7,2,3,...,2i
i:t
m

L,"l, r- bj,i : t,2,.t,... ,ni
i.:1
m

Lrl, <fi,i : 1,2,3,...,2i
i:r

Then the set {ilj for all i and j} is an optimal solution of the lower bound integer

transportation problem.

5 Separation method

Separation method can be understood with the help of algorithm for solving fuzzy intewal
integer transportation problem. Algorithm of the separation method is as follows.
Step 1. Write the upper bound integer transportation problem of the given fuzzy interval

integer transportation problem.

Step 2. Solve the upper bound integer transportation problem using zero method.

Step 3. Construct the lower bound integer transportation problem of the given fuzzy interval
integu transportation problem.

Step 4. Solve the lower bound integer transportation problem using zero method.

Step 5. The solution of the given fuzzy intewal integer transportation problem is {ftl i, r2o i)
for all i and j)-

6 Zero method

We, now proposed a new method called zero method for finding the optimal solution for
the transportation problem. The method is proceeding as follows.
Step 1. Convert all inequalities into equalities.

Step 2. If the given transportation is in unbalanced transportation problem, then make it
balance transportation problem by introducing dummy rows or columns.

Step 3. Subtract each row entries of the transportation table from the corresponding row

minimum.
Step 4. Suhtract each column entries of the transporlation table from the cotresponding

19
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column minimum.
Step 5. Remember that each row and each column has at least one zero.
Step 6. Allocate the minimum cost from demand or supply in the corresponding zero.

Step 7. Repeat the procedure form the step 3 to step 6, until we get the optimal solution.
Step 8. Place the loads of the dummy rows or columns of the balanced at the lowest cost
feasible cells of the given transportation problem to obtain the optimal solution for the
transportation problem with mixed constraints.
Step 9. Thus we get the optimal solution for the new transportation problem with mixed
constraints.

7 Numerical Example

Consider the followingfuzzy integer transportation problem with mixed constraints.

Table 1

I 2 3 Supply
I (1,2,3,4) (2,5,8,11) (2,4,6,8) =(2,5,8,1l)
2 (2,6,10,14) (1,3,5,7) (0,1,2,3) >(3,6,9,12)
3 @,8,12,16) (3,9,15,21) (1,2,3,4) < (3,9, 15,21)

demand x(4,8,12,16) >(8,10,12,14) <(3,5,7,9)

Now, the fuzzy interval integer transportation problem of the above problem is given below.

Table 2

Put a : 0 in the above fuzzy interval integer transportation problem. We get the fol-
lowing fuzzy interval integer transportation problem with variables [r]r, rlrl tor all i and j
coresponding to the above interval integer transportation problem.

Thble 3

I 2 J Supply
I (1,4) (2,t1) (2,8) x(2,11')
2 (2,14) (1,7) (0,3) >(3,12)

(4,16) (3,27) (1,4) < (3,2i)
dernand x(4,16) >(8,14) <(3,9)

Now, the upper bound integer transportation problem of the above ftzzy interval integer
transporJation problem is as follow.

I 2 -) Supply
i 1*o,4-a) (2+3a,11-3a) (2+2a,8-2a) x (2 * 3o5, 1l lla)
2 (2+4a,14-4a) (l+2a,7-2a) 0+o,3-a > (3 + 3cr, 12 - 3a)
3 (4+4a,16-4a) (3+6a,21-6a) *a,4-a < (36o,21 - 6cl)

demand = (4 + 4a,16 - 4a) > (8 + 2a,74 - 2a) 3+2a,9-2a)
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Table 4

1 2 3 Supply

I 4 11 8 rll
2 t4 7 J >t2
J l6 21 4 <21

demand =16 >_ 14 <9

Convert the all inequalities into equalities; we get the following transportation problem

Table 5

I 2 J Supply

4 11 8 = l1
2 T4 7 J - la

J 16 2l 4 =2L
demand =16 =14 -9

NoW using the zero method, the optimal solution to the upper bound integer transportation

problem is

Table 6

1 2 J 4 Supply

I 4 16) l1 8 0tsl = 11

2 t4 7t3l 3tel 0 =12
J 16u0l 21[1 l] 4 0 =21

demand =16 =14 -o 5 = 4rA,

Now, using the step 8, we get the following solution for the upper bound integer transporta-

tion problen:.

Table 7

1 2 J Supply

1 4 u1l l1 8 =11
2 t4 7l3l 3tel >12
J 1 6tl0l 21t111 4 <21

demand =16 >14 <9

So, the optimal solution of upper bound integer transportation problem is t ?r : 11. 1:1, :
3,7tt : 9,7tr - 10,x12 : 11 and the transportation cost is rn'in'2r : '1t13' Now', the

lower bound integer transportation problem of the above fuzzy interval integer transporta-

tion problem is as follow.

I
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Table 8

I 2 3 Supply
1 1 2 2 N.,

2 2 I 0 >3
J 4 J I <3

demand x4 >8 <3

Similarly using Zero method and Step 8, we get the optimal solution of lower bound integer
transportation problem is

Table 9

I 2 J Supply
I 1 l4l 2 2 -'lNL

2 2 l tsl 0t3l >3
3 4 3t3l 1 <3

demand x4 >8 <3

xlr : 4,Vlzz: 5, xls :S,Xlz: 3 and the transportation cost is Min.zr : 18.
Put a : 1 in the above fuzzy interval integer transportation problem. We get the following
fuzzy interval integer transportation problem with variabl es [r!r, rlr] for all i and j.

Thble 10

I 2 J Supply
I (2,3) (5,8) (4,6) = (5, 8)
2 (6, 10) (3,s) (1,2) > (6,9)
J (8, l2) (9,12) (2,3) < (9,15)

demand = (8,12) > (10, r2) < (s,7)

Now, the upper bound integer transportation problem of the above fuzzy interval integer
transportation problem is as follows.

Table 11

I 2 J Supply
1 3 8 6 =8
2 l0 5 2 >9
3 t2 15 J <15

demand ;y 12 >12 <1

Similarly, using Zero method and step 8, we get the following optimal solution for the upper
bound integer transportation problem.
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Table 12

1 2 J Supply

1 3t8l 8 6 =8
2 10 sl2l 2l7l >9
J 1zts) 1slr0l 3 <15

demand x12 >t2 <7

So, the optimal solution of upper bound integer transportation problem is 7!, : 8,X32 :
2,X1s : 7,Xlr : 5,X32 : 10 and the transPortation cost is min.zs : 258.
Now, the lower bound integer transportation problem of the above fuzzy interval integer
transportation problem is as follows.

Table 13

1 2 J Supply
1 2 5 4

2 6 3 I >6
3 8 9 2 <9

demand =8 >10 <5

Similarly using Zero method and Step 8, we get the optimal solution of lowerbound integer
transportation problem is

Table 14

1 2 3 Supply

I zls) 5 4 =5
2 6 3t4l 1t5I >6
J 8t3l et6l 2 <9

demand =8 >10 <5

X?t:S,XZz:4,732:5,VZt = 3,fiz : 6 and the transportation cost is Mi.n.z2: 105.

Hence, the fuzzy optimal solution for the given fuzzy integer transportation problem is

iu x (4,5,8,11),Izz = (5,4,2,3),Xzs E (3,5,7,9),/.ar * (0,3,5,10) and itz =
(3, 6, i0, 11) wirh the fuzzy objective value V - (18, 105, 258, 483).

8 Conclusion

We have attempted to develop the separation method based on zero method provides an

optimal solution of thefuzzy interval integer transportation problem with mixed constraints.
This method is a systematic procedure, which is very simple, easy to understand and apply.
This method provides more options and can be served an important tool for the decision
makers when they are handling various types of logistic problems interval parameters.
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Abstract

In this article we introduce 1- convergence of some lacunary vector valued se-
quences with respect to an Orlicz function in 2-normed spaces.

Introduction

The notion ofideal convergence was introduced first by P. Kostyrko et al [7] as a general-
ization of statistical convergence

The concept of 2-normed spaces was initially introduced by GZihler [4] in the 1960's.
Since then, this concept has been studied by many authors (see, for instance ( [13],[11]).

Recently Savas ([14],[15]) defined some new sequence spaces by using Orlicz function
and ideal convergence in 2-normed spaces.

In this article by using Orlicz functions and ideal convergence of sequences we intro-
duce f- convergence of lacunary sequences with respect to an Orlicz function in 2-normed
spaces.

Let (X,ll . ll) U" a normed space. Recall that a sequence (r,r)r.s of elements of X is
saidtobestatisticallyconvergenttou€XifthesetA(e):{n€N:llr"-ull >e}has
natural density zero for each e > 0.

A family I c 2Y of subsets a nonempty set Y is said to be an ideal in Y if G) A e Z;
(ii) A, B e L implies Att B e Z; (iii) Ae I., B c Aimply B € Z, whileanadmissible
ideal Z of Y further satisfies {"} e 7 for each r e Y (see, [7],[8] ) .

Given Z c 2N be a nontrivial ideal in N. The sequence (rr)rex in X is said to be
T,-convergenttor € X,if foreache > 0thesetA(e): {neNrllr"-zll >e}
belongs to Z ( [7, 8]).

Keywords and phrases : sequence spaces,2-normed spaces, I-convergence, lacunary sequence.

AMS Subject Classification : 40A05, 46A45;46870.
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Let X be a real vector space of dimension d, where 2 < d < oo. A 2-norm on x
is a function ll.,.ll : X x X -+ Rwhich satisfies (i) ll",gll : 0 if and only if r and
s are linearly dependent; (ii) llc, yll : lly,rll ; (iii) llor,all : lal llr, yll, a e IR.; (iv)
llr,'y * zll S llr, yll + lb, zll . The pair (X, ll., .ll) is then called a 2-normed space [5]. As
an example of a 2-normed space we may take X : R.2 being equipped with the 2-norm
llr, yll :- the area of the parallelogram spanned by the vectors n and y,which may be given
explicitly by the formula

Recall that (X, ll.,.ll) is a 2-Banach space if every Cauchy sequence in X is convergent to
some r in X.

Recall in [9] that an Orlicz function M : l0,oo) -+ [0, oo) is continuous, convex, non-
decreasing function such that M(O) : O and M(r) > 0 for r > O, and, M(r) -) oo as
r -+ oo.

Subsequently Orlicz function was used to define sequence spaces by Parashar and
B.Choudhary [10] and others. An Orlicz function M can always be represented in the
following integral form: M (r) : Ii p(Dat where p is the known kernel of M, right dif-
ferential for t ) 0, p(0) : 0, p(t) ) 0 for, > 0, p is non-decreasing and p(t) -+ oo as
t -+ a:,.

If convexity of orlicz function M is replacedby M(r + il < M(r) + M(y) then this
function is called Modulus function, which was presented and discussed by Ruckle [12]
and Maddox [6].

An Orlicz function is said to satisfy 42- condition if there exists a positive constant K
such that M (2r) < KM (r) forall z > 0.

Notethatif Mis anorliczfuncrion thenM ()r) < ),M(r) forallAwith0 <.\ < 1.
By a lacunary sequence 0 : (ter); r : 0,L,2,...where k0 : 0, we shall mean an

increasing sequence of non-negative integers with k,^ -1ro-t -' oo as r -+ oo. The intervals
determined by 0 will be denoted by I, : (k"_r, t"] *d hn : k, - kr_r.

2 Main Results

Let l be an admissible ideal, M M, an orlicz function, (x, ll.,.ll) b" a 2-normed space
and p - (pr) be a sequence of positive real numbers. By ,S (2 - x) we denote the space
of all sequences defined over (x,ll.,.ll).Now we define the following sequence spaces:

W' (Nt,M,p,ll,.,ll) :

{". 
* ,n , 

E,L, (ll t,4l)1" = * .
forsome p)0, L>}andeach z€X

wi (Nt, M,p,ll,., ll) :

ll*r,rzllo: abs (l ;;l :::l)

,)
{"." 

(2-x):
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((
{ z e s (2 - x), t" N: h;r 

E,l*11"",'ll]'- 
-'} .r} ,

I forsomep>0andeachz€X )

Woo (NeM, A*,p,ll, ., ll) :

{- r, (2 - x). 3K >o'''::R' n;' E.t' fl ?'',D]'-''= o},
I forsomep)O, andeachzeX )

w!"(Nr,M,p,ll,.,ll):

t --' ^ ( *' . r-1 s- lnr llc" -ll
{re s (2 * x)' 3K >0 rf e N : h;l E,l*ll'f ''il]'-= ,.} .r}
I forsomep>OandeachzeX )

The following well-known inequality will be used in the study.

0 S p* S suppr : H, D: Inax (t,Z'-')

then 
la1, *bpleb 7 D {la*lpo+ lb,tlpo}

for all k and ap,by e C

Theorem I WI (Ne, M,p,ll,., ll), Wi (wr, M,p,ll,.,ll),
WL (Ue, M, p, 1' ,., ll) are linear spaces.

Proof. We will prove the assertion for Wd (Ne, M,p,ll,., ll)only and the others can be
proved similarly. Assume that r, g e W{ (Ne, M,p,ll, ., Il) and a,0 e IR.. So

{,. 
* ,*p.[, (f ,|)]* =,] e .rrorsomepl , o

and

{, 
. *, *p"t, fl Z, 4l)l'-,'} e .rror some p2, 0

27
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since 11,., ll is a 2-norm, and M is an orlicz function the following inequality holds:

*-el-(ll,ffiffi,.11)l'.
o*E,i"rm-(lX
o*E.l^Xo^-(llf
,,*E,l*fix.ll)]-
o,*E_l-flr,l)]-

,,ll)l-

,,il)]'-

where

lpt

)"]+ l0l pz)

From the above inequality we get

{,. 
*, *p.1, fl ffi#*;,D]" =,}

c 
{.. 

* ,o"+E,l*flr ,l)]- 
= ;}

, 
{" 

. x, rrf, 
E"l* llo,4)1" = ;}

Two sets on the right hand side belong to l and this completes the proof. It is also easy to
verify that the space l,7oo (Ne, M, p, ll, ., ll) is also a linear space and moreover we have

Theorem 2 If M is an Orlicz function and (py) is bounded sequence of strictly positive
real numbers thenWoo(Ne, M,p,ll,., ll) is a paranormed space with respect to paranorm
g defined by

g(,):I tt,u,zll + inr 
{o* 

,To [, (llf ,ll)]"

proor rhat en('): ii;i, :";::*:;' :'":;:'"; :" we omit them
(iii) Letus take , : (rx) and g - (gr) in W*(Ne, M,p,ll, ., ll). Ler

A(r): {0, o'To [, (lH ,|)]- 1!,Yz. r,],
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A(y):{r,0,,,o [, (llt,,|)]- st,Yz. r,]
Let py e A(r) *d p, e A(A). Then if p: pr * p2, then we have

"#*M(llr'll)
rhus sup * (\ffi',ll)* ( 1 and

+ irr {{r, + Pr)T : P1 e A(t), oz e A(Y1\

* Pl E lluo, zll + inr {o? ' oz e A@1}

: s,@)T'i-at
(tu) l-et o^ -+ a where o, o* e C and let gn(xm - ,) -+ 0 as rn -) oo. We have to show

that gn(o^r* - o*) -+ 0 as na -+ 6. Let

A(,*): 
{o*> 

o: sup t, fl #,,',,t,))'- at,vz. r,},

A(**_,):{,^,0:supt,flw,,D]-1l,Yz.,,}
lf prn e A(**) *d p/* e A(r* - r) then we observe that,flffi,,])

.,flffi,4 .llffi,fi)
<ffi'0#'4)
.ffi'flry*ll)

From the above inequality it now readily follows that

('flffi'4))'.='
and consequently
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gn(o*r* - or) l inf.2Ey 
oD^llo*rT - orp, zll

+ inf 
{ 

(o,,lo* - ol + ,/*Vt)* , ,^ e A(r*), ok e .t1*,.- ")}
1 lo* - olinf..6y D*ll*T, zll + lolinf"6z6 D)WT - rk, zll

+ (lo^ - "l)W 
i"f {eff i pm e A(r\}

+("1)? inf {to/*lW , p|* e A(** - ")i
( max {1"- - ol,|o^ - ol)w} o*@*)

*max 
{1"1, {l,l) 

T} s*@* - r).

Note that g"(r^) < g"(r) * gn(r^ - r) for allm e N. Hence by our assumption the
right hand side tends to 0 as n'L -+ @ and the result follows. This completes the proof of
the theorem.

comllary 1. If one considers the sequence space wf (No, M,p,ll,., ll) which is larger
than the space w* (Ne, M,p, il, ., ll) the construction of the paranorm is not clear and we
leave it as an open problem.

Theorem 3 Let M, Mt, Mz, be Orliczfunctions. Then we have
Wi Qve, M1,p,11,., Il) g Wi (Ne, M o Mr , p, ll,.,ll) provided (p*) i, such that Ho :
inf p7, > 0.

Proof. (z) For given e > 0, first choose 6s ) 0 such that
max{efl, r{o} <e. Now using the continuiry of M choose 0 < d < 1 such rhar 0 <, <
6 + M (t) < uo. Let (c6) e Wo {Ns, Mr,p,ll, ., ll) . Now from rhe deflnition

.4(d) = {". 
* ,*p.l* 

fl T,4l\* ,6o} .,
rhusif r (A(6)then 

1 .- r^, firu -il\ 1oo - ,n
n. k,r-, \ll?,,1i)]oo 

. 6'

i" f l*fl?,"';i,)|'r ,-h.dH

,* f*,ffi ,lD]- < 6tr ror a, k e r,
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i e rvl (llt ,ll) . d ror au k e r.

Hence from above using the continuity of M we must have

* (*,flt ,ll)) . e6 ror a, k e r.

which consequently implies that

-E" ['(* fi?''ll))]* 'h'max{er'efl.1< 
h'e'

* f,,p [, (* fl?,,11))]'^ 
.'

This shows that

{". 
* ,i_r* l* @,flt ,l))]^

and so belongs to 1. This proves the result.

Theorem 4 Letthesequence(p*)bebounded,thenW{(Ne,M,p,ll,., lDe WI (Ne,M,p, 11,., ll)e
WJ"Gvr, M,p,ll,., ll) .

Proof. Let r : (rr) e Wi @e, A,I,p,ll,., ll). Then given e > 0 we have

{". 
* *p t, fl? ,ll)]'- -,} e rrorsomep > o

Since M is non-decreasing and convex it follows that

+ l- rr(ilr*,,11)],-n" fr,. L

= #nE"+ [r 0 T,,ll)]* * #_A *l* (llt,,ll)]'-

s * E,[, (ll *?,,11)]" * Dmar{r,,,01, (ll?,,11)]"}

Hence we have

-,) .,,,,

{,. 
*, *p.[, fi#,,0]'- =.]

{,.^ 
,#p,i,fl *f ,,ll)]- =;}

{,. ^ 
: nt(LL{,,",, [, fl?,,11)]'-] = i]
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Since the set on the right hand side belongs to I so does the left hand side. The inclusion
wr (Ne, x[,p,ll, ., ll) g wL,(Nr, M,p,ll,., ll) i. obvious.

Theorem 5 /. Let 0 < inf p7, ( pp I 7. Then

w' (Nr, M,p,ll,., li) g w' (Nr, M,ll, .,1) .

2. Let 7 I p* ( suPPr < x,. Then

w' (Nr, M,ll,.,l) c wI (Ns, M,p, 11,., ll) .

Proof. Let.r € W' (lle, A't,p,11,., ll), since 0 ( inf ps,; ( 1, we obtain the fbllowing:

{,. 
* ,nr, E.L, (il**,.11)] -,}

c 
{, 

. * ,nr, E.L, (il"#,,11)]'-' 
= 

,} . ,

Thus r e WI (N6,tvt,ll,.,ll). Let us establish part (2). Let pp > 1 for each k , and
supr,pA<oo.LetreWI(Ns,IvI,ll,.,ll).Thenforeach0<€<lthereexistsapositive
integer N such that

n'8.1,ft*;,|)] (e (1

for all r ) l/. This implies that

( 
, ltt ,\iDLr )

{" e x , h., E l, (ll *,4,ffn' ,, I
t ''.ei. L \ll P tt/' 

)

q 
{' 

. 
^ 

,n ' P,.1, (ll*tn,,ll)] -'i . ,

Therefore r e WI (Ns,ltl,p,ll,., ll). This completes rhe proof.

Definition I Let X be a sequence space. Then X is called solid if (uprr) e X whenever
(r*) e X fitr all sequences (at) of scalars with lapl < l for all k e N.

We now have

Theorem 6 The sequence spaces Wi (Ne, Ir.t,p,ll,., ll) , I{..'l (Ne,ltl,p,
ll, ., ll) are solid.

Proof. We give the proof for Vld (No, M,p, ll, ., ll). Let (r*) e Wd (Nt,
L'[,p,ji|,., ll)and (o6) be sequences of scalars such that lo*l < l for all k e N. Then we
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have
( r/ tl ,^ - r tt'l,r )

t, 
. * ,n;, 

*L,.1(, llcfd,,ll)]'^ = 
,)

( r/ ,- r lr\rp,. ls 
1, 

. 
^ 

,n;' P,.l(r ll?,,11)]'- >, j . t

Hence (oxrx) € Wi (N6,M,p,ll,., Il) for all sequences of scalars (a5) with la6l < 1 for

all k € N whenever (r1) e Wd QVe, M,p,ll,., ll) .
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Abstract

Atiding the cosmological term, which is assumed to be variable in Brans-Dicke

theory we have discussed about a Bianchi type-I cosmological model filled with vis-

cous fluid with free gravitational field of Petrov type-D. The effect of viscousity on

various kinematical parameters has been discussed. Finally, this model has been trans-

formed to the original form (1961) of Brans-Dicke theory (including a variable cos-

mological term).

I Introduction

After the cosmological constant was first introduced into general relativity by Einstein,

its significance was studied by various cosmologists (for example []), but no satisfactory

results of its meaning have been reported as yet. Zel' dovich [2] has tried to visualize the

meaning of this term from the theory of elementary particles. Further, Linde [3] has argued

that the cosmological term arises from spontaneous symmetry breaking and suggested that

the term is not a constant but a function of temperature. Also Drietlein [4] connects the

mass of Higg's scalar boson with both the cosmological term and the gravitational constant.

In cosmology the term may be understood by incorporation with Mach's principle, which

Keyrvords and phrases : Bianchi Typel, Viscons Fluid, Brars-Dicke Theory, Petrov Type-D, Cosmolog-

ical Model.
AMS Subject Classification : 83D05, 83F05.
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suggests the acceptaflce of Brans-Dicke Lagrangian as a realistic case [5]. The investigation
of particle physics within the context of the Brans-Dicke Lagrangian [6] has stimulated the
study of the cosmological term with a modified Brans-Dicke Lagrangian in cosmology and
elementary particle physics. Endo and Fukui [7] have studied the variable cosmological
term in Brans-Dicke [5] and elementary particle physics (specially in the context of Dirac's
large number hypothesis [8], [9]).

Further, astronomical observations of the large scale distribution of galaxies in our uni-
verse have shown that the distribution of matter can be satisfactorily discribed by a perfect
fluid. It has, however, been conjectured that some time during an earlier phase in the evo-
lution of the universe when galaxies were formed, the material distribution behaved like a
viscous fluid ([10], tp. lzaD. It is therefore of interest to obtain cosmological models for
such distributions. It is also well known that there is a certain degree of anisotropy in the
actual universe. Therefore, we have choosen the metric for the cosmological model to be
Bianchi type-I. Thus, in this paper we have considered a Bianchi type-I cosmological model
filled with viscous fluid in a modified Brans-Dicke theory in which the variable cosmolog-
ical term Q is an explicit function of a scalar field r/ as proposed by Bergmann [l l] and
Wagoner I l2] and discussed in detail by Endo and Fukui [7].

The Brans-Dicke field equations with cosmological term e [7) are :

Gri + erjQ:Tr, +fi(0,a,-)soio,oo,o)

where the constant p shows how much our theory including Q(@) deviates from that of
Brans and Dicke and as usual r..,, is coupling constant andTii is energy-momentum tensor for
a viscous fluid distribution [13]. Semicolons denote covariant differentiation with respect
to the metric lii and commas mean partial differentiation with respect to the coordinate
tt. The theory can also be represented in a different form [14] under a unit transformation
(U:f) in which length, time and reciprocal rnass are scaled by the function ,1i12;. fnen
under the conformal transformation :

9;'i -+ 9U : Qgti

the equation (1.1) - (1.3) go to the form

(1.4)

Gi +O;jQ : StrTii *

1
+ 

f@r;i - kiZ6l

rr-r. -- 
S*PT

' (2w+B)

n _ (2u + 3) (1 - p)OO 8tr(1 - p) -'4p040

f;e, *r) (n, n, -*so,n* n*)

(1. 1)

(1.2)

(1.3)

(1.5)

(1.6)
StruTLJA: ./r:log@

(2a,, + 3)'
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(1.7)

where the barred quantities are defined in terms of as their unbarred counterparts are deflned

in terms of the unbarred metric gti utd all baned operations are performed with respect to

the barred metric and barred Christoffel symbols. ln section-2 the Bianchi type-l metric is

considered and the energy-momentum tensor is taken to be that of a viscous fluid [3]. In
section-3 we have obtained pressure, density expressions for spatially homogeneous and

anisotropic Bianchi type-I cosmological model which is also of petrov type-D. The effect

of viscousity on various kinematical parameters has been also discussed. It is found that

the kinematic viscousity prevents shear, expansion and the free gravitational field from

withering away. Finally in section-4 we have transformed this model to the 196l form of
Brans-Dicke theory.

2 Derivation Of The Line-Element

We use here the spatially homogeneous and anisotropic Bianchi type-I line element in the

form:
d.s2: -dt2 + A2d"r2 + B2da2 +c2dz2 (2.1 )

where the quantities A, B and C are functions of t only. The energy-momentum tensor for
a viscous fluid distribution is given by (Landau and Lifshitz [3])

Tik : (€ +p)otok + p ekt - q(uki;*uk;i +okoloi;1

A:9v+9(1 - P)l-^ :V-\-Ar
+ l.L

+ui,utrk;1) - (( -lnW';r(gki +Diuk)

I Baa Cqa BqCql

L?*ff+-ff1*a
: a, 

{r -, (+)- (c - 3,),,1} . tup 
^,

I Aaa Cu AaCal

L?* , +fr1*a

: u 
{n -, (*)- (c - 3,) .t} . @# 

^;

together with
g.4-tfui : -l

where being the isotropic pressure, the density, 4 and the two coefficients of viscousity and

semicolons indicate covariant differentiation. u' is the flow vector satisfying equation (2.3).

We assume the coordinates to be comoving so that . Scalar field is also taken to be a func-

tion of i only. The field equations ( 1.5) and ( I .6) for the line-element (2.1) are as follows

(2.2)

(2.3)

(2.4)

(2.5)
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I Au Btt ArBrl
L?* |+fi)+a

:', 
{, -, (7)- (, - 3,,),r} . *# 

^,

I AtBr AqCq BqCal - ew * J\ ,
I AB + A-* E-)*Q:-8zr€ - n-n;

: -Ahftrr- c) -3€*"*1rr"y]

(2.6)

(2.7)

A r-i-^, (+ . + -?)

(2.8)

The suffix 4 after the symbols A,B,C denotes ordinary differentiation with respect
to f. Equation (2.4) - (2.8) are five equations in six unknowns A, B,C .The coefficients
of viscousity are taken as constants. For complete determinacy of the system one extra
condition is needed. One way is to impose an equation of state. The other alternative is a
mathematical assumption on the space-time and then to discuss the physical nature of the
universe. Although the distribution of matter at each point determines the nature of expan-
sion in the model, the later is also affected by the free gravitational field through its effect
on the expansion, vorticity and shear in the fluid flow. A prescription of such a fleld may
therefore be made on a priori basis. The cosmological models of Robertson and Walker, as

well as the universes of Einstein and De Sitter, have vanishing free gravitational fields. In
this paper, we choose the free-gravitational field to be type-D which is of the next hierarchy
of Petrov classification. This requires that, either

(")cl?: ci3
Or
(b)ci? : c33

Conditions (a) and (b) are identically satisfied if B : C and A : C respectively.
However, we shall assume A, B,C to be unequal on account of the supposed anisotropy. In
this paper we shall confine ourselves to the condition (a). The condition leads to

(2.e)

Subtracting equation (2.5) from equation (2.4), we get

B++ A+t BaCa__]-
BABC

Cq; Bu AaCa
_!_-

C B'AC

+-?-.,+(7-#) :'

:t6irr(+ -+) (2 10)

,;)

AqCa

Also, subtracting equation (2.6) from equation (2.5), we get

AC

AsBq
AB

:16trn (? - (2.11)
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From equations (2.9) and (2.1 1), we have

,Ao (Cn Ba\ : ,o--(Cn _ Ba\
'z\a -E)- Loit'tt\e -a) Ql2)

Since equation (2.12) gives

Aa 16trr1

i:i (2'13)

which on integration gives

A: M"Y (2.14)

where M being a constant of integration.

From (2.9) and (2.13) we get

Bqa C4a , 32rq . / Cq Ba \n_i= +__+(a_i):o
which on integration gives

B+C - BC4: eP{L+u) (2.15)

where b being a constant of integration.

From equations (2.10) and (2.13) we get

'# .'# - t6nr7 (*) - ry @ : 
5!2 n,r, (2 16)

On substituting fi : a, BC: B so that 82 : ag,C, : *
Equation (2.15) reduces ro

ff)u:"(QTt+a) pszl
From equation (2.16) we have

90q+ - Tghrqpa -r lO24r2q2 g : 0

After solving this equation gives

p : (k1t + k)evTL (2.18)

where k1 and k2are constants of integration.

From (2.17) and (2.18) we get

s : (k1t + kz)" (2.19)
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where a is another constant of integration.

From equations (2.18) and (2.19) we get

82 : ag : (k1t + k2)O-a) e72tntg

"' 
: *: (k1t * k2)0-a) 

"32nnt3

Consequently the line-element takes the form

d,s2 : -dt2 + Mz"uP d,r2 + (kfi + kz)o+o')e*?* ao'

+(klt + k2)(r+o)e'# dr'

ds2 : _dt2 + "*P dr, * 1O+a)svfL dy, + {r-a,t"eft 1r2

3 Some Physical And Geometrical Features

The pressure and density in the model (2.23) are given by

+sz'((t * t6rr1) - W? p2 - 3) + ffn'r' 'rq (3.1)

By the following transformation of coordinates IvIr -+ t, (k1t * kz) -+ t, z -+ z we

(2.20)

(2.21)

(2.22)

(2.23)

(3.2)-ry-$n'r'-q319
Also the scalar field A is given by

n: log*C 
{

and

a:\Plc#*"'{

(3.3)

and
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12n! - r^*ct+ -L 1R^ ' 3072 , ,1* g, t z'*ltq\., -r ruri4) * T"'r') (3.4)

The model is real and the conditions hold when

, - (r. -^1,0>o(i.e.p< 1)
a' ) l, 2' - (3.5)

The non-vanishing components of the Weyl's conformal curvature tensor Clf *e ,

clt : c33 :* [!4;! - T*r')"-'P
nt2_ ^r4- 

t f(42-t) 512,,1 -t2rn1Lir:t,t+ - - nt--/ -T#r'1"-'#u (3.6)

rttz _ n24 _ t f (a2 - t) bt2 ,.'1 ._'rir,ui5:uii: -nlT - s 7T-q-)e 3

Thus,

I nl4 | n23 n12 nill nl3 n24-ivIs : -ruU, : \,1, -- \,5i : uai - vi+

- _ 1 l(a2 - t) _512 o .,.l -.,2rqt'-nl 1' - glT'n')e 3

The flow vector is given by

u7=r)2:u3:0ru4:1 (3.7)

It satisfies, so that the flow is geodetic.

Also Wi3 : g.

The scalar of expansion is

6 : $trq!^,+ t) (3.8)
3f

The non-zero components of shear tensor o6i arc

(l%rqt - 7) YrP
ott: U "

_ (20nr7t -f 3a t 1) , r *o . J{a
o22: ' 

= t' '-(i (3.9)
6t

(2hrqt - 3a * l) -t-o WoJJ: 6t ,- -.
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(3.12)

When LL -- 1, the cosmological term vanishes and the model (2.23) reduces into a
Brans-Dicke analogue of one of the viscous model in general relativity.

4 Tfansformations Of The Solutions And Discussion

Under the transformation

We now apply these transformations to the solutions obtained in section-3.

o44 :z(\trqt + 7)

3'
and the shear o is

-2 -1 
1

o : 
rotirii : fi{t+t6r2r72t2 *J12rr1t* 18a2 +22} (3.10)

Thus the uir.ourity prevents the free gravitational field as well as the shear from with-
ering away. It is also clear from equation (3.8) that the effect of viscousity is to retard
expansion of the model.

The pressure, density, scalar field and cosmological constant are singular at

(3.11)

94'+ gti : igti, 7U + Tti : ETq \
T-+T--027, F-+p:O2F t
E -+e: Q2E, Q -+ d: e^ (
Q-+Q:rbQ, d-+ui:Oid )

the field equations (1.5) - (1.7) are changed into (1.1) - (1.3).

d: sec2

9ii : sec2 '

(4.1)

{tffi,ros(/")}

{rP,.rLog1rt;}s',

(a.2a)

(4.2b)

,:(;) *,{",m1
The model exists for a finite time
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Le.

W,L*(H)) 
,G+d"Y*

Wr.*r*,)) ,e-a)"urL

8rp:ryP#*cttffiiog(/'ct)

+sec4{tffi*(*)}

[r"r* 
* ro*a$] - L6{r't 

Qz - t)

*8nrt (t - P) *jf orrrf'3t lL 91t 'l

: r""'{

: r""'{

@.2c)

:'u3 :Or rn : ,"" 
{

(4.2d)

(a.2e)

(4.2f),l:o2

e44:-*c{ Wr*t*,1}

- sec4 

{ tffi t*t*'r} 
[u*t' 

+ totrdg-D
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The reality conditions should also be imposed on the solutions in @.Z)similar to those
in section 3. Model obtained in this paper is new and like other models with p : p they may
be used in the relativistic cosmology for the description of very early stages of the universe
expansion.
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Abstract

The paper presents an exact solution of spatially homogeneous and anisotropic
Bianchi type-I cosmological model in Barber's second self-creation theory of grav-
itation which is of Petrov type-D. Some physical properties of this model are also
discussed.

I Introduction

Barber [] proposed two self-creation cosmologies by modifying the Brans and Dicke [21

theory of gravitation and general theory of relativity. These modified theories create the uni-
verse out of self contained gravitational and matter fields. After that Brans [3] has pointed

out that Barber's first theory is not only in disagreement with experiment, but is actually
inconsistent. Barber's second theory is a modification of general relativity to a variable

G-theory. In this theory the scalar field does not directly gravitate, but simply divides the

matter tensor, acting as a reciprocal gravitational constant. It is postulated that this scalar

field couples to the trace of the energy-momentum tensor. Hence, the field equations in
Barber's second theory are

Typn.I COSvTOLOGICAL MODEL IN

&i -lgoin: -htry-rTri

Bianchi Type-[, Homogeneous, Barber's Second Self-Creation Theory, Petrov Type-D, Cosmological
Model.

AMS Subject Classification : 83D05, 83F05.
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and

DQ: T^, (1.2)

where A is a coupling constant to be determined from experiments. The measurements of
the deflection of light restricts the value of the coupling to | ) l< 10-1. In the limit A -+ 0
this theory approaches the standard general relativity theory in every respect. Barber [l]
and Soleng [4] have discussed the F-R-W models while Reddy and Venkateswarlu [5] have
studied the Bianchi type V Io cosmological model in Barber's second theory of gravitation.

In this paper we have discussed about spatially homogeneous and
anisotropic Bianchi type-I cosmological model in Barber's second self-creation theory of
gravitation which is of Petrov type-D. Some physical properties of this model have been
also discussed.

2 The Field Equations In Self-Creation Cosmology

We use here the spatially homogeneous and anisotropic Bianchi type-I line-element in the
form

ds2 : -dt2 + A2d,x2 + B2dy2 + c2dz2

where the quantities A, B and C are functions of t only.
The energy-momentum tensor Tij for perfect fluid distribution is given by

(2.1)

T,i:b+dWi+psij

gqViVi : -l

(2.2)

together with

(2.3)

where p and p are proper pressure and energy density respectively and V, are the com-
ponents of the fluid four velocity. We assume the coordinates to be commoving so that
vt : v2 : I/3 : 0 andva : 1. Scalar fierd $is also a function of t onry. The fierd
equations (1.1) and (1.2) for the metric (2.1) can be written as

Baq , Caa BaCa 8zr

E- c * BC :- oP
Aqs . Cas AaCa 8r
A - c - AC :- oP

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

Aqa Baa AaBa
_f

A B,AB
8r-;P
a

8zr

T^(3P - P)

A+Bq , AnCa , BaCq 8z-

AB - AC * BC : OP

daa*r^(+**nZ):
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The suffix 4 after A,B,C and Q denotes ordinary differentiation with respect to r.
Equations (2.4)- (2.8)arefiveequationsinsixunknowns A,B,C.p,pand@. Forcomplete
determinancy of the system one extra condition is needed. One way is to impose an equation
of state. The other alternative is a mathematical assumption on the space time and then to
discuss the physical nature of the universe. We shall confine to the latter method in this
paper and assume that Cli : Cl8. The resulting space-time will obviously be of Petrov
type-D. Thus, we have

Bq,s cq,+ 2A+ (* _ +) : o (2.e)E- c - A \7-E):"
From (2.4) and (2.5) we get

,_!_4**_A:l::o 
(2 10)BABCAC

Subtracting equation (2.6) from equation (2.5) we get

? -'#. # - 4!Pt :o (2 1i)

From (2.9) and (2.1l), we have

(2.12)

Since B f C,equation (2.12) gives

A:N(constant) (2.13)

From (2.10) and (2.13), we have

fu * Boco
B ff :0 (2.14)

Again from equations (2.1l) and (2.13), we ger

Baq, _ Cqa

BC
which on integration gives

BsC - BCn: 1r, (2.15)

k2being a constant of integration. On substitlting B lC : a, BC * ,6 so that 82 : a0
andC2 : 0lo

Equation (2.15) reduces to

(T) o: *, (2 16)

Frorn (2.14) we have

3A4 /C4 Ba\'r '- l-0A \c B)
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(2.t7)

From (2.16) and (2.17) we get

which gives

A:kzt*b
where k3 and b are constants of integration.

From (2.16) and (2.18) we get

(2.18)

a:ka,(kzt*b)kz/kt

82:kq(ktr+b)(t*B)
and

c' : 
{U,t, + a;(,-B) P.zo1

Consequently the line-element (2.1) takes the form

d,s2 : -dt2 + N2d,:12 * ka(k.tt+ b)(1+A)d a, + f&rt + o1F*) 6,2 e.2t)

By the following transformation of coordinates

Nr -+ *,kia -+ a,k;' z -+ z

This line-element reduces to the form

d,s2 : -dt2 + ctr2 + (kst +ay('*f?)a, 2 + (kst + u1(1-Z) 4r, (2.22)

The pressure p and density p for the model (2.22) xe given by

B,rp - 8np: #*" [", "*p { \lI (r- E) 
+ 

rog1i,3t + al} +A\kst*b)" L 'tV0\ kil ')

c2exp{ ,n t#,)itog1t3t.,,}] e2r)

where Cr and Czare constants of integration.
Also the scalar field / is given by

[(*. #) u)^:o

0u: o

Therefore,

(2.1e)



r --lr,*, {rA (, #)}rog1r,t. 
o,}

+ c2exp{ ,A (, -#,)} rogir3t.,,}] (224)

For the reality of p and p and the condition

p ) 0,p > 0 to hold when tZ < n3.

The volume element of the model (2.22) is given by

V : (-S)i : ltcrt +b) (2.25)

Thus, the volume increases as the time increases i.e., the model is expanding with time.

The non-vanishing components of the Weyl's conformal curvature tensor CJn! are

nt4 n2it (kB - kZ)ut4:L2J:6@JW

nt2 n34 &3 - kZ)t-r2:uJ4:O@t+bP

ci3: c3t:ffi%
The flow vector Vi is given by

V\ :V2:V3:0,V4:l

It satisfies aj;ai :0, so that the flow is geodetic.

Also I4l,7 : g.

The scalar of expansion 0 is

^ksL-

" - J;,*t+b)
The non-zero components of shear tensor oii are :

(2.26)

(2.27)

(2.28)

kz
u11 - U.,*t+b)

(3kz * ks) ,, k2

or, : 

-(kri 

* b)ra (2.29)
6 '"
(3k2 - k3)

oJJ : ------- k,
6(k3' + b)F.
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and the shear o is

2kzo44: 
3(k3, + b)

, $k? + 11k?)'' 36(k3t+b1t
() )(t\

Thus, the model represents an irrotational, expanding universe with shear.

3 Discussion

Whcn .\ -+ 0, the scalar field (@) from equation (2.24) becomes constant and hence model
(2.22) represents general relativistic anisotropic Bianchi type-I universe discussed by Roy
and Frakash [6]. Model obtained in this paper is new and like other models with p : O
they may be used in relativistic cosmology for the description of very early stages of the
universe expansion.
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Abstract

The main result of the present article is the following: Let l? be a 2-torsion-free
semiprime ring, 0 be an endomorphism of ,R and T: R -+ R be an additive mapping
such that T(ryr) : O(r)'f ('y)0(r) holds for all r, A e R.Then 7 is a d-centralizer
of R.

I Introduction

This note has been motivated by the works of J. Vukman [4] and E. Albaq []. Throughout,

R will represent an associative ring with center Z(R), not necessatily with an identity
elenrent. Aring.Ris2-torsion-free, if 2r:0,r € Rimplies r:0. Asusualthe
commutator :LA - Ar for r,y € .B will be denoted by Lr,Al.We shall use basic commutator

Keywords and phrases : Prime Ring, Semiprime Ring, Left (Right) Centralizer, Left (Right)
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identities [r,yr):lr,y)z+A[r,z)and[ra,"):[r,z)A-lrlA,z),forr,A e B. Recall
that R is semiprime if aRa: (0) implies o : 0, for every a e R.

B.Zalar [5] introduced the following notion. Let -R be a semiprime ring. A left (resp.
right) centralizer of R is an additive mapping T: R -+ .R satisfying T ("a) : Z(r)y (resp.
T("y) : rT(y)) forallr, y € R.If ?isaleftandarightcentralizerthen ? isacentralizer.
In case R has an identity element, T: R -+ R is a left (resp. right) centralizer if and only if
7 is of the form T(t) : ar (resp. T(r) : ra) for some fixed element a e R. An additive
mapping T: R -+ rB is called a left (resp. right) Jordan centralizer in case T(*r) : T(r)r
(resp. ?(22) : rT(r)) holds for r e R, and is called aJordan centralizer if ? satisfies
T(ry-tyr) : T(")y+yT(r) : T(A)r+rT(y) forall z, y € R.In [5], ir was shown rhar
a Jordan centralizer of a semiprime ring is a left centralizer, and each Jordan centralizer is
a centralizer.

Following ideas from M. Bre5ar I2),B.Zalar l5l has proved that any left (right) Jordan
centralizer on a 2-torsion-free semiprime ring is a left (right) centralizer.

lf T: R -+ fi is a centralizer, where l? is an arbitrary ring, then ? satisfies the relation

T(ryr): rT(y)r, V r,y e R. (l)

It seems natural to ask whether the converse is true. More precisely, asking for whether an
additive mapping 7 on a ring ,R satisfying relation (1) is a cenrralizer. In [4], J. Vukman
proved that the answer is affirmative in case -R is a 2-torsion-free semiprime ring. The
proof of his result is rather long, but it is elementary in the sense that it requires no specific
knowledge concerning semiprime ring theory in order to follow the proof.

Recently, E. Albag [1] introduced the following definitions, which are generalizations
of the definitions of centralizer and Jordan centralizer. Let B be a semiprime 2-torsion,
free ring, and let 0 be an endomorphism of R. AJordan 7-centralizer of .E is an additive
mapping f : R -+ .R satisfying f (ry + y r) : f (r)0 (il + 0 (y) f (r) : f (y)0 (") + 0 (r) f (y)
for all r,!) e ,R. An additive mapping f : R -+ R is called a lefr (resp. right) T-cenrralizer
of fiif f(r'u): f(")0(y)(resp. f(ry):0(")f (y))for aila,y € n. rf /isaleftand
right d-centralizer then it is natural to call f a?-centalizer. Itis clear that for an additive
mapping r: R --+ E associated with a homomorphism g: R -+ R, if L"(r) -- aT(r) and
R"(r):0(r)aforafixedelementaeRandforallzeE,rhentroisaleftd-centralizer
and,B, is a right 0-centralizer. Clearly every centralizer is a special case of a|-centralizer
with d - ida.

An additive mapping f : R -+ B is called a left (resp. right) Jordan 7-centralizer of
Rif f (r2) : f (r)0(r) (resp. /(r2) : e@)f (r)) for utt r'e .R. rt is clear rhat a lefr
9'centralizer of,R is a left Jordan ?-centalizer and, analogously, a l-centralizer of B is
a Jordan ?-centralizer of .8. The converse is no longer true, in general. In [l], E. Albaq
proved, under some conditions, that in a 2-torsion-free semiprime ring .R, every Jordan
9-centralizer is a d-centralizer. In [3], W. Cortes and C. Haetinger proved this question
changing the semiprimality condition on -R. The main result of this paper is the following:
Let R be a 2-torsion-free ring which has a commutator right (resp. left) nonzero divisor
and let G: R -+ E be a left (resp. right) Jordan o-centralizer mapping of .R, where o is an
automorphism of -8. Then G is a left (resp. right) o-centralizer mapping of R.

Now, if T: R -+ -R is a ?-centralizer associated with a function 0: R -+ B, where l? is
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an arbitrary ring, then 7 satisfies the relation

T(rYr):0(r):f @)0(r) Y r,Y e R. (2)

Again, as J. Vukman [4] did on the centralizer case, we are asking whether an additive

mapping T on a ring -R satisfying relation (2) is a ?-cenffalizer for every r,A e Il. It is

the airn in this paper to prove that the answer is affirmative in case -R is a 2-torsion-free

semiprime ring with some conditions on 0.

Otherwise unless stated, R will be a 2-torsion-free semiprime rings, and 0 an endomor-

phism of .8.

2 Results

The main goal of this paper is to prove the following

Theorem 2.1 Let R be a 2torsion-free semiprime ring and let T: R -+ R be an additive

mapping such that T(ryr) : 0(r)T(y)O(r) holds for all pairs r,A e R, where 0 is a

nonzero surjective endomorphism on Rwith 0(Z(R)) : Z(R). ThenT is a 0-centralizer.

Note that if we put U : r in relation (2) it gives

r(r') : o(r)T(r)o(r), Y r € R. (3)

The question arises whether in a 2-torsion-free semiprime ring the above relation im-

plies that T is a 0 -centralizer.
We shall prove that the answer is affirmative in case R has an identity element.

Theorem 2.2 Let R be a 2-torsion-free semipime ring with an identity element, 0 a nonzero

surjective homomorphism on R, and let T: R -+ R be an additive mapping such that

r@\ : 0(r)T(r)0(r) holds for all r e R. Then T is a ?-centralizer

3 Proofs

For the proof of Theorem 2.1 the following lemma will be needed.

Lemma 3.1 t4, Lemma ll Let R be a semiprime ring. Suppose that the relation arb *
brc : 0 holds for all r € R and some a)b,c e R. In this case (a -f c)rb : 0 is satisfied

.forallre R.

Proof of Theorem 2.1 . To prove that 7 is a 0-centralizer of E, we intend to prove the relation

lr@),0(r)l :0, Vr e rB.

For the proof of the above relation we shall need the weaker relation below

(4)

[[7("), 0(r)],0(r)l: 0, Vr € E. (5)
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Replacing rby r I z in (2), we get

T(rsz * zyr) : 0(r)T(y)0(z) + 0():r(fi7(r), yr,y, z e R. (6)

Putting A : r and z : y in (6)one obtain

T(*'a + y*2) :0(r)T(r)O(y) + 0(y)T(r)0(r), y r,y e R. (7)

For z : 13, relation (6) reduces to

T(ryr3 * rsyr) : 0(d:r@)e@\ + 0(r3)rfu1e@), y r,y e R. (8)

Now replace y by ryr in (7). We ger

T(ryr3 * r3gr) :0(r)T(r)O(ryr) + 0(ryr)T(r)0(r), V r,y e R. (9)

The substitution r2y + yr2 for g in relation (2) gives

T(ryrs * r3yr) : 0(r)T(r2y + yr2)0(r), V r, y € R.

Which implies, because of (7),

T(r3yr + ryrs) :0(r2)T(r)0(ad + 0(ry)T(r)0(rr), y r,y e R. (10)

Combining (9) with (10) we arrive at

0@)lr@),0(r))0(yr) - 0(ry)lr@),0(r))0(r) : s, y r,y € R. (t l)
Putting in equation (11), a :0(r)[T(r),0(r)], b: 0(r), 6: _[T(r),0(r))0(r)

and z : 0(g), this expression can be rewritten on the form azb * bzc :0, for every z e R.
Applying Lemma 3.1 on the above relation it follows rhat

[[7("), 0(r)],0(r\e(ar) :0, y r,y e R.

Let 0 (y) be 0 (s)[T (r), 0 (")] in ( l2). We have

fiT ("), 0 (r)1, e @)10 (il[T ("), 0 (r))0 (r) = o, y r, y e R.

Right multiplication of (12) by [Z(r), d(r)] gives

llT ("), 0 (r)1, 0 (r))0 (y)0 (r)lT (r), d (r)l : s,

Subtracting (14) from (13) we obtain

[ [7("), 0 (r)), 0 (r)]o(s) 
[ ["("), 0 (r)1, 0 (r)) : o,

Since R is semiprime and d is onto we get, [["("), 0(r)),0(r)]
The next step is to prove the relation

(12)

( 13)

Yr,yeR. (14)

Yr,g€R.

:0,forallreB.

(ls)

0(r)[T(r),0(r))0(r):s, Y r e R,. ( l6)
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Substittuting rby r * 9 in (5) we have, for every r, A e R, [[7("), 0(")),
0('y)) + [[7("), 0(y)),0(r)] + [[r(s), 0(y)),0(r)] + [[r(y), 0(r)),0(y))
+llT(a),0(r)1,0(r))+ [[7(e), 0(a\,0(y)): 0. Putting -r for r in the above relation and

comparing the expression so obtained with the above one we get for every r' A € R

[["("), 0(r)),0(y)) + [[7(r), 0(y)),0(r)) + [[7(s),0(r)],d(r)l : 0. (17)

Replacing y by ryr in (17) and using (2), (5) and (17) we obtain

0 - [["("), 0(r)],0(ryr)l + [[7(r), 0(ryr)],0(r)l+
+ll0 (r)T (y)0 ("), 0 (r)1, 0 (r)l :

: o (r)lfT (r), o (r)1, o (y))o (r)+
+[[7(z), 0(r))0(yr) + 0(r)lr@),0(y))0(t) + o(ry)lT(r),
0 (r)1, 0 (r)) + l0 (r)[r (y), e @\0 (r), 0 (r)] :

: 0 (r)lfr @), 0 (r)), 0 (y))o(z) + [7(r), d (")] l0 (y), 0 (r)10 (r) +
+ 0 (r) ll'r @), 0 (a\, 0 (r)10 (r) + 0 (r)'[0 (y), 0 (")1lr (*), 0 (r)) +
+o(r)llT(y), d(r)1, 0(r))0(r) :

: [" (, ), 0 (r))10 (y), 0 (r)]0 (r) + 0 (r)10 (y), 0 (r)ll1: (r), 0 (r)) :
: ["(r), 0(r))0(yr2) - 0(r2y)lT(r),0(r))+

+0 (ryr)lT(z), 0(r)l - [7("), 0 (r)]0 (ryr).

Therefore, for every r,A Q R, we have

lr(r),0(r)le@r2)-7(x2fi[r(r),0(r)]+0(rsr)[T(r),0(r)]-[T(*),0(r))0(ryr):0.

Which reduces because of (5) and (11) to

lT("),0(r))0(yr2) - 0(r2y)lT(r),0(r)l: 0, V r,y e R.

Left multiplication of the above relation by 9(r) gives

0(r)lT(r),0(r)10(yr2) - O(r3y)lr@),0(r)): 0, V r,y € R.

One can replace in the above relation, according to (11),0(r)l:I(r),0(r))0(yr) by

0 (ry)l:r @), 0 (r))0 (r), rvhich gives

0(ry)lT(r),0(r))0(r2) - 0(r3y)lT(r),0(r)l : g, Y r,s e R. (18)

Left multiplication of the above relation by 7(r) gives

T(r)0(ry)lr@),0(r)10(*') - T(r)O(r3y)lT(*),9(r)l : 6, Y r,y e R. (le)

Substitute T(r)0(g) for 0(y) in (18) which leads to

0(t:)7:(r)0(y)17:(r),0(r)10(r2) * 0(r\r@)o(y)lT(r),9(r)l : 3, Y r,y e R. (20)

Subtracting (20) from (19) we obtain for all n,A €. R

lr(r), 0(r))0(y)["(r), e@)]0(r2) - Lr(,), 0(13)10(illr(r), 0(r)l : s. (:2r)

55
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Which can be rewritten in the form

IT (r), 0 (r3 )]0 (y)lr @), 0 (r)) - IT ("), 0 (r))0 (fifr @), 0 (r)]0 (r2 ) : 0, v z, a e R.
If we take q: lT(r),0@\1,6: lT(r),0(r)),s: -lT(r),

0(r))0(r2) and z : 0(y) inthe above relation, it can be rewritten in the form azb*bzc : 0,

for every z e R. Applying Lemma 3.1 again, it follows that

([7("),4("3)] -lT("),0(r))0(r2))o(fi[r@),0(r)]:s, Y r,y € R. (22)

Which reduces for every r,A e Rto

@@)lr@),0(r))0(r) + 0(r\lr@),0(r)))0(y)[7("),0(r)] : s. (23)

Relation (5) makes it possible now to write [7(r), 0(r)]0(r) instead ot 0(r)lT(r), B(")],
which means that, in the above expression, 0(r2)lT(r),0(r)] can be replaced by
0 (r)[T (r) , 0 (r))0 (r). Thus we have, for every r, y € R,

0 @)lr @), 0 (r))0 (ry)[T (r), 0 (r)) : 0.

Right multiplication of the above relation by d(r) and substituting 0(gr) for d(g) gives

finally 0(r)[T(r),0(r)]0(rsr)lT("),0(r))0(r) : 0, for every ,r, y belonging to R. By the

the semiprimeness of ,R and the surjectivity of 0 we have that 0(r)lT(r),0(r)10(r) : 0

holds for every u € E, and so (16) follows.
Next we prove the following relation

0(r)lT(r),0(r)l :3, VreB. (24)

The substitution of yr for y in (1 1) gives, because of (16),

0(r)lT(r),0(r)10(yr2) : g, Y r,y e R. (.2s)

Putting e(y)T(r) tor 0(y) in the above relation we obtain

0(r)[T(r),0(r\e(y)I'(r)0(r21 : g, Y r,y e R. (26)

Right multiplication of (25) by 7(z) gives

0(r)[T(r),0(r)]0(yr2)?(r) = s, Y r,y € R. (27)

Subtracting (27) from (26) we obtain 0(r)[T@),0(r)]0(y)lr@),
0(*')): 0, for every r,,y e R, which can be rewritten in the form
0 @)[r @), 0 (n)]0 (y) (lr @), 0 (r))0 (r) + 0 (t:)lr (r), d (r) I ) : s,
Yr,yeR.

According to (5) we can replace [7("), e@)]0(r) in the relation above by
0@)l:r@),0(r)1, which gives e@)lT(r),e@\0(yr)lT(r),0(r)l : 0, for att r,y e R.
So, by the surjectivity of d and the semiprimeness of R we get 0(r)lT(r),0(z)] : 6, 16.

each r € .rB. Whence relation (24) holds. It follows from (5) and (24) that

lT(*),0(r))0(r):0, V r e R.
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Substituting r by r * y in the expression above, we obtain for all :I:,A e .R that

["("), o(r\e(il + lT(r),0(y))0(r) + lr(r),0(y))0(a)+

["(y), 0(r))0(r) + ["(s), 0(r))0(y) + lr(a),0(y)]e@) :0.
Replacing now u by -r in this equation and comparing the relation so obtained with the

above one we arrive at. lT(r),0(r)10(y) + ["(r),0(y\e@) + [T(g/),0(r)))0(r):0' for

everyr,AeR.
Right multiplication of the last expression by lT(r),9(r)] gives, because of (24),

lT(r),0(r)le@)lf @),0(r)): 0, for all r,y € E. So, by the surjectivity of d and the

semiprimeness of B we get (4).

Let now A(r,il stands for T(ry + Ar) -:f (y)0(r) - o(r)T(y). Our next task is to

prove the following relation

T(rv +Yr):T(s)o(r) +g@)r(v), Vr e 'R'

In order to prove it we need the relations below

0(r)A(r,y)0(r):9, Vr € R,

lA(",a),6(z)l :9, Vr€ -R.

Let us first prove relation (29). The substitution rA + Ar for y in (2) gives

T(r2yr + ryr2):0(r)T(ra*yr)g(r), Y r'g e R'

On the other hand we obtain, by putting z : 12 in (6),

T(r2yr+ryr2):o(r)T(ile@2) +e@2)r(fi7(r), V r,v e R.

By comparing (31) and (32) we arrive at (29).

Substituting rby r*z in relation (29) and using (29) again weget for eyery r,y, z e R
that

0 (r) A(r, a) 0 (z) + 0 (r) A(2, a) e @) + 0 (r) A(2, y) 0 (z)

*0(z)A(r,y)O(r) + 0(z)A(r.a)eQ) -t 0(z)A(z,y)0(r) : s

Putting now -, for r in this expression and comparing the relation so obtained with the

above one, we obtain 0(r)A(r,y)0(z)+O(u)A(z,y)0(r)+0(z)A(r,a)0(r) : 0, for every

r,A, Z e ,R. Right multiplication of this relation by A(r,A)0(r) gives, because of (29),

0(r)A(r,y)0(z)A(r,y)0(r):9, Yr,A,ze R. (33)

Now, let us proving relation (30). The linearization of (4) gives

lT("),0(a)l + U:(a),0(r)l : g, V r,y € R. (34)

Putting ry I yr for g in the above relation and using (4) we obtain

["(r), 0(t'y -r y,r)) * lT("y * ar),0(r)] : 0(r)lT(u),0(y)) + lT(r),0(y))0\r)+

(28)

(2e)

(30)

(31)

(32)
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lr@a + ar),0(x)1 :0, for all r,a e .8. Thus we have lr@a * yr),
0(r)+ 0(r)[r@),0(y)]+lT("),0(y)10(r): 0, for all r,s e .R. According to (34) we can
replace lf @),0(y)] UV -[f @),0(r)] in this expression. Therefore, lT(*y * yr),e@\ *
e@)ff @),0(*)) - lT(a),0(r))0(x) : 0, for all r,y e ,R, which can be rewriuen in the
form [?(zy + Ar) - T(y)O(r) - 0@)f (y),0(")): 0, for every r, a e R.The proof of
relation (30) is therefrom complete.

Relation (30) makes it possible to replace in (33) 0(r)A(r,y) by
A(r,y)0(r). Thus we have

A(x.y)0(r)0(z)A(r,y)0(r):9, Y r,a,z e R,

whence, by the surjectivity of 0 and the semiprimeness of R, it follows that

(3s)

A(r,y)0(r) :9, Y r,y e R.

0(r)A(r,U) :0, Y r,y e R.

(36)

Of course we also have,

(37)

The linearization of (36) with respect to r gives A(r,y)0(z) * A(z,A)0(r) : 0, for all
rry, z e R.

Right multiplication of the above relation by A(r, g) gives, because of (37),
A(r,y)0(z)A(*,A) : 0, for all x,y,z e R, which, by the surjectivity of 0 and the
semiprimeness of -R, gives A(r,'A) : 0, fbr every r jA e R. The proof of relation (28)
is therefrom complete, too.

In particular for z : y relation (30) reduces to 2T (r2) : T (r)0 (r) + 0 (r)T (r), for
all r € .R.

Combining the above relation wirh (4) we arrive atT(r2) : T(r)0(r), for all r e R,
and ?(r2) -- O(t)f @), for every t € R., since R is 2-torsion-free.

By [1, Theorem 2] it follows that I is a left and also right d-cenaalizel which com-
pletes the proof.

In particular, we get [4, Theorem l] as a corollary.

Corollary 3.2 Let R be a 2-torsion free semiprime ring and let T: R -+ R be an additive
mapping. Suppose that T(xyr) : xTkl)a holds for all r,y € R. In this case T is a
centralizer

We conclude by proving Theorem 2.3.

Proof of Theorem 2.2. Let 1 denote the identity element of .8. By assumption, relation (3)
holds for every e .E. Putting r * 1 for .u in (3) we obtain, for every r e R,

tr@\ + 2T(x): ?'(r)0(:r:I -t 0(r)T(x) + 0(r)a0(r) + a0(r1 * 0(r)a, (38)

where a stands fbr 7(1). Replacing .r;by -u in (38) and comparing the relation so obtained
with the above one, we obtain

6?(:r'2) :2T'(r)0(r) +zep\r@) +20(r)a0(r), y r e R. (3e)
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Frorn (39) and since -R is 2-torsion-free we have

3T(r2):T{r)o(t) +0(r)T(r) *0(t)a0('r)' vr € r?'

Substituting from the above relation in (38) we get

2T(r) : a?(r) -t O(r)a, Y r e R' (40)

We intend to prove that 0 € Z(R).According to (40) one can replace 2:t(r) on the

RHS of (39) by aT(r) + o(r)aand6T(12) on rhe LHS by 3a0(,r2) + 3d(r:2)a, to get

a0(r2) + 0(r2)a - 20(r)a0(r) : 0, V r € rl.

The above relation can be rewritten in the form

lla,0(r)),0(r)l:0, Vr e E. (41)

The linearaization of (41) gives

[[o, 
g(z)], 0(il) + 11",0(y)),0(r)) :0, V r, a € R. (42)

Putting ry for y in (42) we obtain, because of (4 I ) and (42) that, for every r, 'y € R,

o : [[:r 3[;]l r 

"t"1\\ 

d)tY' i[:f,l)"""".\\,i rr*
+ lfa, 0 (r))0 (a), 0 (")) + l0 (r) fa, 0 (y)1, 0 (r)) :

: O(r)lla,0(r)1,0(s)) + [[o,0(r)], 0(r\e(s)+
+[a, g(r)]l7(y),0(r)) + o(r)lfa,e@\,0(r)) :

: la, 0(r))10(y), 0 (r)).

Thus we have [a, 0(r))10(y),0(r)] :0, for each r,y € R. The substitution A(y)a fot 0(y)

on this relation gives [a, 0(t))0(a)1a,0(r)): 0, for all r,y € R. So, by the semiprimeness

of iR and the surjectivity of d it follows a e Z(R), which reduces (40) to the form T(:r) --
a?(r), for every r e R. The proof is now complete.
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Abstract

Let ?Sj/11(c , p, zo) denote the class of univalent analytic functions having nega-

tive coefficients with two fixed points which are a- starlike functions involving Ruscheweyh
derivatives. We determine the coefficient inequality, distortion theorem, extreme points
and radius of starlikeness for the class 7,9j.R1 (o, lr, rr). Also, the analogous results

are obtained for the class ?CrR1 (o, tt, "o), 
the class of o- uniformly convex functions

involving Ruscheweyh derivatives.

Introduction

Let S denote the class of functions of the form f (r) : ot +Df=z a,rzn that are analytic
and univalent in the unit disk tJ : lzl < 1. Let T denote the subclass of S consisting of
functions whose non-zero coefficients from second on, are negative; that is, an analytic and

univalent functions / is in T if and only if it can be expressed as

f (r): atz _ ilo,1r"
n:2

for which either /(26) : zo or f'("o): 1 with -l < zs < 7.

Let the subclass I consist of the functions / in T satisfying

(l.l)

(1.2)

Keywords and phrases : Analytic functions, univalent functions, starlike functiorrs, o- uuifbrmly starlike
functions, o- uniformly convex functions, Ruscheweyh derrivates, radius of starlikeness.

AMS Subject Classification : Primary 30C45, 30C50, 30C55.

(1 -))IGo) *)//(26) :1 (0<^ St;zslO).
'o
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For 0 ( a ( 1 and integer p, > -1, consider the class ?SlR1(a, Lr,,zs) of univalent
analytic functions which are a- uniformly starlike involving Ruscheweyh derivates with
respect to symmetric points and consists of function f inTs satisfying the condition

p,l-42!!k)----l , *l =;!5!I- - 11. (r 3)'"'louy1z7 - ouf (-z))' "l puJpl - ouJ(r1 r

where the operator pu f is the Ruscheweyh derivate of / defined by

D*f (r) : z(z,-l)f (z))t' : ___z_ * f (z)l . p! (l - z1u+t

: atz -iA,,(tilo,l""
,t:1

with

A,(p) : ( "* p -' ) : @+t)(r'+2)"""""" (p+ n - r)
\ tt /-

Further, f e Tx is in the class Tc"R x(o, lr,z9), the class of a- uniformly convex
functions with symmetric points, if and only if z f 

t e ?Sj.E1(a, p, ,o).
Rusheweyh derivates were introduced in [6]. One may refer [1] for uniformly srarlike,

to [4] [5] for a- uniformly starlike and to [8] for analytic functions with negative coeffi-
cients, also see l2), [3) together with references there in.

In this paper, we discuss coefficient inequality, distortion theorem, extreme points and
radius of starlikeness for the 7Sl ,81 (a, p,, zs) and the analogous results for the class
TCrRs(a, k, zo).

2 Coefficientlnequality

Theorem 2.1. Let f e Tx is in the class 7S].8 x(a, p,z6) if and only if

oo

I{"(t+a) -a(1 -(-L"))A^(p) -(1 -a)(1 -)+n\)2ff-L}la,l <1-a.(2.1)
n:2

Proof. Let f e 7,9lrt1(a, p,ro). Using the fact that Re(c..,) > alw - 1l if and only if
Refw(l+ o"i1) - o"ir) > 1 for real ), and letting a : o"##/Gd in (1.3), we get

n"l=-!!5$)\ 
-(r + oe')) - o",,'l ,0,

lDuf (z) - ouf (-z) / *- 
I

which on simplification gives

(.r,-E nla,lA,(1t')"'){t+o"'1)--aei1 (ror"- i,, - (-t)*)A^(p)la,,l;') > 0.



A class of a-uniformly . . .

The above inequality holds for all z in U. Letting z -+ l- , we have

,r(1 - ,l - i{r(l + a) - o(1 - (-1')}A,(p)lr,l > 0. (2.2)
It:2

Moreover, from equation (1.2), we obtain the value of a1 as

,,r : 1 + itr -.\ + n\)la,,lz[-..
tt:2

which on substituting in (2.2) gives

De

I{("(t+o) -o(1 -(-t"))A,(p) -(1 -.r)(1 -l+n\)z[-t]lr,l <t-C,.
n:2

This verifies the inequality (2.1)

, Conversely , suppose that the inequality (2.1) holds. We will now show that (1.3) is
satisfied which in turn verifies that / e 7SlR1(a, F, zo).using the fact that Re(u) < d if
and only if 1c,., - (t + d)l < lar * (1 - d)1, it is enough to show thar

63

:(DtL f (z))' _ l, - ^,1 :(DP f (:))' , ll
Dt,f A - Dt,f er) - L'* 

*lOr1'p1 
- p,'11-r, - '11

-# #a* [' - "l*# - ":tilc, 
-'l)

Put e11. - , t)t'l?) 
. Then note thar

lDt,lQ)-Dt,I(-z)l

z(DPf(z))' ,, ^l:(Dr'l(:))' ,ll
Du|ey Drl'?z)+ I -"1 or11 -'ll

and

E:

F: :(Dplk))' _1 _ ^lz(Dt"f(z))',llDpf d- DuCz) -'- "l Dt,f A) - rll

lDuf (z) - Dpf | 
.r

*a(n- I + (-1)"))A,, (t,)lo"U
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so that by using (2.2) , we get E - .F > 0.

Remark 2.2. The result in Theorem 2.1 is sha1p. The extremal functions is given by

.f (z)- {n (1 + cr) - cr(i - (-1")}A,,(tr), - (l - a)2"

{n.(1 +a) -a(1 -(-1)")}4"(p)-(1 -a)(1 -.\+n.\):il-1'
n)2.

3 Applications of Coefficients Theorem

In this section, we present distortion theorem, extreme points fbr the class 7Sl l?1 (rr. p . :s )
as consequences ofthe coefficient inequality established in Theorem 2.1.

Theorem3.l. If / e TSXRr(a,p."o),thr:n, .f or: €U

I t-a .,.l
Otlr--T'l'L 2(1 +rv)(l +p) l

1.. I I t-o ,l
S l/(:)l < o, lr 4 

-rat 

(3.1.1)- l'' 'l - 'L 2(1 +o)(1 + lr)' l
I t-o .).

o.rlt'-.-l'l'L 2(1 +rr) '

I I l- l-o .,.]

a 
lDt, 

f (:) 
| = 

,, 
L, 

+ ,1 +,0,,1 (3.t.2t

and
I t-o Iarll--rl'L (1 +o)(1 +p) )

< l.f'(:)l a n, l, + ,. , 
1 ,l*, ,,.1. r3.t.3r'L (1 + t)(1 + 1) .l

Proof. Since {A"(p)},,>u is non-decreasing, in view of the inequality (2.2), we get

2(1 +c,)(1 *r)il,,l
rt-2

< {z(1 + a) * a(1 - (-1"))}A"(1t)la,,l < o1(1 - o).

which gives

to,rrrt,,,t<ffi (3.r4)
tt:2

x

--i.,o,,r<rulffi (3rs)
il:]

Therefore, using (3. 1.5) in ( l. 1), we get
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ll't.ll > o,l, ---- :--g-,',l
,,\ /,- .L 2(1 +a)(t+1r) l

l.rt.ll < ,,, f,'* ----!: "-,..,li 2(1 + o)(1 + l,)' l 
'

This yields the result (3.1.1). Also, if J e TSiRy (tr.p,:s), using (3.1.4) in (1.3), we get

the result (3.1.2).

Furthel note that

lor I -'i rlr,l < .f'Q)l< lnrl * ,i rtlo.,,!.

rt-2

But, in view of Theorem 2.1, we have

rt-2

co

\-r,l,r..ra al(1 -o)
,?r"'" "'- (1 + r,)(l +yr)'

which in view of above. yields the result (3.t.3).
Theorem 3.2. Let .f tG) : o,13 and

f,r(;:) : o1z

(7 - o):"
{rr(1 + rr) - rr(1 - (-t)" )}A,,(y) - (1 - ")(1 

*.\ + n.\):[j'-r'

where A' > 1. Then ./ € TSIRr(o. 7tr, :o). if and only if it can be expressed in the lonn

f (.) : Ld,,J,,?). where d,, ) 0 ,uttll rl,, : 1.

tt:) rt:2

Proof. Let us write

-i
f (r) : f L,,r,,r", : .t:

It: I

(t - a)d,,2"
(3.2.1)

(1 + a) - rr(1 - (-1)"))r1,,(ti - (1 - o)(1 -.\ + rr.\):1j-1' \J'-'

i(n(1+ rr) - rr(1 -_t-1t"llA,,tpl - .\ + n))ilo"l
1-r.r

'n,:2.i1.....

ct1 :1 ir,,.
tt-2

u- (tt
,)-l'

Put
.tlLtt 

-

and
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Now, first assume that / € 7SlR1(a. Lt, zo),.Then, by Theorem 2.1, we have

it,,,, *o) - o(1 - (-1)")),n,(p)
n--2

-(t-rr)(1 -I+?lA)zfr-'\lo,,l ( 1-o,
which gives

6,

La,-St and, dr >0.
n:2

Conversely, let ![, dn I 1 and d1 ] 0, which, by using in (3.2.1), verifies that

oo

f (r) : atz *LL,r",
tt:2

oo oc

Ir,,:I
n:2 rt:2

(l - a)d"
(n(1 +a) -a(l -(-1)"))A,,(t)-(1 -a)(1 -A+n\)2',]-l

s i dnsr'
n:2

Hence / e 
"SJ,Rr 

(o, tt, ro).

Theorem 3.3. Let / e 7Sl.E1(o, tr, ro). Then /(z) is starlike in l:l < ,x(a, [r),where

66

where

r^(a, pI: ,*, 
{ 

(n (r + o) -g-(r:1- r)"))a'(p) 
}"*,

Proof. Noting that

l rf'(r),1 - otl.l+ILr(r-1 +(-1)')lo"llrl
llir;l - f er) -'l = 2o+:l - If:;l - (-1)")lo,ll;1" '

T4-f rru4q- tl . I f or l"l < twe find that

if DL,z nla,,llzl"-l < a1.

Hence / is starlike if

rs(a,p): inf {n(1 
+o) 

-o(1 - 
(-1)")A,,(p)}*,r:2,3.....

n I n(l -a) ""')

which completes the prool'..
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4 Class TC,Rs(a, p, zo)

In this section, using the fact that Let f e TCsRs(a, P, zo), if and only if zf t e ?Si.R;(o, lt, zo),

and the results proved for the class

ISII?r(a, F,zo),inSections2and3,weobtainanalogueresultsfortheclassTCsRs(o,lr,zo),
which are stated without proof.

Theorem 4.1. A function f (z) : a1z DTrla,rlz" is in class

TCrRs(a, p, zo), if and onlY if

i r11r1, + o) - a(1 - (-l)")),a,(p)
n-2

-(1 - ")(1 - \+ n\)2ff-')lr,l ( 1- a.

This result is sharp.

Theorem 4.2.lt f e TC"Rx(a, pr,:s). then, for z e U,

I t-a .,.l
atlT__ _?. 1*' L' +(t + ")(t + tr)' l

I r [ l-a ,ls lf@l s o' y * ,,, * "x1 1,,1"1 (4'2't)

",[, - -L: --,,] s lo,ri.yl 
. o,[, . a';b,'] @.2:2)

and
[ 1-a I

'' L' a1+ "Xt + r,)']

I r [ 1-a 'l

< l/'t.tl 
. u' 

Ll 
+ 

2(r + CIxl + p)rl (4'2'3)

Theorem 4.3. Let ft(r) : a1z and

n,:2,3...

where k > 1. Then / e TCsR>,(a, H, Zo), if and only if it can be expressed in the form

f (=) :Dil*f*(r),ulrcre dn ) 0 o,nd, ld,t: I
n:2 rr,':2
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Theorem 4.4. Let f e TC"Rr(,t.tr,:1y).. Then.f is convex in the clisc j:l < r1(a.!1.
where

/')(rl.11): irrf {rr(i 
*'r)--^(1 

, 
(--1]") A,,t1tl}t",:2.J.....,, L r1-(i * /rl )
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Abstract

The present paper is to investigate the effect of porous medium on transient free
convective flow of a viscous incompressible electrically conducting fluid along an in-
clined isothermal non-conducting plate in the presence of transverse magnetic field.
viscous dissipation and Ohmic dissipation. The governing equations of continuity,
momentum and energy are solved using erplicit finite dift'erence schcme. The velocity
and temperature distributions are discussed numerically and presented through graphs

and Tables. Skin-friction coefficient and the Nusselt number at the plate are derived,
discussed and their numerical values for various values of physical parameters are

presented through tables.

1 Introduction

Thenlal boundary layer flow problems are classified into categories e.g. (i) free natural

convection flow and (ii) forced convection flow and have many applications in the area of
industries and engineering.

The study of natural convection flow (Schlichting and Gersten 1999; Bansal 1977) finds
its applications in nuclear reactor, spacecraft design, chemical industry etc. the unsteady

MHD free convective flows of dissipative fluid are important because of non-linearity of
the governing equations.

Keywords and phrases : Transient f'rce convection, rnagnetic field, porous medium, viscous dissipation,
Ohmic heatrng. finitc difference technique.
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The problem of free convection flow past a prous/non-porous vertical plate has been
considered by many researchers, e.g. Kumar and Yadav (2007) have studied unsteady MHD
free convection flow through porous medium with heat and mass transfer past a porous
vertical moving plate with heat Source/sink. Mittal et. al. (2010) have studied on the
vorticity of unsteady MHD free convection flow through porous medium with heat and
mass transfer past a porous vertical moving plate with heat source/sink.

Seigal (Seigal 1958) solved the problem ofunsteady free convective flow along vertical
plate using integral method. Raptis and Tzivanidis (Raptis and Tzivanidis l98l) obtained
the numerical solutions of unsteady flow along accelerated vertical plate and unsteady MHD
with constant heat flux and presented exact solution. Soundalgekar et al. (soundalgekar et
al. 1977) considered the transient free convection of incompressible dissipative fluid on ver-
tical plate. Muthucumaraswamy (Muthucumaraswamy 2003) studied unsteady flow along
accelerated plate with mass diffusion. MHD free convective flow of dissipative fluid on the
vertical plate has been discussed by Sridhar et al. (Sridhar et al. 2006). Recently, Sharma
and Singh (2009) have discussed on Numerical solution of transient MHD convecrion flow
of an incompressible viscous fluid along an inclined plate with Ohmic dissipation.

The aim ofpresent paper is to investigate unsteady natural convection in the boundary
layer in a viscous incompressible electrically conducting dissipative fluid through porous
medium along an inclined isothermal non-conduction plate considering the Ohmic heating
in the presence of transverse magnetic field. The problem is coupled non-linear partial
equation whose exact solution is not possible; hence finite difference technique is employed
to obtain effects of physical parameter on velocity and temperature profiles.

2 Formulation of the Problem

Consider unsteady laminar two-dimensional free convective flow of a viscous incompress-
ible electrically conducting fluid through porous medium along an inclined non-conducting
plate and g*-axis is normal to the plate. Magnetic field of uniform intensity 86 is applied
in y*- direction. Initially, the temperature of fluid and plate are assumed to be sanre and
for t* ) 0, the plate temperature is raised to Tu-. While formulation of the problem, it is
assumed that the external field is zero, also electrical field due to polarization of charges and
Hall Effect are neglected. Incorporating the Boussinesq approximation within the boundary
layer, the governing equations of momentum and energy are function of g* and f* in t1e
presence of transverse magnetic field (Bansal1944) are given below

# :,# + g,,(r. - 7;")cos? - !4u. - fiu. .)

^ 0T* . A2T* 0u*pC, ar : k ofu + p(#) + oBlu*) (2t

Where u* is velocity of fluid in r* direction, g is acceleration due to gravity of the Earth,
B is coefficient of thermal expansion, r is inclination angle form the vertical direction, p
is density of fluid, C, specific heat at constant pressure, r.r the kinematic viscosity, k the
thermal conductivity, 7* is temperature of fluid and Q. is the temperature of the far away
from the plate.
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The initial and boundary conditions are

:: r' 
l: :l l:t? ill )

Introducing the following non-dimensional quantities

, : 
{ 

go(T'r; r*) 
}* ,.,

r : {tr%N}*r., 11: {usB(r,o-r-)}-*r.,
11jr f

A ! rooa: i; -1;
and Pr : *into the equations (1) and (2), we get

X: #+ gcos r - (*. *) "

X: *#.,"(X) t EcMu2,

where, : 
{ ffi} ,, *.n"nrionless temperature

* : {W} ,, ,nur,,",ic parameter

K* : # "the 
porosity parameter

u': {q#N} "'"n"n 
number

us: {ugB(% - ?t)}t and Pr is Prandtl number.

(3)

(4)

(s)

t(0, u:0, 0:0 forallgr )

t>0, 'tt:0, 0:1 atlt:, I
I

u:0, 0-+0 urg-* J

(6)

3 Method of Solution

The equations (4) and (5) are coupled differential equations; therefore exact solution is not
possible. Hence explicit finite difference method (Jain 2000;) Muralidhar and Sundararajan
2003) is employed to seek the solution of the equations (4) and (5) under the boundary



+ oi,icos.t + (* * f,) ",,t, (7\

conditions (6). The finite difference equations (a) and (5) are as follows

ui,j+r - ui,i __

Lt

(e)

":,(*),.:,

0lj+t - 0;,,j _ | 0;+t,j -20 *0*tj
Lt Pr (As)'

* ,"(u;+t,j - ui j) + ur"1r1,;;2 (8)""\ L.v )'
Where index i refers to gr and i to time r, and dudng computation Ac : 0.t and At :

0.00125. The scheme is found to be stable and convergent while checking for different

values At of and no significant change was observes.

4 Skin - Friction

The skin-friction coefficient at the plate in non-dimensional form is given by

r / du\ct: trnlt=\oo)r=r,

oL / d0\Nu: isu-T;: - (a/,=.'

Where

5 Rate of Heat Tlansfer

The rate heat transfer at the plate in the form of Nusselt number is given by

( l0)

Where
. /ar\n: -* \ao ) ,.=o

The values of C7 and Nz at the plate are evaluated using Newton's interpolation formula.

6 Results and Discussion

Numerical calculations have been carried out for dimensionless velocity of fluid (z) and

temperature profiles d for different values of parameters and are displayed in Figures-(l) to
(7).

Figure - (l) depicts that with the increase in magnetic field intensity, the fluid velocity

decreases. This agrees with the naoral phenomena because in the presence of Eansverse

magnetic field, Lorentz force sets in, which impedes the fluid velocity.
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Figure - (2) depicts that with increase the permeability of porous medium, the fluid

velocity increases due to Darcy's law.

Figure - (3) depicts that the increase in angle of inclination reduces fluid velocity be-

cause; increase in angle (7) reduces buoyancy forces.

Figures - (4) and (5) depict that with increase in Prandtl number, fluid velocity and fluid

temperature decrease. The boundary layer and thermal boundary layer thicknesses reduce

with increase in the Prandtl number'

It is seen from figures - (6) and (7) that fluid velocity and fluid temperature increases

with the lapse of time. The boundary layer and thermal boundary layer thicknesses increase

with the time.
It is seen from table - (1) that velocity distribution of fluid, dust particles and temper-

ature distribution for Ec. The increase in the viscous dissipative heat leads to increase in

velocity distribution of fluid, dust particles and temperature distribution.

It is observed form table - (2) that with the increase in the value of magnetic field

intensity and porosity, fluid temperature increased. But increase in angle of inclination

reduces fluid temperature.

It is seen from table - (3) that skin-friction coefficient decreases and Nusselt number

increases with the increase in the magnetic field intensity, angle of inclination or Prandtl

number. The increase in the viscous dissipative heat and porosity leads to increase in skin-

friction and decrease in the Nusselt number. As the time increases, skin-friction increases

and rate ofheat transfer decreases.

73
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Thble- (1) Numerical values of Velocity distribution of fluid and temperature distribu-
tion for different values of Ec at M : 0.b, K : 2,.y : 0r, pr : 0.Tl&, : 0.1.

v
Velocity distribution of fluid

(u)
Temperature distribution of

fluid (d)

Ec = 0.3 Ec:3.0 Ec: 0.3 Ec = 3.0

0.0 0.0000000 0.0000000 1.0000000 1.0000000

0.1 0.0142652 0.0t42662 0.8500521 0.8501 3 I 2

0.2 0.0210752 0.0210769 0.7053034 0.70s3852

0.3 0.0227342 0.0227363 0.s704130 0.5705028

0.4 0.021l9l I 0.021l93s 0.4490045 0.4491069

0.5 0.0179715 0.0179738 0.3433617 0.3434678

0.6 0.0141621 0.0141641 0.2543061 0.2544029

0.7 0.0104448 0.0104464 0.1812493 0.1 8 r 3278

0.8 0.0071632 0.0071644 0.1223794 0.1224368

0.9 0.0044048 0.0044055 0.0749224 0.0749600

I 0.0020815 0.0020818 0.0354223 0.035441 8



Numerical solution of transient MHD free convection . . .

Table- (2) Numerical values of temperature distribution for different values of h'1, K
and 7 at Ec:0.3, Pr :O.7\andt :0.1..

Y
M:0.5, K:2

y=0'
M:10, K:2

Y:0'
M:0.5,K: l0

y: 0'
M:0.5, K:2

v: 45"

0.0 1.00000000 r.00000000 1.00000000 1.00000000

0.1 0.8500520s 0.8500s642 0.8500s22s 0.8s004765

0.2 0.70530335 0.705314r2 0.70530353 0.70529881

0.3 0.s7041301 0.57042647 0.57041318 0.57040802

0.4 0.44900454 0.44901686 0.44900474 0.44899886

0.5 0.34336172 0.34337096 0.34336193 0.34335583

0.6 0.25430608 0.2543t205 0.25430628 0.25430070

0.7 0.18124928 0.18125268 0.t8124946 0.18124492

0.8 0.12237938 0.12238t05 0.122379s1 0.12237619

0.9 0.07492239 0.07492303 0.07492248 0.07492030

I 0.03542233 0.03542245 0.03542237 0.03542125

l5
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Table- (3) Numerical values of skin friction coefficient and Nusselt number for differ-
ent values of M, K, Pr,1,t and Ec.

Pr v M K Ec t C1 Nu

0.71 0" 0.5 2 0.3 0.1 0 8828026 50822077
0.71 0' 5 2 0.3 0.1 0 7448563 50822086
0.71 0' l0 2 0.3 0.1 0 6165149 50822466
0.71 30" 0.5 2 0.3 0.1 0 630s517 50827419
0.71 30" 5 2 0.3 0.1 0 5l 10858 50827425
0.71 30 l0 2 0.3 0.1 0 3999384 .508277r0
0.71 45" 0.5 2 0.3 0.1 0 3313373 .50832760
0.71 45" 5 2 0.3 0.1 0 2337930 .50832764
0.71 45" l0 2 0.3 0.1 0 1430411 .50832954
1.2 30' 0.5 2 0.3 0.1 0 4346648 96220964
1.2 30' 5 2 0.3 0.1 0 3412413 96221378
1.2 30" 10 2 0.3 0.1 0 2532919 96221883
2.1 30" 0.5 2 0.3 0.1 0 2268656 2.60122297
2.1 30" 5 2 0.3 0.1 0 1575942 2.60122974
2.1 30' t0 2 0.3 0.1 0 09r s619 2.60123618

0.71 0' 0.5 5 0.3 0.1 0 8928890 1.50821732
0.71 0' 0.5 l0 0.3 0.1 0 8962780 1.50821615
a.7t 0' 0.5 2 1.5 0.1 0 8828609 1.50736611
0.71 0' 0.5 2 3 0.1 0. 8829338 1.s0629762
0.71 0' 0.5 2 0.3 0.1 0 8828026 1.50822077
0.71 0' 0.5 2 0.3 0.11 0 9728132 1.43818307
0.71 0' 0.5 2 0.3 0.12 0.20580s53 1.37756619
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Fig. - 1: Velocity profiIe of fluid for different values ot-.rt{.
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Fig. - -1. Velociiy* profile of fluid tirr different values of y
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Fig. - .l: Velocitv pl'ofile of fltrid tbr different values of pr.
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Abstract

In this work, we introduce the concept of n-tuple fixed point which is a gen-

eralization of coupled fixed point for mappings in complete partial metric spaces

and obtain existence and uniqueness theorems for different contractive conditions'

Also, we give a very important comment that any n-tuple fixed point of F : xn :
X x X * X... * X -+ X if andonlyif isafixedpointof G: X" -+ X',where
(X' ,O) is a partial metric space induced by a partial metric space (X, p)' Our results

!"n"ruilr. relevant results due to Bhaskar and Lakshmikantham [4], Borcut, Berinde

[3] and Hassen AYdi [2].

I Introduction and Preliminaries

In 2006, T. G. Bhaskar and V. Lakshntikautham [4] given the notion of coupled fixed

point and proved some interesting coupled fixed point theorems for mapping satisfying a

mixed monotone property. M. Borcut, V. Berinde [3] introduced the concept of tripled fixed

pointfornonlinearcontractivemappingsof theform F:X xX x X -+ X,andobtained

Lxistence and uniqueness theorems in partially ordered complete metric spaces X' coupled

comrnon fixed point results and coupled coincidence point results existing in literature, e.g"

[1,5,9, l0].
In a recent paper, Hassen Aydi t2l introduced some coupled fixed point results for

mappings satisfying different contractive conditions on complete partial metric sPaces.

G*""dr ""d 
pL** t Prri4 **i. space, Contractive type operator, N-tuples tixed point' Existence

and uniqueness.

ItvtS Sub;ect Classificatirrn: Prinrary 541125: Secortdary 47H10'
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The purpose of this paper is to present some n-tuple flxed point theorems for different
contractive mappings and we prove that a point (rt,rz,...,r*) is n-tuple fixed point ofF: Xn -+ Xif andonlyif (r1,n2,...,rr)isafixedpointof G: X,, _+ Xn.where(x" , o) is a parrial merric space induced by a partial *"t.i" space (X, p) as follows:

p((*r,12,...,rn),(al,a2,...,yn)) :finnt r,ur), f,rr.r, (l)
Z:1 i.:7

where t7,12,...,rn,A7,A2,...,Un € X, jt,jz,...,inarenonnegativeconstants.
Now, we present some basic notions and results due to i. c. ghaskar and V. Laksh-

mikantham [4], M. Borcur and V. Berinde[3].

Definition 1.1 t4l. call an element (r,a) e x x X a coupled fixed point of the mapping
F',if

F(r,a) : r, F('a,r) : A.

Theorem 1.1 t4l. Let (X, <) be a partially ordered set and suppose there is a metric cl on X
suchthat (x,d) isacompletemetricspace. Lettr': x x x -+ Xbeaconrinuous mapping
having the mixed monotone property on X. Assume that there exists a constant r e 

'Jo, 
r;with

d(F(r,y),F(u,r,l) <*[d,(r,u)*d(a,u)] y r> u, a {u.
Ifthere exist es, Uo € X such that

rs F(r6,ys) and Ao) F(Ao,ro),

then there exist r, A e X such that

r: F(r,y) and A: F(a,r).

Definition l.2I3l. Anelemenr (r,a,r) € X x x x x issaidtobeatripledfixedpointof
the mapping F'if

F(r,A,z) : r,F(A,r,z) : A and F(z,A,x)) : z.

Theorem 1'2 t3l. Let (X, <) be a partially ordered set and suppose there is a metric d onXsuchthat (X,d) isacompletemetricspace. LetF: X x X x X -i Xbeacontinuous
mapping having the mixed monotone property on x. Assume that there exist constanrsj,k,l € [0, 1) wirh,j + k+ / < 1 for*f,ict

(2)

d(F (r,.y, z), F (u, u, u))

< jd(r,u)+kd(y,u)+ld(z,w) y r)4, ASu, z)w.
If there exist e61, Ao, z0 e X such that

ro ( .P(ro, ao,zo), 'yo) F(?lo,ro,zo) o,nd zs I F(zs,gg,r0),

(3)
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then there exist r, U, z e X such that

r: F(r,Y,z), a: F('Y,r,z) and z: F(z,a'r)'

In 1994, S. G. Matthews [6] introduced the notion of a partial metric space as a gen-

eralization of metrics where self-distances are not necessarily zero and obtained a Banach

contraction mapping for these spaces. First, we summarize in the following the basic no-

tions and results established in partial metric spaces.

Definitionl.3([8,7]).LetXbeanonemptyset.Afunctionp:XxX-+[0,oo) iscalled

a distance on X. The pair (X, p) is called a partial metric space if p satisfies the following

conditions:
(pr) p(r,r) : p(r,a) : d(a,A) ++ r : U,

@z) p@,r) a p(r,a),
(pz) p@,a) : p(v,r),
@i p@, z) S p(r,a) + p(s, z) - p(a,s),

for all r,y,z e X.

Remark 1.1. We note that if (X,p) be a partial metric space then p(n,a) : 0 + r : A

but the converse my not be true.

If (X, p) a partial metric space, then the function d : X x

i(*,il :2p(r,a) - p(r,r) - p(a,a)

is a metric on X.

Definition 1.4 (16,81). Let (X,p)be a partial metric space. Then,

(i) a sequence {zrr} in a partial metric space (X,p) converges to a point n € X if
and only if p(r,r) : ,,1!gp(r,r): ,\5p(rn,rn)i

(ii) a sequence {rn} in a partial metric space (X,p) is called a Cauchy sequence

if there exist o ) 0 such that for each e > 0 there exist k such that for all n,m > k,

lp@",;r-) -al<e.
(iii) A partial metric space (X, p) is said to be complete if every Cauchy sequence

{r, } in X converges to a point in X, such that p(r ,r) : ,,Ji3* P(rn, rn,) '

Lemma 1"1 ([6, 7]). Let (X, p) be a partial metric space;

(1) {r:,,} is 3 Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the

metric space (X, d).
(.21 a partial metric space (X, p) is complete if and only if the metric space (X, d) is

conrplete; furthermore, lytra1r",z) 
: 0 if and only if

7/r.r): lirn p(rn.r) -- Iiru p(rn,r*).- lr-+ roc n,nl-++co

X -+ [0, oo) given by

(4)

(s)
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Theorrcm 1.3 (t2]). Let (X,p) be a complete partial metric space. Suppose that the mapping
F : x x X -+ x satisfy the following contractive condition forall r,u,u,'u e x.

p(F(x,y), F(u,r)) < kp(x,u) + tp(s,u)l

where k,l are nonnegative constants with k + I < 1. Then F has a unique coupled fixed
point.

2 N-tuple fixed point theorems on partial metric
spaces

Throughcut of this section, x or (X,p) will denore a partial metric space.

Definition 2.1. An element (r1,r2,...,rn) e xn is called a n-tuple fixed point of f :

Xn -+ X if ,F(r1, t2,...,rn): 11 ,F1r2,17,...,rn): t2,... ,'r(r",*n)r,...,rr1) :
tr".

Remark 2.1. We note that in the Definition 2. l, if n :2 then F has a coupled point and if
rr, : 3 then .F'has a tripled point.

Theorcm2,l. Let(X,p) beacompletepartialmetricspace. Suppose F: Xn _+ X
satisfies the following contractive condition for all 17,t2,...,tn,
'yt,y2,...,u" e X

p(F(rr ,n2,...,rn), F(at ,!/2, ...,y^)) <f iont*o,uo),
i=l

where jt..jz, ..., jn are nonnegative constants with

fixed point.

1. Then f'has a unique n-tuple

p(1,1,,r1,,+r) : p(F (*|r_t, r2*_t, ..., rk_ r),
F("k,:i*, ..., r\))
jp(.rk t,"k) + jzp(r2*_r,r2,,7 + ... +
j.,rp(rkt,rk).

s

(6)

(7)

n

Din<
i:7

Proof, Choose ri,r3,_;..,16: Xandsetz] : F(r[,r2s,...,r8),r?: F(*Z,r[,..., rt),...
and.r']' 

:flrfi.,16-',...."3).Repeating this process,,"t rl*, : f(ri,ir* i1;1,
r'r,+l : l'(z';,,.r'i,,, ..., r,;r,),...and r\*, : F(r?r,rrk-1 ,...,r1*).fnenby (7) we have

(B)



Similarly, we obtain

p(rk,r?n+) : p(F(r2*-r, *'^-t,..., rk-t),
F(*k,rr*,...,fik))

j"p(tk-r*?),

p(rk, rk+t) : p(F(rk-t, rk'-lt, ..., rr*-r),
F(*k,rT' , ...,*'^))

s jo@h-t,r?) * jzp@k-.\,*T') + ... +
j*p@!*-t,r1*)

Therefore, by letting

dr, : p(xln,rl,r+r) -t p(rk,i2rrt.) + ... + p(rk,*k+) (10)

we have

d,r, :p(rrlr,rl,+r) +p(r2*,r?o+) +... + p(xk,r'i,+)
S Ur + iz * ... + ii lp@|"-t,r!*) + p(r2*-r,"k)
+... + p@kt,rk))
: (rr + jz * ... + j")&"-t.

Consequently, if we set d : h * j2 + ... + j,r, then, for each n € .l/(the set of all natural

number ) we have

dm < 6dm-t 3 62dn, -z S ... < 6*do. (11)

If ds - 0 then p(r|,rtt) l- n@Z,r?) + ... + p(r},*?) : 0. Hence from Remark 1.1, we

get that rA : rl : F(26,r3,..., *3),*3 * r?: F(.tzs,rfi,...,r4),"'and z[ - tT :
F(rl,r'l-r,...,r|), meaning that (rfi, xf;,...,rfr) is a n-tuple fixed point of F. Now, let

do > 0. for each k ): rn, we have, in view of the condition (y')

p@i, *]*) < p(zi, "l-, ) * p(.r11,-r, *rx-z) - p(xlr,_,,zl-r )

*p(nrx-z,,rl-,) * p(rfl-r, ,rl,-) - p(r|-,,rl-s)
+... -F p(rl,+2, rLn,+) + p(rk+t,r'*) - p(r|,,+r, *',*+r)

< p(rlx,rl-r) + p@L-t,"L) + ... + p@k+y*r*).

(e)
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Similarly we obtain

p(r2x, r2*) < p(x?, 
"? 

_ ) * p(r| t, 
"2n 

_r) + ... + p(r?^+ t, *2,,),

p@?, rh) < p(r?, 
"t ) * p(rt _t, 

"t i + ... + p(rk+ r, rk).

Thus

5m

By definition of i,we have i < Zp1r,U), so, for any k ) m

i1"ro,";1+ ilrzo,nh) + ... + i(ri,xg1 < 2p(r!,nk) +zp(r2o,xl)
+... + 2p(ri,rfr)

s 2 ,5'" ,do. (13)I-d

which implies that {zl}, {r'*},... and {rS]r are cauchy sequences in (x,i) because of
0 ( d: ir* j2+... + jn {L. Silcethepartialmerricspace (X,p)iscomplete, henceby
Lemma l.l, the metric space (x, d) is complete, so there exist 21, u2 , ...,u" e x such that

tigyi(rr*,ur) : )a5i("h,u2) : . : 
_l55 i(rk,un) :0 (14)

From Lemma 1.1, we get

p(ur,'u' ) : Jq5 o(" 
rn,, r, ) : Jr35 r(" k, rl*),

p(u2,u2): *lim p(z'*,u'): _li+l- p@k,r2^),m-+oo n"L-)tx- ,.'

(r s)

'p(un,rn): 

,]!5r(, h,u"): J35r(, h,rk).

By condition (p2) and (i1) we have

p(x!*,rl)Sp(rl,,rl,+r) 1d,,16^do, (16)

which show that lim--1.op(rr^,*I): 0. It follows that

p(rr,ut):,|gr{r},,,ur): 
Jgr(r,,,,,r,,,,) _ o. (17)



Similarly, one has

p.(u2,u2): Jg5o("'*,u'): Jl15r(,'*,"*) : o,

( l8)

plu,,,un): JIILr("h,u"): Jg5r(r?.,*k) 
: o.

By using the contractivity condition on f, one obtain

p(F (ul, u', ..., un ), ut ) 3 p@ ful, u2, ..., u" ), r1*+)
*P@k*r, u\ - P@1^+ r''1,,+ r )

S p(F(uL ,u2,..','u,n), (19)

F (*'*, *2*, ..., a?*)) + p@k+ r, ul )

< ip(rln,ul ) + i2p(r2^, u,2)

+... + inp(xh, u") + P(rl,.+r, ut),

and letting rn J *oo, then from (17) and (18), we obtain

p(F(ul ,u2 , ..',u"),ur): 0, so F(u' ,112 , "',u') : u1 ' similarly' we have

F(u',uL,...,u") : u2, F1u3,u2,'..,un) : u3,... and

F(u",u,n-7 , ...,r1) : u', meaning that (ul, u2, ...,2") is n-tuple fixed point of ,l7'

Now if (ur ,u2, ...,un) is another n-tuple fixed point of F, then

p('ur ,rr)

P(u2,,2)

:

:

p(F(ut ,u2 , ...,u"), F(ut ,u2, ...,un))

jtp(,ul, ul) + ... * jnp(un,un)

p(F(u2 ,'ttrr , ...,un), F(u2 ,u1, ..., u'))
je(uz,a2) + ...* inp(u",u")

(20)

It follows that

p(un ,un) : p(F(un ,'ttrn-t , ...,u11, Flrn ,u'-1, -.., t.'l ))

p(ur,ur) * p(u2,u2) i ...* p(t/'',u") < (jt + iz -l ..' * J")

fp(ut,r') + ... -t- p(u" ,u'"))

In view of (n+ jz+...-t j,r) .:. 1, this implies that trr(u1, r/)+p(u2 ,u2)+...+p(u" , un) : 0,

soul : u1,...-and lrn:?)n.Theproof o{'Theorem2. I iscompleted.

Remark 2.2. Theorem 2.1 extends the Theorem 1.3 (Theorem 2.1 of [2]) for n : 2.

If we put jt : jz:5 ... : jn =- l, in Theorem 2.l,wehave the following corollary
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comllary 2.1. Let (x,p) be a partial a complete rnetric space. Suppose F : Xn --+ x
satisfies the following contractive condition for all rt,T,2,...,.f,,r. AL ,A2, ...,An e X

p(F (xr, 12, -.., r"), F (y|, U2, ..., arr'))

where /c e [0, 1) with Then F has a mique n-tuple fixed point.

Example 2.1. Let x : [0,m) endowed with rhe usuar partial merric p defined p : xn -+
[0,", with p(z,g) : max{r,y}.T'he partial metric space (x,ir) is complere because
(x, d) is the Euclidean merric space which is complete. consider the mapping F : Xn -+
X defined by r,(el, *2, ..., rn) : (cl +c2t"'+c') . For any x7, 12,..., r, € X, we have

p(F (xL, fr2, ..., r"), F (ar, U2, ..., a"))
: I moc{cl + 12 +...*x:,r,ar +y2+... +y,r}
5 i [max{rl, yrlt +... * ma:<{r",y"}]
: i lp(*r,yr) + ... + p(u",a,)1,

which is the contractive condition (21) for l; == j. Therefore, by Corollary 2.1, F has a
unique n-tuple fixed point, which is (0,0,....0).

Theorem 2.2. Let (x,p) be a complete partial nrerric space. suppose F : x,, -+ X satis-
fies the following contractive condition for all
tl ,12, ...rrn rUl ,'a2 r...ran e X

where k, / e [0, 1) with k + I < 1. Then F has a unique n-tuple fixed point.

Proof. we take the same sequences {rl,'},{rk},... and {r},} given in the proof of
Theorem 2.i by

(22)

(23)

(24)

Applying (23), we get

zf,n+t: F(;:1, ...,rh), **+t
: F (xzn r. ..., r?rr), ..., rh +t -= F (r'r'n, ..., rk)

p@k,r,l,+r ) < 6p(rr*, 
"1,_)

p.lnk, r2*.r ) < 5 p (*L, r2*_ )

.

p(r\,, rk+) < |p(rk, tk_ )

(2s)
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where 5 -- t. By the deflnition of J, we have

Z@',,, *'*+) < 2p(rk, *'**t) < 5* p(rl, r[)
i(r',,, *'**r) < 2p(r2*, rk+t) < 5* p(r!, r2o)

(26,\

i(*k, rh+) s 2p(r?,, rh+) < a*p(x!, xff)

Since k + I < 1, hence d < 1, solhe sequences {r},r},{"',"},"' and {r$) are Cauchy

sequences in the metric space (X,d.). Thepartial metric space (X,p) iscomplete, hence

thanks to Lemma 1.1, the metric space (X, i) is complete, so there exist ul ,u2,...,u" e X
such that

J!*i(rk,ul) : )*a@'*,uz) :... : Jl15 i("k,u') : 0' Q7)

Again by Lemma l.l we get

p(ul, u} ) : Jl15 o(r'*, ut ) : rlrjl p(rl,, rl,,),

p(rP, u2) :,lYL o(r'^, r') : Jl15r("?,, r'*),

'

p(u", ttn) : Jr35 r(,\, u") = rlyL p(r']r, *'h).

But, from condition (p2) and (25),

p("L,r;,) < p(rk,rl,"r) { 5mp(r1, 16),

so lim,r--,1- p@h,rk) :0. It follows that

p(ur,ut): jTLr("1,,,rr') : ,,|,.g,r{r!*,rl*) -- o'

Sirnilarly, we get

p(rz,r2): ,ll15p(,,,'*,u') = J[Lr(rlr,r2^) = o,

p(u,'',un)-- Jt35r(, |,,un): ,lgLP(r l,,t'i,) 
: 0.

(28)

(29\

(30)

(31)
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Therefore, we have, using (23),

p(F(ut ,u2, ...,tt',),ut) < p(F(ul ,112, ...,u,r),t:1^_,r1) +..p(rf,,*r,ul1

+ p(z|,*,, ul)

S kp(F'(u1,112,...,un),ur) eZ)
+ lp(F(xl, r2*, ..., r?),*1,) + p(a:,1,,*,, zr )

+ p(*lrr+t,ut)

and letting m I *Nt rhen fronr (29)-(31), we obtain

p(F (ul,,u2, ... t un ), ul ) S kp(F (u,1, u2, ..., u" ), ut ).

This is a contradiction, so p(F(ul ,u2, ...,urr),ul): 0 that is
F(r1, u2,..-.,u',) _ u1. Similarly, we have F(u2,'tt1,..., ?Ir) : u2,... and
F(u)',un-t , ...,u1) : u", meaning that (,ul ,u2, ...,ur) is n-tuple fixed point of F. Now,
let (u1 , ...,u") is another tuples fixed point,of F, then by using the condition (p2) and (23)

p(ul,ut) : p(F(ul, u2,...,u"), F(ul ,u2,...,urr))
< kp(t- (u,1, u2, ..., u,, ), u} ) + ry@ pl, u2, ..., u" ),,ul )

< kp(u,', ul) * lp(ut,ul) (33)
< lcp(ul,.ur) + b(u,,1,1; : 1k + t)p(ut,uI),

that is, ?(u',ui) : 0 since k + t < 1. It follows that ul : ul. similarly, we can have
'r.12 : tJ2,... and u,n :,tJn.

Theorem 2.3. Let (X,p) be a complere partial metric space. SupposeF : Xn -) X satisfies the following contractive condition for alltl , 12, ..., rn , al ,a2 , ...ran e X

*lp(F(yl , ...,y"), r1') (34)

where k,l e- [0,1) with k + 2l < 1. Then F hzrs a urique n-tuples fixed point.

Proof. Since k + 2l < 1, hence ,t + I < 1, and the proof of the uniqueness of n_
tuple fixed point in this theorem is trivial. 'fo prove the existence of fixed point, choose the
sequences {r},}, {"k},'.- and irfi} rike in the proof of rheorem 2.1 as folrows:

r],r+t : F (*L, ..., rk), r2*+t

= F(t2^,...,rk),...xk+r : F(r\r,...,*r^) (3-5)
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Applying (31), we get

p(*!*,r1**r) : p(F(*lr,-r, ...,r?n-r), F(rk, ...,"k))

F(rr*,...,"kD

+ lp(*l,,,"1^-r) - lp(rl,rl)

lt follows that for any n e N

p(rk,*k+r) 
= #Ap@rn,,,l^-r) G7)

I.et us take 4 : i-+=f . Hence, we deduce that

Z@|,,*L*r) <2p(rt^,r],,+r) 32r{''p(rl,rrs) (38)

Byusingthecondition0 ( k+t < 1, wegetthat0 ( tl lL,sothesequence {rl} is

Cauchy sequence in the complete rnetric space (X, d). Of course, similar arguments apply

to case of the sequences {c}},... and {rS} in order to prove that

i@?*, *7.+r) < 2p(r2*, r'**r) < 2q^ p(r2r, rf;)

(3e)

i("h,rk+) 12p(rf;n,*h+r) < 2r7^p@i,rfr,) !i r: "

and, thus, the sequencer {rL},... and {rii} are Cauchy sequences in the complete metric

space (X, d). Therefore, there exist ul, u2,..., un e X such that

,ltun A(r;,ul)) :,|i15ii1r;,, rr217 :... :,lLH i(":^,u') : 0. (40)

From Lemma l.l, we get

p(ul,ut) - lim p(rl, uL) : lim p(rl, rl),
7D-+OO nl-+OO

p(u2,u2) - lim pp2*,u2): lin'r p(x2,r,x2*),
rn--+tb ?n--)oo

(41)

'p(un.un): 
lim p(r\,un): lnn p(x\,r'fi).

lTL--+ C9 fn-) @

By (p2) and (39) we obrain that

p(xl,r,rl^) <p(rl,,ol,+r) an,'p(tr,ro), @2)
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taking n -+ N j we obtain limp-a1o6p@'rr,*'r.): 0. It follows that

p(ut ,ur): J*r("l,,rr): Jtgr("rn,, *r,,) : o. (43)

Simiiarly, we get

p(uz,u2) : )yre@?,,u'): Jl*,p(",*,*?*) 
: o,

(44)

'p(u',rn): 

J35 p@|r, un) : lim p(r\,rk) : o-

Therefore, we have, using (34)and (p4),

p(F(r' ,u2, ...,u"),ut) S p(F(ur ,u2,...,u"),*,*+.,) + p(rl**r,u1)
S p(I' (ur, u2, ..., u"), F (rr*, rk, ..., *h))
+ p(rl*r,ut)
S kp(F(ut ,u2,...,u\,r!) (45)

+ lp(F(r1*,*2*,...,rk),ur) + p(rtn *r,ur)
< kp(It(ut ,u2,...,u"),n!^) + kp(rr*,ur)
+ lp(rl*r, ul) + p(ul,rr*) + p(r1**1,u1).

Letting rn J *oo, yields, using (44),

p{F(ul ,u2, ...,u"),ur) a kp@(ut ,u2, ...,u"),ut).

: 0 that is F(u',u2,...,un) : ur. Similarly, from (44) we have
F(u',ulr...,un) : u2,... and F(un,un-7,...,u1) : z', meaning that (ul, u2,...,un)
is n-tuples fixed point of F.
When k: I : ! in Theorem 2.2 andTheorem 2.3,we obtain the fbllowing corollaries.

Corollary 2.2. Let (x , p) be a complete partial metric space. suppose F : x" -+ X satis-
fles the following contractive condition for all
17, 12 r..., frn ral ra2 r...ryn € X

p(F(r1, ...,rn),F(yL , ...,a")) S |t trt", , ...,nn),11)

+ p(F(a1,...,a\,yt)] @6)

where a e [0, 1). Then F has a unique n-tuples fixed point.

Corollary 2.3. Let (x,p) be a complete partial metric space. Suppose F : Xn + x satis-
fies the following contractive condition for all
frL r12, ...rrn rg7 ,U2, .,.ry'o e X

+ p(F(y1,...,tJ"),rt)) g7)

where a e [0, 1). Then tr, has a unique n-tuples fixed point.
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3 Comments

In this section we show that n-tuples or generalized coupled fixed point equation if and
only if fixed point equation:

Definition 3.1. Suppose that Xn be a nonempty set and let G :

say that G has a fixed point
G(r', u2, ..., un) : (ul, u2, ..., un).

i(@,a), (r,u)) : kp(r,u) + tp(y,u),

where T,g,u,u e X,/c,/ e [0, 1) with k + t < L.
Then (X2,fl is a partial metric space.

Xn -+ Xnbeamapping, we
(ul ,u2, ...,un) if

Lemma 3.1. Suppose that (x, p) be a partial metric space and let p : xn x xn -+ [0, *)
defined by (1).

Then (Xn,p) is a partial metric space.

Theorem 3.1. suppose that (xn,p) be a complete partial metric space and let G : Xn -+
Xn,be a contraction mapping defined by

where 0 < k < 1. Then G has a unique flxed point in X".

Proof. The proof follow directly by Banach contraction mapping for partial metric
spaces.

Lemma 3.2. suppose thar (x,p) be a partial merric space and retf; : x2 x x2 -+ [0, *)
defined by

(48)

(4e)

Theorem 3.2. suppose that (x2,O b" q complete partial metric space and let G : X2 -+
X2,be a contraction mapping defined by

fi(d@,a),G@,u)) < k i(@,y),(u,u)).

where 0 < k ( 1. Then G hou o unique fixed point in X2,i.e., d(u,u) : (u,u).

Lemma 3.3. suppose that (x,,1,) be a metric space and let d3 : X3 x X3 -+ [0, oo) defined
by

d.' ((r, U, z), (u, u, w)) : j d,(r, u) + kd.(y, u) + I d,(2,,w),

where fr,A,z,,tlj,t)),tt) € Xand j,&,1€ [0,1), j +k+t <1.
Then (X3, d3) a metric space.
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Theorem 3.3. Suppose that (X3, d3) Ue a complete metric space and let F3 : Xr -+ X3,

be a contraction mapping defined by

ds1F31x,y, z), F3 (u, u, ?r)) S k d3(@,,u, z),(u,o, u)), 0 < & < 1'

Then F3 has a unique fixed point in X3.

Lemma 3.4. Suppose that (X, cI) be a metric space and let d'2 : X2 x X2 -+ [0, m) be a

distance function defined by

d,'((t,y), (u,,)) : 
I[d(:c, 

u) *d(y,l)], 0 < k < 1,

where (*,9),(u,u) e X x X.
Then (X2, d2) a metric space.

Theorem3.4. Supposethat(X2, rt2lbeacompletemetricspaceandletF2 : X2 -+ X2,
be a contraction mapping defined by

d2 1F2 1r, a), F2 (u,u)) < k d.' ((*, u), (y, u)).

Then F2 has a unique fixed point in X2. i.e., F2(u,u) : ('u,u).

Remark 3.1. (l) Theorem 3.1 <+ Theorem 2.1,

(2) Theorem 3.2 e Theorem 1.3 [Theorem 2.1,12)),
(3) Theorem 3.3 <+ Theorem 1.2 [Theorem 7, [3]1,
(4) Theorem 3.4 e Theorem 1.1 [Theorem 2.1,l4]1.

We mcan by "<+" that is "if and only if''.
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Abstract

Let .B be a semiprime ring with involution 'x' and letT : R -+ ,B be an additive
mapping satisfying any one of the following conditions: (i) 2T(r"+r) : T(.r)(r.)" *
(r. )" T (r), (ii,) T (ry n) : r* T (y)r* and (iii,) 3T (ry r) : T (r)y* r* + r* T (y) r* +
r. y*T(r) for all r, y e R.Then ?(zy) : T(y)r* for all r, A e R.

Introduction

Throughout,E will represent an associative ring rvith center Z(R).A ring R is n-torsion
free, where n > lis an integer, in case n,r : O, t € R,implies r : 0. As usual, the
commutator $y - ar will be denoted by fu;,y1. Recall that a ring rB is prime if aRb: {C}
implies a : 0 or L, : 0, and is semiprimeif aRo,: {(_)} implies a : 0. An additive
mapping D : R -+ R is called a derivation if D(r,g) - D(r)U + .rD(y) holds for all pairs
r,A e It and is called a Jordan derivation in case D(r,) : D(r)r + rD(r) is fulfilled
for all r e R. Every derivation on -R is a Jordan dcrivation but the converse need not be
truc in general. A classical result due to Flerstein [8, Theorem 3.3] , asserts that a Jordan
derivation on a prime ring of characteristic different from two is a derivation. A brief proof
of this result can be found in [5]. Further, Cusack [5] extended Herstein's theorem for
2-torsion liee semiprime ring (see also [4] for an alternate proof). An additive mapping
T : R -+ .B is called a left (right) centralizer in case T(ry) : f @)y (lf ("y) : ,T(a))
holds for all r.y e E. FollowingZalar t13l 7 is called a centralizer if ? is both a left and
a right centralizer. If ,R has an identity el*ilent. T : R -+ E is left (right) centralizer iff

Keywords and phrases : Additive mappiirg, scuriprimc rini3, involution.
t This resealch is supporred by grants from UGC (Cranr No. 36-8i200S(SR)

AMS Subject Classification z 16W25, 16N60, 1 6R50.
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7 is of the form T(r) : ar (T(r) : ra) for some fixed a € ,R. An additive mapping
T : R -+ .B is called a left Jordan centralizer (resp. right Jordan centralizer) in case
T(r') : T(r)r (resp. ?(r2) : rT(r)) holds for all rc € .R. Following ideas form Bresar
l4),Zalar [l3] proved that any left (right) Jordan centralizer on a 2-torsion free semiprime
ring is a left (right) centralizer. An additive mapping D : R -+ R, where -R is an arbitrary
ring, is a Jordan triple derivation, if Dlryr) : D(r)Ar * rD(y)r + ryD(r) holds for all
pairs :r, A e R. One can easily prove that any Jordan derivation on a 2-torsion free ring is
a Jordan triple derivation (see [4]), but not conversely. The converse of the above problem
was explored by Bresar [4] who proved that any Jordan triple rJerivation on a 2-torsion free
semiprime ring is a derivation. Inspired by this result Vukman [9] proved the following
result:

Theorem 1.1 ([9, Theorem 1)). Let R be a 2-torsion free semiprime ing ancl T : R -+ R
be an additive mapping satisfi.ing T(ryr) : tT(y)rfor all r,A e R.Then in this case T
is a centralizer.

Obviously, any centralizer T : R -+ R, where -B is an arbitrary ring, satisfies the re-
lationT(ryr) : rT(a)r for all r,y € -r?, which means that Theorem 1.1 characterizes
centralizers among all additive mappings in 2-torsion free semiprime rings.

An additive mapping tr ,+ r* on a ring rB is called an involution if (a:*). : r and
(rg)* : y*r* hold for all r,y € R. A ring equipped with an involution is called a
ring with involution or *-ring. Let R be a ring with involution '*'. An additive mapping
T : R -+ /i is called lefr (righr) *-cenrralizer, if T(ry) : T(r)U* (f @A) : r.T(y))
holds for all r,y € R and T : R + -tt is called left (right) Jordan x.-centralizer, if
T(r2) : T(r)r* (l:("') : r*T(r)) for all r e R. If 7 is both left as well as right
Jordan +-centralizer of E. then it is called Jordan +-centralizer of .R. For any fixed element
a e R the mapping T(r) -= ar. (T(r) - ,r'*o) is lefl (right) Jordan *-centralizer.

LetT :.R -+ -R be an additive mapping satisfying

T(ryr) : r*7'(y)x* for all r,y e R. (1.1)

In view of Theorem l.l it is natural to ask whether the additive mapping satisfying (l.l)
is left (right) Jordan x-centralizer. The present paper deals with the study of similar kinds
of problems involving additive mappings in semiprime rings. In fact, it is shown that if
an additive mapping 7 on a 2-torsion free semiprime ring R satisfies (l.l), then T(:ry) :
T(a)r. (T(*a) : y.T(r)) for all r,a € R. Further, it is also shown rhar similar con-
clusion holds when the underlying ring J? sarisfies the property zr(rur) : T(r)!/*r* +
r*T(y)r" * r"r1*T(r) for all L:,,y e R.

Main Results

We begin our discussion with the lbllowing theorem vrhich is motivated by Theorem 2 of
Vukman anci Kosi-Ulbl [11].
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Theorem 2.1. Let n )- 2 be a fixed integer and let R be a 2n-torsion free semiprime *-ring
with identitl, element. Suppose that there exists an additive mapping T : R -+ R such
thar2T(r"+') : r(r)(r*)n + (r.)^T(r)forallt e R. ThenT(ry): T(a)r" forall
r,y Q R.

For developing the proof of the above theorem we need the following result:

Proposition 2.1. Let R be a 2-torsion free semiprime ring with involution ,*. Suppose that
T : R -+ .R is an additive mapping satisfying T(r2) : T(r)r* for all r € R. Then
T("y) : T(a)r* for all r,y e R,-

Proof. Given that

T(r') : T(r)r* for all r e R- (2.1)

Let us introduce a function ,S on- R by the relation S(r) : T(r.) for all r e R. Replacing
rby r2,wegetS(r2) : T(r.') forall r e R. Therefore, wehaveanadditivemapping
S : R -+ R satisfying the relation

s(r21 : T(r*') : T(r.)r : s(r)r for all r e -rR.

Hence, ,5 is a left Jordan centralizer. It follows from the result of Zalar U3) that 
^9 

is a left
centralizer. Now we haveT(ry): S(y*z*) : ,S(g*)r* : T(A)r* for all r,A € rB, which
completes the proof.

P roof of Tht orem 2. I . We have

2T(r"+1) : T(r)(r.)" + (r*)"7(r) for all r e R. (2.2)

Similarly,asintheproof of Proposition2.l,weintroduceafunctionSon.Bby,S(r) :
T(r.) for all r Q. R. Now,2,S(r"*') : 2T((r*)n+t) for all r e R. Then, by (2.2),we get
forall r e R

2S(r"+1) : T(r.)r" -f r"T(r*)
: s(r)r" * r"s(r).

Then, by Theorem 2of fil1, S is aJordan leftcentralizer. Therefore, S(r2) : S(r)r
for all r e R. Now, using main theorem of Zalar [13], ^5 is a left centralizer i.e., S(ry) :
S(r)y for all r,A e B. Hence, using the same techniques as used in the proof of Proposi-
tion 2.1, we get the required result.

Theorem 2.2. Let R be a 2-torsion free semiprime ring with involution *. If T : R -+
is an addi.tire mapping satisfying T(ryr) : r*T(A)r* for all r,?J e R, rhen T(rA)
T(y)*. : y*T(r) holds for all r,y e R.

Proof. By hypothesis

I

T(ryr) : r*T(a)r" for all r,y e R. (2.3)

Additive mappings of semiprime rings . ..
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As in the case of Proposition 2.l,we introduce a mapping,9 on.B such that S(r) :
T(r*) for all r e R. We have S(xyx) -- T((ry{.) : T(r*A*r*) for all r,y € B. Then,

using our hypothesis, we find that for all r,y e R

S@Yt) : xT(Y.)x
: xS(y)x.

Hence, S satisfies all the requiiements of Theorem 1.1 and therefore S is a two-sided
centralizer. Using the same techniques as we have used in previous theorem, we get the

required result.

Corollary 2.1. lnt R be a prime ring with charR I 2 and involution x and let T : R -+ R
be a nonzero left Jordan *-centralizer If T(t) e Z(R) holds for all r e R, then R is
commutative.

Proof. By hypothesis, we have that ["(r),9] : 0 for all x,A € R. Replacing r by 12, we
have [7(r2), g] : 0 for all r,u e B i.e., lT(r)x*,9] : 0 for all r.,a €,8. This implies that
T(r)lr*,al + lf @),yfo* : 0 for all r,a e rB. Since by hypothesis [7(r), U] : 0 for all
n,A e R,we getT(r)[r.,g] :0forall n,A e .R. Replace AbyAz,togetT(r)ylx*,zl:g
for all r,A, z e rB. Therefore, T(r)Rlr* , z) : {0} for all r, z e R.

Thus, the primeness of R and the fact that (R, *) is not the union of two of its proper
subgroups show that either ?(z) : 0 for all z € ft or [r*, z] : }for all r,z e.tB. But
since 7 f 0,we find that lr*,zl:0 or [2, z):0 for all r,z € E i.e., Eis commutative.

The main theorem of Vukman and Kosi-Ulbl [1], Theorem 1] was extended by Ashraf
et. al. [3, Theorem 2.3] as follows: an additive mapping T on a 2-torsion free semiprime
x-ring satisfying 2T(ryr) : T(x)a(a*r*) + a(r*g*)T(r) for all r,A e I and auto-
morphism o, is a Jordan a-*centralizer of rB i.e., ,R satisfies T(r') : a(r")T(r) and
T(r') : T(r)a(r*) for all fr e R.In view of this result for a : I and Proposition 2.1, we
obtain the following result:

Theorem 2.3. Let R be a 2-torsion free semipime *-ring. Suppose
T : R -+ .R is an additive mapping satisfiing 2T(ryr) : T(r)A*r* + r*y*T(r) for
all x,y e R ThenT("y) : T(A)r* for r,g € R.

Further, motivated by the work of Bresar [4], Vukman and Kosi-Ulbl obtained the fol-
lowing result:

Theorem 2.4 (U2, Theorem ll). kt R be a 2-torsion free semiprime ring and T : R -+ R
be an additive mapping satis{ying \T(ryr) : T(r)ar*rT(y)r-lryT(r) for all r, y e R.
Then there exists an element A e C, the extended centroid of R such that T(r) : \r for all
reR.

Inspired by the above theorem, we prove the following result for
semiprime *-ring:
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Theorem 2.5. Let R be a Z-torsion free semiprime ring with involution ,r and T : R -+ R

be an additive mapping satisfying 3T(ryr) : T(r)y* r* * r*T(y)r* * r*y*T(r) for all

r,a e R. Thenf @A) : T(y)r. for all r,A e R.

Proof. Given that

3T(ryr):T(r)'y*r" -f r*T(y)r* * r*y*T(r) for all r,a e R. (2.4)

Let us introduce a mapping '5 on -B such that S(r) : T(*.) for all r e R' Then' for all

r'Ye R 
3s@Yr\: 3T(r*Y*r*)

: T(r.)yr * rT(g.)r * rYT(r.)
: S(r)yr + rS(y)r + rsS(r).

Hence, by Theorem 2'4'there exists ) € C such that S(r) : lr for all r € 'B' Therefore'

,s(g.rr*)
\y* r*
(,trgr*)2.

s(a.)**
T(y)*. for all r,y e R.

This gives the required result.
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