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HYDROMAGNETIC FLOW OF A TWO-PHASE FLUID
THROUGH POROUS MEDIUM NEAR A PULSATING
PLATE

Vimal Kumar and S. S. Yadav
Department Of Mathematics, N.D. College (Shikohabad, UP)
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Abstract

An initial value investigation is made of the motion of an incompressible, viscous,
conducting fluid through porous medium with embedded small inert spherical particles
bounded by an infinite rigid non-conducting plate. The unsteady flow is supposed
to generate from rest in the fluid-particle system due to velocity tooth pulses being
imposed on the plate in presence of a transverse magnetic field. It is assumed that
no external electric field is acting on the system and the magnetic Reynolds number
is very small. The operational method is used to obtain exact solutions for the fluid
and the particle velocities and the shear stress at the plate. Quantitative analysis of the
results is made to disclose the simultaneous effects of the magnetic field, porosity of
porous medium and the particles on the fluid velocity and the wall shear stress.

1 Introduction

The fluid flow generated by the pulsatile motion of the boundary is found have immense
importance in aerospace science, nuclear fusion, astrophysics, atmospheric science, cosmi-
cal gasdynamics, seismology and physiological fluid dynamics. The investigation in this
direction was initiated by Ghosh [5] who examined the motion of an incompressible vis-
cous fluid in a channel bounded by two coaxial circular cylinders when the inner cylinder
is set in motion by pulses of longitudinal impulses. Subsequently, Chakraborty and Ray
[2] studied the unsteady magneto hydrodynamic couette flow between two parallel plates
when one of the plates is subjected to random pulses. Makar [10] presented the solution of
magnetohydrodynamic flow between two parallel plates when the velocity tooth pulses are
imposed on the upper plate and the induced magnetic field is neglected. Bestman and Njoku

Keywords and phrases : Hydro magnetic; Pulsatile Flow; Dusty Fluid, porosity of porous medium.
AMS Subject Classification : 76R10, 76WO05.
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[1] constructed the solution of the same problem as that of author [10] without ignoring the
effect of the induced magnetic field and using the methodology different from that of au-
thor [10] to arrive at the solution of the problem. Most recently, Ghosh and Debnath [6]
considered the hydro magnetic channel flow of a dusty fluid induced by tooth pulses while
Ghosh and Ghosh [7] solved the same problem as that of authors [6] replacing the boundary
condition at the upper plate of the channel by rectified sine pulses instead of tooth pulses as
encountered by authors [6]. On the other hand, Datta et al. [3, 4] examined the heat transfer
to pulsatile flow of a dusty fluid in pipes and channel with a view to their applications in the
analysis of blood flow. Recently, Ghosh and Ghosh [8] have studied on hydromagnetic flow
of a two-phase fluid near a pulsating plate. In spite of the above works it is noticed that the
development of the unsteady flow in a semi-infinite expanse of fluid due to pulsatile motion
of the boundary has hardly received any attention although such problems are important for
the analysis of suspension boundary layers. The main objective of this paper is to study
these problems with a view to physical applications.

The present paper is concerned with the unsteady hydromagnetic flow of a semi-infinite
expanse of an incompressible, electrically conducting, and viscous fluid through porous
medium containing uniformly distributed small inert spherical particles bounded by an in-
finite rgid non-conducting plate. The motion is supposed to generate from rest in the fluid-
particle system due to velocity tooth pulses imparted on the plate. The analysis is carried
out to obtain exact solutions for the fluid through porous medium and the particle velocities
and the shear stress exerted by the fluid on the pulsating plate. The quantitative analysis
is made to examine the effects of the particles and the magnetic field, porosity of porous
medium on the fluid velocity and the wall shear stress.

2 Mathematical formulation

Based upon the two-phase fluid flow model of Saffman [11], the equations of unsteady
motion of an electrically conducting viscous fluid through porous medium with embedded
identical small inert spherical particles in presence of an external magnetic field are in usual
notation.

9, | 1 ~ ] 7 7
(;)I-; + (u.A)u = —;Ap + vA%u + %(’u —u) + %(J x B) — %u (2.1)
ov
m [51‘— + (U.A)U:l = k(u — v) (2.2)
7\7
Au =10 nd (z)jt + A.(Nv)=0 (2.3)

Where
u = (Ug, uy, u,) = fluid velocity

v = (v, vy, v,) = particle velocity
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B = (Bg, By, B;) = magnetic flux density

7 = (Jaz» Jy,Jj=) = Current density

p =fluid pressure

N = number density of the particles

p, v = density and kinematic viscosity of the fluid

m = mass of the individual particles

k = Stokes resistance coefficient which for spherical particles (of radius a is 67 pa)
K = permeability of porous medium

In the above set of equations the particles are assumed sufficiently small so that gravi-
- tational action on them in equation (2.2) may be neglected compared with the fluid velocity.

The Maxwell equations with usual MHD approximations are:

0B
div B=0, rotB=upuj, rotkE = T (2.4)

Where

E = (E,. £, E,) =electric field
j=0(E+uxB)

o = electrical conductivity

/¢ = magnetic permeability

We take x-axis in the direction of flow with origin at the plate and y-axis perpendicular
to the plate. The motion is generated in the fluid-particle system due to velocity tooth pulses
imposed on the plate. Is the strength of the external magnetic field acting parallel to y-axis.
Since the motion is a plane one and the plate is infinitely long, we assume that all the
physical variables are independent of z and z. then from the equations (2.3) of continuity
and from the physical condition of the problem, we have

we= [,y 1),0,0], v =|v.(y,t),0,0], N = Ny= -constant (2.6)

o8,

Further from the first equation of (4), 5 =0 gives
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B, = Constant = By (2.7)

It is also obvious from the physical situation that and will vanish. Second equation of
then gives

9B,
Wiz ==

Jy=10 and (2.8)
Again the fluid flows in the z-direction and there is no external electric field, F can
have z-component only.
It therefore follows from (2.5) that

(] X B)LL‘ = _UBO(Ez + uzBO) (29)

We assume at this stage that o is small so that the perturbation in the magnetic field
may be neglected. We also assume that the current is mainly due to the induced electric
field j = o(u x B) so that E, can be neglected. Therefore, from equations (2.1), (2.2) and
(2.9), we have

2) 2 B2 ,
(a_l: = 7’%&% + 0kT(v —u) — U—pgu — %u (2.10)
and
0 1
% = ;(u — ) (2.11)

Where (ug, v, ) are replaced by (u, v), k = mNo — ratio of the mass density of the par-
ticles and the fluid density = mass concentration of the particles and 7 = 7t = Relaxation
time of the particles.

Introducing the non-dimensional variables

’ u ’ v / Yy ’

w : v __ r / ’UK
=T AN Ry P =

t
F=, K =
T T

in (2.10) and (2.11) and dropping the primes, we get the non-dimensional equations in the
form

52
% = %/% + k(v —u) —nu (2.13)
and
% — (u - U} (214)

2
for0 <y <oo, t>0,wheren=(M+%),M= %’1 represents the Hartman

number.
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The problem now reduces to solving equations (2.13) and (2. 14) subject to the bound-
“ary conditions given by

u(y,t) = f(t) on‘y:0, t>0 (2.15)

{u(u,t),v(y,t)} = {0,0} as y - o0, >0 (2.16)
and the initial conditions

u(y,0) =0=1v(y,0) for 0 <y < oo (2.17)

Where f(t) represents the tooth pulses which is an even periodic function with period
2 and strength ET'.

3 Solution of the problem

In view of nature of f(¢) mentioned above the mathematical form of (0, ) may be written
as

w(0,t) = % {tH(t) +23 p=1(-1)P(t - pT)H(t - pT)} (3.1)

Where H (t) is the Heaviside unit step function defined as H(t —T') = 0,¢t < T and
H(t —T) = 1,t > T. By using half-range Fourier series the condition (3.1) may also be
expressed as

2p + )7t
w(0,y) =5 - Zp— % +1 {(pT) } (3.2)

The use of Laplace transforms method for the solution of (2.13) and (2.14) with initial
condition (2.17) gives the transformed equation for the fluid velocity in the form:

d*u (1+s)(s+k+n)—k
— =0 3
dy? { 1+s }u 33)
With '
u—0 as y— o0 (3.4)
And B P
U= Te2 tan h < 5 ) mboxr at y=0 (3.5)

Where s is the Laplace transform variable.
The transformed solution for the fluid velocity @(y, s) becomes,

iy, 8) = % fand (%) o {—y [(itg)%ﬂ} : } (3.6)

[(al +n)+ {a} + 2n(a; — 2) + n2}%] i

Where

Ci=

DN | =
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d= {(al +n) — {a? 4+ 2n(a; — 2) + nz}%] ,

N

With
a;=1+k and c>a; >1>d.

The inversion of (3.6) gives

Yy+ico

. 1

E e*tsinh (5F) (s+c)(s+d)]2
(g, ) = =lexpq —Y |————— ds 3.7
u(y.t) = 5= / > C()sh(i)ew 1/[ = ] s (3.7)

. 2
y—io0

The inversion integral has a pole at s = 0 and a series of poles at s = +i3,, [, =

sl = 0,1,2,--- and branch points at s = —¢, —d. — 1 as shown in the contour
T P p
drawn in figure 1 in the complex s-plane.

Evaluating (3.7) with the help of Cauchy’s residue theorem applied to the contour in
figure 1, we get

u(y,t) 1 g 4 e=1  fyM | [yMy
=gt ye _TQ'Z/_Z&FP Ty coS 7 — Byt

p:() p

oC 2T
1 tanh%-
_—— e 'sinqy

_ (3.8)
Where My, My = ﬁ {xled + BE(c+d —1)]
j2

1

+ 4/ lcd + B2(c+d - 1)> + B2lc+d~ cd+[j’§]2}§

It is to be noted here that when £ = 2 and 1" — 0 the result (3.8) coincides with the
dimensionless form of the result corresponding to w — 0 case of authors Yang and Healy
[12] and describes the fluid velocity for hydro magnetic flow of a particulate suspension
near an impulsively moved plate.

The particle velocity for the corresponding motion can be obtained from (2.14) as

t

v(y,t) = e‘t/u(y,n)e”dn (3.9)

0

which on using (3.8) becomes
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(e o]
o M
U(y7t) — le—y cd(l _ e—l) e % 1 ex {_y l}

E 2 T pzoﬂg\/l"{”ﬂg \/5

yM; 4 (yMz )}
x<cos| Z—== —fByt] —e “cos| —— + 0
{eos (W5 - ) V2
2 1 ootanhz—g: g —eg 1] . (x —¢)(z — d) dz
T 2 x—1 Sl R z—1
C

) :
1 tan hZL [e~ot — 71 (c—z)(z —d)
= i Al Sl 1
+7rT/ 3 { pr }sln Y - dz (3.10)
d

Where

6 = tan™* Bp

In particular when & — 0, the result (3.8) provides the solution for the clean fluid
velocity in the form

u(y,t) — lew\/ﬁ _ i i iexp{ﬂ} cos [@ - B t]
E 2 T2 B\ V2 ve "

o0
1 [tanhZl
—— anxQ 2 =Tt gin {y (x — n)} dr (3.11)
™ .

n

Where

[SIES

o, 00 = {ﬂ:n+ \/n? +ﬂg}

Further, when £ = 2 and T' — 0, (3.11) reduce to
1 Ooe"“
u(y,t) = e ¥Vn — - / — sin{vz —n}dx
n

= AW erfeln + Vt) + eV Fer fe(n — Vi), (3.12)

e e
2Vt
which is the well-known solution of hydro magnetic Rayleigh problem (cf. authors

[12]).

On the other hand, if n — 0 we get from (3.12) the classical Rayleigh solution as

u(y,t) = erfe(n) (3.13)

The fluid velocity given by (3.8) attains the steady-state in the limit £ — oo and the
ultimate flow becomes
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and the particle velocity in this situation is

yM
v.t) _ 1 _yvea 4 in( ﬁ> {cos (% —Bpt+0>} (3.15)
E 2 l“pzo /3]‘_5 /1+/35 \/5 .

Comparing (3.14) with (3.15) we find that the particles in the steady-state move faster
than the fluid with a phase lead due to the presence of 3,. But when 8, — oo, i.e. T — 0,
we have u = v. This shows that the particles attain the fluid velocity in the steady motion
generated by impulsively moved plate in an inertial system. This result is known from
Michael and Miller’s analysis [9]. Moreover, the ultimate flow given by (3.14) consists
of two distinct boundary layers. One is a Hartman layer of thickness of the order \/¥

and the other is a Stokes-Hartman layer of thickness of the order ,/2“7 Since M7 > n

the thickness of the Hartman layer is greater than that of the Stokes-Hartman layer which

decreases with the increase of the particles and the magnetic field. However, in the limit

T — 0(3, — oo) there exists only the classical Hartman layer in the vicinity of the plate.
The exact solution of the shear stress at the plate y = 0, in dimensionless form, is

given by

Ved 4 M cos 3, —t — Mo sin Byt

70
70 >
E 2 T — fgp

1-=x

.1 /ta,nh%ze_m{ /@} dx

zT
. 1‘/tan’j—i_e_g;t{ w_“_d)}dx (3.16)

Which when k£ — 0 yields

0 n_ 4 i a €cos 3 — t — «rasin fpt
E 2 T2 o v2,5p
1 7 tanh2l
+'rT anlz 2 e'“:t{ (a:—n)}dw (3.17)

n

However, when E = 2 and T' —» 0, we have irom (3.17)

0
1 —xt
T = x/ﬁ%-—/eﬁ V(z —n)dx (3.18)
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Which is the shear stress at the wall corresponding to hydro magnetickéyleigh prob-
lem and when n -— 0, provides the familiar result

1 et 1
= — dr = 3.19
== / = 5 (3.19)

4 Numerical results

The quantitative analysis of the results (3.8) and (3.16) when T' = 2 are presented in the
figures (2) and (3). From figure - (2), it is seen that the magnetic field (M) has a diminishing
effect on the flow which reduces with the increase of particles (k) in the fluid and enhances
with the increase of time (¢). For instance, when t = 2.5 and M increase from 0.01 to 0.1
the fiuid velocity decreases when k£ = 0 and the fluid velocity increases with increasing
porosity (K) of porous medium. Similar results for ¢ = 25 they are respectively.

Regarding the effect of particles on the flow, we notice that, for small values of time
when the effect of pulsation is reasonably small, the particles produce diminishing effect on
the fluid velocity near the plate which is a consequence of inertia of the particles. But for
large values of time, when the effect of pulsation is significantly high, the particles increase
the fluid motion near the plate which is further enhanced with the increase of the magnetic
field. In this situation, the particles attain the non-equilibrium process of relaxation due to
the effect of pulsation. This stage continues up to a certain distance from the plate. As a
result, the particulate motion near the plate cannot settle down as quickly as the clean fluid
for large values of time. For example, if the unsteady motion is generated in a two-phase
fluid system due to impulsively moved plate, the particles diminish the fluid velocity for all
values of time owing to the effect of inertia of the particles playing a vital role to resist the
motion (cf. Ref. 10). In this context, we would like to mention that the increasing effect
produced by the particles in the fluid motion near the plate due to pulsation at large values
of time can be controlled by introducing solid body rotation on the whole system. This
phenomenon will be discussed in a subsequent paper of the authors.

Finally, we observed that the magnitude of the shear stress exerted by the fluid on the
plate increases with the particles, the magnetic field and porosity which is expected up to
moderately large values of time as shown in figure-(3).

The shear stress decreases with increasing porosity parameter (/). This figure fur-
ther shows the appearance of negative shear stresses on the wall before the end and at the
beginning of consecutive pulses acting on the plate. This is due to the fact that, during
decelerating motion of the plate, the positive shear stress acting on it, exerted by the fluid,
goes on diminishing and a stage will come when the fluid in motion drags the plate towards
its destination by applying shear stress in opposite direction (negative shear stress) on it.
Such a condition prevails till the plate acquires sufficient momentum to overcome the effect
of the negative shear stress during its next accelerated motion caused by the pulse. It may
also happen that there appears no negative shear stress on the plate if the strength of the
magnetic ficld be further increased which damps the fluid motion sufficiently so that the
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plate can come to rest without the assistance of a negative shear stress produced by the fluid
on it. This is consequence of the effect of the magnetic field on the motion of the fluid.

Fig. -1: Counter integral path for (3.7)
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Fig.2: Velocity distribution for different values of M, X, ¢t and k.
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Fig -3 Shear stress for different values of the particle concentration (k), A/ and K
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Abstract

In this paper we proposed a new method, namely Separation method based on zero
method is used to find a solution of fuzzy interval integer transportation problem with
mixed constraints. This method is very easy to understand and apply. The separation
method can be served as an important tool for the decision makers when they are
handling various types of logistic problems having interval parameters. This method
can be illustrated with a numerical example.

1 Introduction

The transportation problem is to transport various amounts of a single homogeneous com-
modity that are initially stored at various origins to different destinations in such a way
that the total transportation cost is minimum. It is a special class of a linear program-
ming problem. Let us consider a production in which a transportation is from m-sources
to n-destinations and their capacities a;, as, as, - - - , @y, and by, ba, b3, - - -, by, respectively.
Various efficient methods were developed for solving transportation problems with the as-
sumption of precise sources, destination parameters, and the penalty factors.

Many researchers see, e.g., [3, 4, 5] have solved transportation problems with inexact
coefficients by fuzzy and interval programming techniques. Das and other researchers [5]

Keywords and phrases : Fuzzy integers, Transportation problem.
AMS Subject Classification : 90B06.



16 S.C.Sharma and Abha Bansal

proposed a method, called fuzzy technique to solve interval transportation problem by con-
sidering the right bound and the mid point of the interval. A new method have proposed
by Sengupta, Pal [7] to solve Interval transportation problems with the mid point and width
of the interval in the objective function.Adlakha et. al. [1] proposed a heuristic method for
solving the transportation problems with mixed constraints which is based on the theory
of shadow price. Recently, Pandian and Natarajan [6] have proposed a new algorithm for
finding a fuzzy optimal solution for fuzzy transportation problem.

in this paper, we use separation method for finding optimal solution of fuzzy interval
integer transportation problem with mixed constraints where all parameters are trapezoidal
fuzzy numbers. This new method is based on zero method and also, it is very simple, easy
to understand and apply. The solution procedure is illustrated with the help of numerical
example.

2 Fuzzy integer transportation problem with mixed constraints

Consider the following fuzzy integer transportation problem with mixed constraints.

m n
(P) min.z= Z Z BBy

=1 j=1
S.t.

n
Z*’iij%a’172:172537 L
i=1
n

izjzdhl:172a3,~ ,ym
j=1
n
Z"iijgdl,z:lwza:;’ 1
i=1
m
Zi‘ij’\’ijj 1’2537 y T
i=1
m
Zjijzbj)]:]ﬂQa:;’ y T
i=1
m
Zf;ij <b;,j=12,3,.--- ,n
=1

#;>0,i=1,2,3,--- ;mandj = 1,2,3,--- ,n and are integers

where

Z = (21,22, 23, 24)
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= the number of supply points;
n = the number of demand points;

Fi; = (z}, 22,23, }) is the uncertain number of units shipped from supply point 7 to

demand point j;

(cp, cg, c3, ) is the uncertain cost of shipping one unit from supply point i to the

demand point j;

CzJ

a; = (a},a?,a?,a}) is the uncertain supply point i;

112 13 pd : W
b = (b}, b%, b3, b7) is the uncertain supply point j;

3 Fuzzy interval integer transportation problem with mixed con-
straints

A trapezoidal fuzzy number (a,b,c,d) can be converted as an interval number form as
follows.
(a,b,c,d) = [a+ (b—a)a,d — (d —c)a];a =0 and 1 (3.1)

Using relation (3.1), we can convert the given fuzzy integer transportation problem with
mixed constraints into a fuzzy interval integer transportation problem with mixed con-

straints. Such that
. 2
min.[z1, zo] U, U U, Z]]
i=1 j=1

S:t

n
Z Lijs T all,a]z:123~~,m;

n
z[l'%j"r?j] & [a},a?],i =123, ,m;
J=1
n

Z[‘TU’ z]]< [ i z] i=1,2,3,---,m;
z[ 7.]’ } [b}vbj} j = 172737"' » TV

7=1
n
Z[xl- :1:3] > [bl- bz],j =1,2,3.-- ,n;
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Z 7,)3 bl b2]j:172337"'3n;

z}; 203« 202':1 2,3,-- ,mandj =1,2,3,--- nandaremtegers
where JU- and xw are positive real numbers for all 7 and j, al and a are positive real

numbers for all ¢ b1 and b2 are also positive real numbers for all j. Using the separation
method, we can solve the 1nterval transportation problem with zero method.

4 Upper and lower bound integer transportation problem of

fuzzy interval integer transportation problem with mixed con-
straint

The upper bound integer transportation problem of the fuzzy interval integer transportation
problem is

S.t.

}: 2 2 .

xijzai11:172737”'7m;
2 2 :

E z5 < a;,1=1,2,3,-- ,m;

ZI?JR"J ?7]:1)237 , I
Z$§j>b2,3—1 2,3, ,m;

Zx?j<b2,j—1 2,3, ,m

Then the set {Z2j for all ; and J} is an optimal solution of the upper bound integer
transportation problem.

The lower bound integer transportation problem of the fuzzy interval integer transporta-
tion problem is

min.zy = g 5 s

=1 j=1



A new method for solving fuzzy interval - - - 19

S.t.

n

1o 1 :
E Ty = a1 =123,---,m
Jj=1

n

E 1 1 .
'T'L] Zaivz:1’2w37"' s

J=1

n

E 1 L ¢ ;
-r” Sai77’:112’31"' y TS

=1

m
ngj%b},j =1,2,3,>++ , 1
i=1
m
Z:E%] 2 b}m? = 17213:“' » g
i=1

m
ZIL&J Sb]la]: 1a2737"' y TS
i=1

Then the set {Z}j for all 7 and j} is an optimal solution of the lower bound integer
transportation problem. '

5 Separation method

Separation method can be understood with the help of algorithm for solving fuzzy interval
integer transportation problem. Algorithm of the separation method is as follows.

Step 1. Write the upper bound integer transportation problem of the given fuzzy interval
integer transportation problem.

Step 2. Solve the upper bound integer transportation problem using zero method.

Step 3. Construct the lower bound integer transportation problem of the given fuzzy interval
integer transportation problem.

Step 4. Solve the lower bound integer transportation problem using zero method.

Step 5. The solution of the given fuzzy interval integer transportation problem is {[Z; 7, a29]
foralliand j}.

6 Zero method

We, now proposed a new method called zero method for finding the optimal solution for
the transportation problem. The method is proceeding as follows.

Step 1. Convert all inequalities into equalities.

Step 2. If the given transportation is in unbalanced transportation problem, then make it
balance transportation problem by introducing dummy rows or columns.

Step 3. Subtract each row entries of the transportation table from the corresponding row
minimum.

Step 4. Subtract each column entries of the transportation table from the corresponding
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column minimum.

Step 5. Remember that each row and each column has at least one zero.

Step 6. Allocate the minimum cost from demand or supply in the corresponding zero.
Step 7. Repeat the procedure form the step 3 to step 6, until we get the optimal solution.
Step 8. Place the loads of the dummy rows or columns of the balanced at the lowest cost
feasible cells of the given transportation problem to obtain the optimal solution for the
transportation problem with mixed constraints.

Step 9. Thus we get the optimal solution for the new transportation problem with mixed
constraints.

7 Numerical Example

Consider the following fuzzy integer transportation problem with mixed constraints.

Table 1
1 2 3 Supply
1 (1,2,3.4) (2,5,8,11) (2,4,6,8) ~(2,5,8,11)
2 (2,6,10,14) (1,3;5,7) 0,1,2,3) >(3,6,9,12)
3 (4,8,12,16) (3,9,15,21) (1,2,34) | <(3,9,15,21)
demand | ~(4,8,12,16) | >(8,10,12,14) | <(3,5,7,9)

Now, the fuzzy interval integer transportation problem of the above problem is given below.

Table 2
1 2 3 Supply
1 (1+a,4-a) (24 30,11 — 3a) (2+ 20,8 — 2a) ~ (2 + 3a5,11 — 3a)
) @+ 4a, 14— 4a) A+ 20,7 — 2a) O+ax3-a) | > (3+3a12-3a)
3 (4+ 40,16 — 4a) (3 +6a,21 — 6x) (1+o0,4—a) < (36c, 21 — 6a)
demand | = (4 +40,16 —4a) | > (842,14 —2a) | < (3+ 2,9 — 20a)

Put a = 0 in the above fuzzy interval integer transportation problem. We get the fol-
lowing fuzzy interval integer transportation problem with variables [x}., z? ] for all i and j

(YRR
corresponding to the above interval integer transportation problem.
Table 3
1 2 3 Supply
1 (1,4) (2,11) (2,8) | =(2,11)
2 (2,14) 1,7 03) | >6G.12)
3 (4,16) (3,21) (14) | <(3,21)
demand | ~(4,16) | >(8,14) | <(3,9)

Now, the upper bound integer transportation problem of the above fuzzy interval integer
transportation problem is as follow.
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Table 4
1 3 | Supply
1 4 11 8 ~11
2 14 7 3 >12
3 16 21 4 <21
demand | 16 | > 14 | <9

Convert the all inequalities into equalities; we get the following transportation problem

Table 5
1 2 3 | Supply
1 4 11 8 =11
2 14 7 3 =12
3 16 21 4 =21
demand | =16 | =14 | =9

Now, using the zero method, the optimal solution to the upper bound integer transportation
problem is

Table 6
1 2 3 4 | Supply
1 4 [6] 11 8 o[51| =11
2 14 7[3] 3[9] 0 =12
3 16[10] | 21[11] 4 0 =21
demand | =16 =14 =9 5 =44

Now, using the step 8, we get the following solution for the upper bound integer transporta-
tion probler:.

Table 7
1 2 3 | Supply
1 4[11] 11 8 ~ 11
2 14 7031 391 =12

3 16[10] | 21[11] | 4 <21
demand | ~ 16 >14 | <9

So, the optimal solution of upper bound integer transportation problem is ¥ = K, Nay =
3,%4% = 9,X3 = 10,X4, = 11 and the transportation cost is min.z; = 483. Now, the
lower bound integer transportation problem of the above fuzzy interval integer transporta-

tion problem is as follow.
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Table 8
1 2 3 | Supply
1 1 2 2 ~?2
2 2 1 0 >3
3 4 3 1 <3
demand | ~4 | >8 | <3

Similarly using Zero method and Step 8, we get the optimal solution of lower bound integer
transportation problem is

Table 9

1 2 3 | Supply
1 14 2 | 2 ~

2

4

2 1[5] | O[3] | >3
3 3[3] 1 <3
demand | ~4 | >8 | <3

X11 =4, X3, = 5,X43 = 3,X32 = 3 and the transportation cost is Min.z| = 18.
Put & = 1 in the above fuzzy interval integer transportation problem. We get the following
fuzzy interval integer transportation problem with variables (3, x};] for all i and j.

Table 10
1 2 3 Supply
1 (2,3) (5,8) (4,6) ~ (5,8)
2 (6, 10) 3,5) (1,2) > (6,9)
3 (8,12) 9,12) (2,3) <(9,15)
demand | ~ (8,12) | > (10,12) | <(5,7)

Now, the upper bound integer transportation problem of the above fuzzy interval integer
transportation problem is as follows.

Table 11
1 2 3 | Supply
1 3 8 6 ~ 8
2 10 5 2 >9
3 12 15 3 <15
demand | ~ 12 | > 12 | <7

Similarly, using Zero method and step 8, we get the following optimal solution for the upper
bound integer transportation problem.
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Table 12
1 2 3 | Supply
1 3[8] 8 6 ~ 8
2 10 5021 | 2[7] >9

3 |12 | 1500] | 3 | <15
demand | =12 | >12 | <7

So, the optimal solution of upper bound integer transportation problem is X3; = 8, X35 =
2,%33 = 7,X31 = 5, X3 = 10 and the transportation cost is min.z3 = 258.

Now, the lower bound integer transportation problem of the above fuzzy interval integer
transportation problem is as follows.

Table 13
1 2 3 | Supply
1 2 5 4 ~
2 -6 3 1 >6
3 8 9 2 <9
demand | =8 | >10 | <5

Similarly using Zero method and Step 8, we get the \optimal solution of lower bound integer
transportation problem is

Table 14

{ 1 2 3 | Supply
1 2[5] 5 4 | =5
2 6 3[4] | 1[5]| =6

3 8[3]1 | 9[6] 2 <9
demand | ~8 | > 10| <5

X321 = 5,X32 = 4,%X%3 = 5,X31 = 3, X3, = 6 and the transportation cost is Min.z, = 105.
Hence, the fuzzy optimal solution for the given fuzzy integer transportation problem is
ill % (4, 5a 8, 11)3 5522 ~ (57 45 2) 3)5 YQB ~ (3s 9, 7a 9), 231 ~ (O, 3, 9, 10) and 5232 ~
(3,6,10,11) with the fuzzy objective value z = (18, 105, 258, 483).

8 Conclusion

We have attempted to develop the separation method based on zero method provides an
optimal solution of the fuzzy interval integer transportation problem with mixed constraints.
This method is a systematic procedure, which is very simple, easy to understand and apply.
This method provides more options and can be served an important tool for the decision
makers when they are handling various types of logistic problems interval parameters.
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Abstract

In this article we introduce I- convergence of some lacunary vector valued se-
quences with respect to an Orlicz function in 2-normed spaces.

1 Introduction

The notion of ideal convergence was introduced first by P. Kostyrko et al [7] as a general-
ization of statistical convergence

The concept of 2—normed spaces was initially introduced by Gahler [4] in the 1960’s.
Since then, this concept has been studied by many authors (see, for instance ( [13],[11]).

Recently Savas ([14],[15]) defined some new sequence spaces by using Orlicz function
and ideal convergence in 2-normed spaces.

In this article by using Orlicz functions and ideal convergence of sequences we intro-
duce I- convergence of lacunary sequences with respect to an Orlicz function in 2-normed
spaces.

Let (X, ||.||) be a normed space. Recall that a sequence (z,),,cy of elements of X is
said to be statistically convergent to z € X if theset A(¢) = {n € N: ||z,, — z|| > ¢} has
natural density zero for each € > 0.

A family Z C 2Y of subsets a nonempty set Y is said to be an ideal in Y if (i) § € Z;
‘(ii) A, B € Z implies AU B € T; (iii) A € Z, B C A imply B € Z, while an admissible
ideal Z of Y further satisfies {x} € Z for each z € Y (see, [7],[8] ) .

Given Z C 2N be a nontrivial ideal in N. The sequence (Tn)pen in X is said to be
Z—convergent to z € X, if for each e > Othe set A(e) = {neN: |z, —z| > ¢}
belongs to Z ( [7, 8]).

Keywords and phrases : sequence spaces, 2-normed spaces, I-convergence, lacunary sequence.
AMS Subject Classification : 40A05, 46A45; 46B70.
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Let X be a real vector space of dimension d, where 2 < d < 0o. A 2—norm on X
is a function ||.,.|| : X x X — R which satisfies (i) ||z,y|| = 0 if and only if z and
y are linearly dependent; (i) ||z, y|| = |ly,<|l; (iii) lloz, y| = |o| [lz, ]|, @ € R; (iv)
lz,y + 2| < llz, y||l + ||z, z|| . The pair (X, ||.,.||) is then called a 2—normed space [5]. As
an example of a 2—normed space we may take X = R? being equipped with the 2—norm
llz, y|| := the area of the parallelogram spanned by the vectors z and y, which may be given
explicitly by the formula

Recall that (X, ||., .||) is a 2—Banach space if every Cauchy sequence in X is convergent to
some z in X. ;

Recall in [9] that an Orlicz function M : [0, 00) — [0, 00) is continuous, convex, non-
decreasing function such that M(0) = 0 and M(z) > 0 for z > 0, and M (z) — oo as
T — oo.

Subsequently Orlicz function was used to define sequence spaces by Parashar and
B.Choudhary [10] and others. An Orlicz function M can always be represented in the
following integral form: M(z) = [ p(t)dt where p is the known kernel of M, right dif-
ferential for ¢t > 0, p(0) = 0, p(t) > 0 for ¢ > 0, p is non-decreasing and p(t) — oo as
t — oc.

If convexity of Orlicz function M is replaced by M (z +y) < M(x) + M(y) then this
function is called Modulus function, which was presented and discussed by Ruckle [12]
and Maddox [6].

An Orlicz function is said to satisfy Ay— condition if there exists a positive constant K
such that M (2z) < KM (z) for all z > 0.

Note that if M is an Orlicz function then M (Az) < AM (z) for all A with 0 < \ < 1.

By a lacunary sequence § = (k.); r = 0,1,2,... where kg = 0, we shall mean an
increasing sequence of non-negative integers with k. —kr_1 — 0o asr — co. The intervals
determined by 6 will be denoted by I, = (k,_1, k.| and h, = k, — k,_;.

11 ZT12
21 T22

lz1, z2|| g = abs (

2 Main Results

Let I be an admissible ideal, M be an Orlicz function, (X, |.,.||) be a 2—normed space
and p = (px) be a sequence of positive real numbers. By S (2 — X) we denote the space
of all sequences defined over (X, ||., .||) . Now we define the following sequence spaces:

W' (Ng, M,p, |, ., |l) =

reS(2-X): {"GN”%‘I,C;T[M(

forsome p > 0, L > 0and each z € X

Pk
k)] 2
p — ely,

WOI (N07M’p’ ”"7 ”) =
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reN:h 1 Y [M

Lk z“]pk>s
reS(2-X): del. P’ =] €fy,

for some p > 0 and each z € X

Woo (NgM, Am’pa ”a =3 ”) =

Pk,
| IK > Ostsup: iyt Y [M( i’iz”)]
reS(2-X): rEN kel p <Ky,

for some p > 0, andeach z € X

cho (NO,M7pa ”a R ”) =

Pk
. h—1 T >
reS(2—x); K >02{reN k7 kZEIT[M =, 2| _K}GI

for some p > 0 and each z € X

The following well-known inequality will be used in the study.
0 < px < suppy = H, D = max (1,277")

then
lax + b [P* < D {|ax [ + [bk|P*}

for all £ and ax, b, € C

Theorem 1 W/ (NGaMap)“a'a ”)a W()I (NG)M7pv ”)"”)a
WL (Ng, M,p,|l,-,||) are linear spaces.

Proof. We will prove the assertion for W{ (N, M, p, ||, ., || Jonly and the others can be
proved similarly. Assume that z,y € W{ (Ng, M, p, ||, .,||) and o, B € R. So

Tk
— &
P1

reN:El—Z[M<

T kel,

Pk
)] >¢e p € I forsome p; >0

and

Tk
]
P2

TEN:%Z[M(

" kel,

Pk
z“)} > ¢ p € I for some py > 0.
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Since |, ., || is a 2—norm, and M is an Orlicz function the following inequality holds:

—Z[ (o))"

heer (lal p1 + 18 p2)’

D5 3 [ lalm+lﬁlp2)M(

" kel,

" D Z [ |a|P1|fI|5|P2)M(

or “’z[ ()]
oy

kel
. o " 18] 1
"= ax{l’<(!alm+fﬁlpz)) ,((lalpl-f—l,@lpg))]

s DF i [ (
kel,
From the above inequality we get
reN: = > |M
e
ke["
C (reN: DF Z [ (

" kel

Tk
Pl

IN

, 2

Ik
ok

Yk
P2

INA

where

.srzf::,zzx I
=)
-2

)N =5

Two sets on the right hand side belong to I and this completes the proof. It is also easy to
verify that the space W, (Ng, M, p, ||, ., ||) is also a linear space and moreover we have

)

Yk
p2’

y 2

U{reN:DF— Z[ (

" kel

Theorem 2 [f M is an Orlicz function and (py) is bounded sequence of strictly positive
real numbers then Woo (Ng, M, p, ||, ., ||) is a paranormed space with respect to paranorm
g defined by

) ] Pk

Proof. That g,,(¢) = 0 and g,(—z) = g(z) are easy to see. So we omit them.
(#71) Let us take z = (z) and y = (yx) in Woo (Ng, M, p, ||, ., ||). Let

A(r):{p>0:s%p[M< )]pkgl,\'/’zeX,},

Tk
__72:

= 3" Jla, 2 + inf {pH sup [M (

kel

<L p>0,r=12,..},eachze X

Tk
—.z
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Yk

s = {oossu [ (|22 )] <10

Let p; € A(x) and pg € A(y). Then if p = p1 + p2, then we have
M( (zk + yx) z) < M M( ZD
p1+ p2

p1+ p2 p2’
(CL’k‘f"ykl’ z”)pk <1and

y %

Tk
]
p1

p *
Thus s%p M ( o

gn(z+y) < Iof D 7k +ye 2l
kEIr

+int { (o1 +p2)F 1 p1 € Al),p2 € Ay}

% 1nf Z |z, 2|| + inf {pl 1 p1 € A(x)}
k Ir
+ inf z Yk 2| + inf {Pz ip2 €A y)}
keIT

= gn(x)tgn () -

(iv) Let o™ — o where 0,6™ € C and let gn (2™ — r) — 0 as m — oco. We have to show
,Z

that g, (c™z™ — ox) — 0 as m — oo. Let
Pk
[ <mex )
pm

A(mm)z{pm>0:81;p {M(
A(xm—x)z{p{n>0:sip{M( @k_p“_ﬁk_ ”)} <1Vz€X}

If pr € A(z™) and p{n € A(z™ — z) then we observe that
<M < (c™2 — oz} (ozt — oxk) z”)
pm o™ = o]+ pin |o] pmlo™ — 0| + pim 0|
<l olen <“‘%”>,zH)

" pm o™ — ol + ph o]
).

/
n lo| pm —M (
Pm ‘Um —U‘ + Pm \Ul
pm lo™ — 0| + phn |o] B

mk

(™l — oxk)

pm o™ — 0| + pl |o|

From the above inequality it now readily follows that

(o

and consequently
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gn (0™2™ —0z) < infex Y [o™aP — oy, 2|
kel,

Pn
H

. { (pmlo™ o+ lol) ¥ : pm € Ae™), pha € Az - z)}

<lo™—olinfrex 3 |lof, 2l + |o|infrex 3 [l — 2%, 2]
kel kel,

+(lo™ — o[)EHn inf {pﬁ ! Pm € A(:cm)}
+(o)) % inf { (o) % : oo € A - 7))
< max {lo™ = o], (lo™ - o) # } g, (=)

+max {|a], (o) F } go (2™~ 2).

Note that g, (z) < gn (z) + gn (z™ — z) for all m € N. Hence by our assumption the
right hand side tends to 0 as m — oo and the result follows. This completes the proof of
the theorem.

Corollary 1. If one considers the sequence space WL (Ny, M, p, Il, -, ||) which is larger
than the space W, (N, M, p, ||, ., ||) the construction of the paranorm is not clear and we
leave it as an open problem.

Theorem 3 Let M, My, My, be Orlicz functions. Then we have
W{ (No, My, p, |, ., 1) C W{ (Ng,M oM, , p, ||,., I|) provided (py) is such thar Hy =
inf pr > 0.

Proof. (i) For given £ > 0, first choose £y > 0 such that

max{el, 55"0} < e. Now using the continuity of M choose 0 < § < 1 such that 0 < ¢ <

6 = M (t) < eo. Let (zx) € Wy (Ng, M1,p, ]|, ., ||) . Now from the definition
Pk
A(é):{reN :%Z [Ml <|ﬂz )J 26H}el.
p

77,617‘
Pk
x

Thus if r ¢ A(J) then

Ty Dk 5
ey M1< el P ) < hy6
nel, P
Dk
ie. [Ml( Bk 4 )} <" forallk € I,
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ie.M, ( %,z ) < 6forallk € I,.

Hence from above using the continuity of M we must have

M (M1< . )> <egforallk € I,
p

which consequently implies that
E [M (Ml <
kel
ie 1 _S_ M M
h !

T kel,

Tk
—.z

This shows that

z

N zepcao

Theorem 4 Let the sequence (py.) be bounded, then W{ (Ng, M,p, ||, ., ||) € W! (Ng, M, p,||,.,||) C
WL (Ng, M,p, 1, .,1I) .

reN;hiZ[M(M( =

r kel,

b

and so belongs to /. This proves the result.

Proof. Let z = () € W{ (Ng, M, p, ||, ., ||). Then given ¢ > 0 we have
1 Ty, Pk
reN:— Y IM[|=2 > e % e I forsome p > 0.
o kel 4

Since M is non-decreasing and convex it follows that
P
w5 (<))

2k
. %
kel,
Zx=20 LD s 1y
P ) 2 hy 2Pk

~

In
Bl

5 B [M(

kel

<2

kel

2z )™ + Dmaz {1, sup [M

et s (e
etz
{

U r €N :max 1 sup [M

Hence we have

e |
=
_,

/N

N — IR
IV

| ™M

N —

TN B
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Since the set on the right hand side belongs to I so does the left hand side. The inclusion
W (Np, M.p, -, II) € Wog (No, M, p, |, ||} is obvious.

Theorem 5 1. Let 0 < infpp < pp < 1. Then

W (Noy M, p, |, 1) € W (No, M, ||, ).

2. Let1 < pp. < suppy < oo. Then
W' (No, M, ||, |l) € W (No, M,p, |, 1)

Proof. Let x € W! (N, M, p, |, ., 1|), since 0 < inf pr; < 1, we obtain the following:

o)) =]
st )2 e er

Thus 2 € W! (Ng, M,||,.,||). Let us establish part (2). Let p; > 1 for each k , and
supy, px < 00. Letz € W1 (Ny, M, ||, ., ||). Then for each 0 < ¢ < 1 there exists a positive

integer N such that
h;lz[M< >]§e<1

kel
p Pk
st )] 2}

astof)] 2ef e

Therefore = € W (Ng, M, p, ||, ., ||). This completes the proof.

{reN =By [M(

kel,

c {TEN chol S [M(

kel

.’L‘k-—L

-4

|
|

for all » > N. This implies that

{T'EN ity [M(

kel

C {reN Byt Y [M(

kel

Definition 1 Let X be a sequence space. Then X is called solid if («yx1) € X whenever
(zr) € X for all sequences (o) of scalars with || < 1 forallk € N.

‘We now have

Theorem 6 The sequence spaces W{ (Ng, M, p,||,..||), WL (Ng, M, p,
Il,., 1) are solid.

Proof. We give the proof for W{ (Ng, M, p, ||, ., |). Let (z1) € W{ (Np,
M,p,|l,.,||) and (ay) be sequences of scalars such that || < 1 for all k € N. Then we
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)" 2o}
IT’j),zHﬂpk > 6} el

Hence (agzr) € W{ (Ng, M, p, ||, ., ||) for all sequences of scalars (ay) with [ag| < 1 for
all k € N whenever (z1) € W{ (Ng, M, p, ||, )

have

(&)

{reN ey [(M

kel,

C {reN Y KM

kel
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Abstract

Auding the cosmological term, which is assumed to be variable in Brans-Dicke
theory we have discussed about a Bianchi type-I cosmological model filled with vis-
cous fluid with free gravitational field of Petrov type-D. The effect of viscousity on
various kinematical parameters has been discussed. Finally, this model has been trans-
formed to the original form (1961) of Brans-Dicke theory (including a variable cos-
mological term).

1 Introduction

After the cosmological constant was first introduced into general relativity by Einstein,
its significance was studied by various cosmologists (for example [1]), but no satisfactory
results of its meaning have been reported as yet. Zel’ dovich [2] has tried to visualize the
meaning of this term from the theory of elementary particles. Further, Linde [3] has argued
that the cosmological term arises from spontaneous symmetry breaking and suggested that
the term is not a constant but a function of temperature. Also Drietlein [4] connects the
mass of Higg’s scalar boson with both the cosmological term and the gravitational constant.
In cosmology the term may be understood by incorporation with Mach’s principle, which

Keywords and phrases : Bianchi Type-1, Viscons Fluid, Brars-Dicke Theory, Petrov Type-D, Cosmolog-
ical Model.
AMS Subject Classification : 83D05, 83F05.
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suggests the acceptance of Brans-Dicke Lagrangian as a realistic case [5]. The investigation
of particle physics within the context of the Brans-Dicke Lagrangian [6] has stimulated the
study of the cosmological term with a modified Brans-Dicke Lagrangian in cosmology and
elementary particle physics. Endo and Fukui [7] have studied the variable cosmological
term in Brans-Dicke [5] and elementary particle physics (specially in the context of Dirac’s
large number hypothesis [8], [9]).

Further, astronomical observations of the large scale distribution of galaxies in our uni-
verse have shown that the distribution of matter can be satisfactorily discribed by a perfect
fluid. It has, however, been conjectured that some time during an earlier phase in the evo-
lution of the universe when galaxies were formed, the material distribution behaved like a
viscous fluid ([10], [p. 124]). It is therefore of interest to obtain cosmological models for
such distributions. It is also well known that there is a certain degree of anisotropy in the
actual universe. Therefore, we have choosen the metric for the cosmological model to be
Bianchi type-1. Thus, in this paper we have considered a Bianchi type-I cosmological model
filled with viscous fluid in a modified Brans-Dicke theory in which the variable cosmolog-
ical term @ is an explicit function of a scalar field ¢ as proposed by Bergmann [11] and
Wagoner [12] and discussed in detail by Endo and Fukui [7].

The Brans-Dicke field equations with cosmological term Q [7] are :

8 w ‘ 1 ;
Gij + 945,Q = ETM + e <€Di¢j - §gij¢7k ¢’}”)

+2(6 — 909) (L1)
_ 8muT
Heé == (2w + 3) (12)
_Ru+3)(1-p)O¢ 871 —p) .
Q="— e e (1.3)

where the constant x shows how much our theory including Q(¢) deviates from that of
Brans and Dicke and as usual w is coupling constant and T;; is energy-momentum tensor for
a viscous fluid distribution [13]. Semicolons denote covariant differentiation with respect
to the metric g;; and commas mean partial differentiation with respect to the coordinate

. The theory can also be represented in a different form [14] under a unit transformauon

(U T') in which length, time and reciprocal mass are scaled by the function /\2( ). Then
under the conformal transformation :

9ij = Gij = 9935 (1.4)
the equation (1.1) - (1.3) go to the form

E ;
Gij +5;Q = 81T + 2(2w +3) (/\i N = 5i5 Mk /\k) (1.5)

ON= —"— A=logg¢ (1.6)
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= (2w +3) (1_#)5/\2 8”(1_.“)7 (1.7)
4 m 4

where the barred quantities are defined in terms of as their unbarred counterparts are defined
in terms of the unbarred metric g;; and all barred operations are performed with respect to
the barred metric and barred Christoffel symbols. In section-2 the Bianchi type-I metric is
considered and the energy-momentum tensor is taken to be that of a viscous fluid [3]. In
section-3 we have obtained pressure, density expressions for spatially homogeneous and
anisotropic Bianchi type-I cosmological model which is also of petrov type-D. The effect
of viscousity on various kinematical parameters has been also discussed. It is found that
the kinematic viscousity prevents shear, expansion and the free gravitational field from
withering away. Finally in section-4 we have transformed this model to the 1961 form of
Brans-Dicke theory.

2 Derivation Of The Line-Element

We use here the spatially homogeneous and anisotropic Bianchi type-I line element in the
form :

ds? = —dt? + A%dz? + B2dy? + C%d2? (2.1)

where the quantities A, B and C are functions of ¢ only. The energy-momentum tensor for
a viscous fluid distribution is given by (Landau and Lifshitz [13])

= (€ + p)viv* + p €% — n(T*i; +T%; i + 750 wi; 1
+Tivi T 1) — (€ — —f;) - 1(g"i + Tiv") (2.2)
together with

3,0 = —1 (2.3)

where being the isotropic pressure, the density, 7 and the two coefficients of viscousity and
semicolons indicate covariant differentiation. v* is the flow vector satisfying equation (2.3).
We assume the coordinates to be comoving so that . Scalar field is also taken to be a func-
tion of ¢ only. The field equations (1.5) and (1.6) for the line-element (2.1) are as follows

Byg Cys  ByCy| =
[? 7T " BC } @
Ay 2 3
= 87 {ﬁ— 27 (7) (f — = ) ek} } ( w;— ) A2 (2.4)
Ay Cu  ACy)l =
{*A— o Y AC ] +0

= 8 {1‘7 —2n (%) (E ~ —n) v, 1} (2w4+ 3) (2.5)
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a2 "B tag|T¢

= 8r {1—) — 2 (%) -~ (g - §n> v}l} + (QCU—ZQ A2 (2.6)

[@ B Aﬁﬂ 0

AiBy  A4Cy  B4Cy = ~ (2w+3) , ‘
[ AB T Tac " BC } B S I 27)
; Al B4 C4
Ay <I+§+E>
871 o d
=B — ) —3¢— log(AB 2.
o3 [(317 €) — 3¢ log( C)} (2.8)

The suffix 4 after the symbols A, B, C' denotes ordinary differentiation with respect
to t. Equation (2.4) - (2.8) are five equations in six unknowns A, B, C . The coefficients
of viscousity are taken as constants. For complete determinacy of the system one extra
condition is needed. One way is to impose an equation of state. The other alternative is a
mathematical assumption on the space-time and then to discuss the physical nature of the
universe. Although the distribution of matter at each point determines the nature of expan-
sion in the model, the later is also affected by the free gravitational field through its effect
on the expansion, vorticity and shear in the fluid flow. A prescription of such a field may
therefore be made on a priori basis. The cosmological models of Robertson and Walker, as
well as the universes of Einstein and De Sitter, have vanishing free gravitational fields. In
this paper, we choose the free-gravitational field to be type-D which is of the next hierarchy
of Petrov classification. This requires that, either

(a)CF = C}
Or
(403 = CF

Conditions (a) and (b) are identically satisfied if B = C and A = C respectively.
However, we shall assume A, B, C' to be unequal on account of the supposed anisotropy. In
this paper we shall confine ourselves to the condition (a). The condition leads to

By  Cya Ay (Cy Bg\
?"7*27(?‘§>_0 (29)
Subtracting equation (2.5) from equation (2.4), we get
By Ay ByCy  A4Cy - (By Ay
—_— e —— - —— = — - — 2.10
B A BC Ac "\ BT a (2.10)
Also, subtracting equation (2.6) from equation (2.5), we get:
Cy By | ACy  AyBy Cy By
— = — - — =1 — - = 2.11
¢ B ac  aB " \e B Bl
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From equations (2.9) and (2.11), we have

A4 04 B4 . C4 B4
— === — - = 2.12
3A(C B) 16”"(0 B) 212)
Since equation (2.12) gives
A4 1677'7’]
2 20 2.13
1 3 (2.13)
which on integration gives
1677t
A=Me * (2.14)
where M being a constant of integration.
From (2.9) and (2.13) we get
B44 044 327r7] C4 B4 _
B ¢ 3 "\e B)7"
which on integration gives
B4C == BC4 = 6(&gﬂ+b) (2.15)
where b being a constant of integration.
From equations (2.10) and (2.13) we get
B44 B4C4 B4 1671’77 C4 512 2 9
— — 16 | -— =] =— 2.16
B " BC B 3 \c) 9" (2.16)
On substituting & = o, BC' =  so that B? = o3,C2 = £
Equation (2.15) reduces to
(22) 8= e(H54) (2.17)
From equation (2.16) we have
9844 — 192mnp4 + 102472928 = 0
After solving this equation givés
B = (kyt + ko)e 5™ (2.18)

where k1 and k, are constants of integration.
From (2.17) and (2.18) we get

o = (kit + ko )® (2.19)
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where a is another constant of integration.

From equations (2.18) and (2.19) we get

B? = aff = (kit + kg)(17®) 323 (2.20)
and
c? = g — (kit + ky)(-D)32mitg (2.21)
Consequently the line-element takes the form
ds? = —dt? + M2 5" da? + (kit + ko) 0 e 3 dy?
kit + ko) 1+ 5 422 (2.22)
By the following transformation of coordinates Mz — x, (k1t + ko) = t,z — zwe
get

327t \ 32nnt

dy? +t1 Ve "5 d2? (2.23)

ds? = —dt®* +e g dz? +t(1+a)e

3 Some Physical And Geometrical Features

The pressure and density in the model (2.23) are given by

a? -
8np = £—4t2—1) sec? { 4((—12——)) log(kt)}

6wn(

+8E(t + 16mn) — —— (t* - 3) 4 168 N +Q (3.1)

9

8mr e=

@-1 > { (1-a?)

- Do - Q (3:2)

Also the scalar field A is given by

A = log sec? { —(1——11 log(kt)} (3.3)

and

~_(1-p|@-1 . (1-a? ]
Q= m [ 572 50(:2{ m-)log(kt)}
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2 3072
+3% + 24mE (¢ + 16mn) + 577 (3.4)

The model is real and the conditions hold when

3 _
w<—=,Q>0(ie.p<l1
a® > 1, 3@ >0ien<l) (3.5)

The non-vanishing components of the Weyl’s conformal curvature tensor cur K are:
1[(a®~1) 512 2,2 -2t
CA=CB=-|——
14 23 = 6 [ 2 9 ™

12 12 9

1 [(a®=1) 512 _ 32nnt
Cl3 = 024 - 12 [ 2 ‘5‘”2772] e 3

1 2.1 12 32r
o = ot = -5 | S5 - 5—w2n2] e (36)

Thus,

__014 - 023 — CIQ - CJ4 - C’13 - 0222

- 12[ 2 R

The flow vector is given by

V== =001 =1 (3.7)

It satisfies, so that the flow is geodetic.
Also Wij =0.

The scalar of expansion is

(6mnt + 1)
0 = TR (3.8)
The non-zero components of shear tensor o;; are
_ (10mpt — 1) g
011 = 3t €
20mnt + 3a + 1 d2mnt
oy = (20mn = ) fl+a,, =g (3.9)
(20t —3a + 1) ,,_ ~a, S
033 = t

6t
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oan — 2(5mnt + 1)
44 = 3
and the shear o is
2 _ 1 ij ! 2, 2.2 2
™ == 50“03 = 752—{1416# n°t* + 352mnt + 18a” + 22} {3.10)

Thus the viscousity prevents the free gravitational field as well as the shear from with-
ering away. It is also clear from equation (3.8) that the effect of viscousity is to retard
expansion of the model.

The pressure, density, scalar field and cosmological constant are singular at

t= (%) exp.{w %%)} (3.11)

The model exists for a finite time

1 1 (2w +3)
-1 <t< | = . —t (3.12
(1) <t< () o-{n/ 5253 612
When g = 1, the cosmological term vanishes and the model (2.23) reduces into a
Brans-Dicke analogue of one of the viscous model in general relativity.
4 Transformations Of The Solutions And Discussion

Under the transformation

9ij = 95 = 395 Tij = Tij = 6T
T—>T=¢T, p—-p=¢p

€ €= ¢%E, p—>p=e" ()
Q- Q=9¢Q, T =7
the field equations (1.5) - (1.7) are changed into (1.1) - (1.3).
We now apply these transformations to the solutions obtained in section-3.
2 (1 —a?
= sec” —— log(kt 4.2
b = sec { 150135 o >} (4.20)

— a2
Gij = sec? { 4—((12—00—_% log(kt)} 9ij (4.2b)
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9 1- a?) 327t
= —~—log(k E
g1l = sec { 120 +3) og( t)}e 3

i.e.

o2 (1-a?) (1+a) 32Tt
g22 = sec { ————4(2w +3) log(kt)}t e 3

gsa = sec” {\/ 4((2 i?),)l g(kt)} 11-0) g *5E

—l
gag = —sec’ { 4%12;—_*_—?)’—) log(kt)}

i
+sec4{ Zgéjf—:a)log(kt)}

(p+3) 167

8mE(t + 16 2 -
[smete-+ 16mn) 52 - S0 -9
8mn (L—p) 768 5 o
3t I T 9u7r f

1+ 2-1 1-a?
8 €= ( 2u“) (a - ) sec? { ZE-QZJ_—:-L?) log(kt)}

— sec* { 4(712—4——;) log(kt)} [ (t+ 167rn)(

€

8ty (3u+1 786\ 768 4 o
+___ e s SR i
3t< p +9u>+9u7”7

S Sl D (1-a?)
Q= I sec { —_—4(2w T 3) log(kt)}

a? — . — a?
[( 22 - sec’ { 4((12w + ?2) 10g(kt)} - %_

+24m€(t + 16mn) + 5%7—27&72}

= = =0.0* = A S T t
v v v , U sec { ) log(k )}

(4.2¢)

(4.2d)

(4.2¢)

(4.2f)



44 : L.N. Rai, Priyanka Rai and R. K. Prasad

The reality conditions should also be imposed on the solutions in (4.2) similar to those
in section 3. Model obtained in this paper is new and like other models with p = p they may
be used in the relativistic cosmology for the description of very early stages of the universe
expansion.
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Abstract

The paper presents an exact solution of spatially homogeneous and anisotropic
Bianchi type-I cosmological model in Barber’s second self-creation theory of grav-
itation which is of Petrov type-D. Some physical properties of this model are also
discussed.

1 Introduction

Barber [1] proposed two self-creation cosmologies by modifying the Brans and Dicke [2]
theory of gravitation and general theory of relativity. These modified theories create the uni-
verse out of self contained gravitational and matter fields. After that Brans [3] has pointed
out that Barber’s first theory is not only in disagreement with experiment, but is actually
inconsistent. Barber’s second theory is a modification of general relativity to a variable
G-theory. In this theory the scalar field does not directly gravitate, but simply divides the
matter tensor, acting as a reciprocal gravitational constant. It is postulated that this scalar
field couples to the trace of the energy-momentum tensor. Hence, the field equations in
Barber’s second theory are

1
R;; — 591’3‘3 = —8m¢ T}, (1.1)

Bianchi Type-I, Homogeneous, Barber’s Second Self-Creation Theory, Petrov Type-D, Cosmological
Model.

AMS Subject Classification : 83D05, 83F05.
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and

O = 8§AT (1.2)
where A is a coupling constant to be determined from experiments. The measurements of
the deflection of light restricts the value of the coupling to | A |< 10~. In the limit A — 0
this theory approaches the standard general relativity theory in every respect. Barber [1]
and Soleng [4] have discussed the F-R-W models while Reddy and Venkateswarlu [5] have
studied the Bianchi type V'I,, cosmological model in Barber’s second theory of gravitation.

In this paper we have discussed about spatially homogeneous and
anisotropic Bianchi type-1 cosmological model in Barber’s second self-creation theory of
gravitation which is of Petrov type-D. Some physical properties of this model have been
also discussed.

2 The Field Equations In Self-Creation Cosmology

We use here the spatially homogeneous and anisotropic Bianchi type-I line-element in the
form

ds? = —dt® + A%dz? + B2dy? + C2d2? (2.1)

where the quantities A, B and C are functions of ¢ only.
The energy-momentum tensor 7;j for perfect fluid distribution is given by

T;j = (p + P)ViV; + pygi; (2.2)
together with

gz‘jViVj =-1 (23)

where p and p are proper pressure and energy density respectively and V* are the com-
ponents of the fluid four velocity. We assume the coordinates to be commoving so that
VI =V2=V3=0and V! = 1. Scalar field ¢ is also a function of ¢ only. The field
equations (1.1) and (1.2) for the metric (2.1) can be written as

@ C44 B4C4 . 8

B C T BC T " 24
Ay Cu | ACy  8m

atT*tac =5t (25)
Agg  Bu  A4By  8r

AT tap T 57 (2.6)
A4B4 A4C4 B4C4 _ 8m (2 7)

AB T AC T BC T 3°

A4 B4 C4 o 8m 9]
Paa + ¢4 <Z+§+E) = ?/\(310_/7) (2.8)
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The suffix 4 after A, B,C and ¢ denotes ordinary differentiation with respect to t.
Equations (2.4) - (2.8) are five equations in six unknowns A, B, C, p, p and ¢. For complete
determinancy of the system one extra condition is needed. One way is to impose an equation
of state. The other alternative is a mathematical assumption on the space time and then to
discuss the physical nature of the universe. We shall confine to the latter method in this
paper and assume that C13 = C]3. The resulting space-time will obviously be of Petrov
type-D. Thus, we have

By Cy  2A4 (Cy By
. . SO Wi A Wt O e Y R 9.C
B ¢ a\c B)7" (2:9)
From (2.4) and (2.5) we get
By Ay B4sCy  A4Cy
i e o, i et R s AR 2.1
B 4 BC ac (2.10)
Subtracting equation (2.6) from equation (2.5) we get
Cu By | AyCy  A4By
c B + iC ~ AB =0 (2.11)
From (2.9) and (2.11), we have
344 (Cy By
o e A ) 2.12
T(e-3)- 212
Since B # C, equation (2.12) gives
A = N (constant) (2.13)
From (2.10) and (2.13), we have
By | ByCy
5 BC = 0 (2.14)
Again from equations (2.11) and (2.13), we get
Bu _ Cu
B C
which on integration gives
BsC — BCy=ky (2.15)

k4 being a constant of integration. On substituting B/C = a, BC = 3 sothat B2 = o3
and C? = §/a

Equation (2.15) reduces to
(—) B = ks (2.16)

From (2.14) we have
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(%),

Baa =0

From (2.16) and (2.17) we get

which gives

B=kst+b

where k3 and b are constants of integration.
From (2.16) and (2.18) we get

a = ky(kst + b)k2/*s

Therefore,
ko
B = ky(kst + ) (7 5)
and
1 _ky
C? = —(k3t + b)(l ks)
k4
Consequently the line-element (2.1) takes the form

k
) L=

, 1 A
ds® = —dt? + N%dz? + ky(kst + b)(l+ )aly2 + - (kst + b)< 2 a2
4

TR

By the following transformation of coordinates
1 _1
Nz = z,kly—y, k222
This line-element reduces to the form

k2 k2
k3

ds® = —dt? + dz? + (kat + b)(1+ )dy2 + (kst + b)(l_ks)sz

The pressure p and density p for the model (2.22) are given by

1
(k3 — k3) \/X AR
8mp = 8mp 4(hst 7 b)? x |Cyexp e 1 B og(kst +b) p +

(NI

A k2
crem{ -3 (1)
3

where C and C; are constants of integration.
Also the scalar field ¢ is given by

log(kst + b)}

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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¢:

1
A K3\ 2
C exp {\/; < - —k%> log(kst + b)}

+ Cyexp {— % (1 - : )E log(kst + b)}} (2.24)

For the reality of p and p and the condition
p>0,p > 0tohold when k3 < k3.

(V1)

wro

The volume element of the model (2.22) is given by

V = (—g)2 = (kst +b) (2.25)

Thus, the volume increases as the time increases i.e., the model is expandmg W1th time.
The non-vanishing components of the Wey!’s conformal curvature tensor C’ are

25 k2 — k2
cli=cg=B—8B)

G(kgt - b)2
(kf — k3)
Cl2=0C3 =32 2.26
127 7347 10kt + b)2 (2.26)
k2 — k3)
013 e 024 - ( 3 2
The flow vector V* is given by
vi=vi=vi=0,vi=1 (2.27)
It satisfies 0%; %/ = 0, so that the flow is geodetic.
Also W;j = 0.
The scalar of expansion 6 is
k3
=" 2.28
Slhat + ) S
The non-zero components of shear tensor o;; are :
k3
o=
N 3(kst + b)
3ko + k: b
o2 = %(k t+ b)é (2.29)
3ko — k:
gy = _(3R2 —k3)

k
6(kst + b)%s
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oar 2k3
M7 3(kst + 1)

and the shear o 1s
o (9Kk3 + 11k3)
 36(kst + b)2

Thus, the model represents an irrotational, expanding universe with shear.

(2.29)

3 Discussion

When A — 0, the scalar field (¢) from equation (2.24) becomes constant and hence model
(2.22) represents general relativistic anisotropic Bianchi type-1 universe discussed by Roy
and Prakash [6]. Model obtained in this paper is new and like other models with p = p
they may be used in relativistic cosmology for the description of very early stages of the
universe expansion.
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Abstract

The main result of the present article is the following: Let R be a 2-torsion-free
semiprime ring, # be an endomorphism of R and 7: R — R be an additive mapping
such that T'(zyx) = 6(z)T(y)0(x) holds for all 2,y € R. Then T is a §—centralizer
of R.

1 Introduction

This note has been motivated by the works of J. Vukman [4] and E. Albasg [1]. Throughout,
R will represent an associative ring with center Z(R), not necessatily with an identity
element. A ring R is 2-torsion-free, if 2z = 0, z € R implies z = 0. As usual the
commutator xy — yx for z,y € R will be denoted by [z, y]. We shall use basic commutator

Keywords and phrases : Prime Ring, Semiprime Ring, Left (Right) Centralizer, Left (Right)
6-Centralizer, Left (Right) Jordan #-Centralizer, Derivation, Jordan Derivation.
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identities [z,yz] = [z,y]z + y[z, 2] and [zy, 2] = [z, 2]y + [y, 2], for 2,y € R. Recall
that R is semiprime if aRa = (0) implies a = 0, for every a € R.

B. Zalar [5] introduced the following notion. Let R be a semiprime ring. A left (resp.
right) centralizer of R is an additive mapping T: R — R satisfying T'(zy) = T(z)y (resp.
T(xy) = zT(y)) forall z,y € R. If T is a left and a right centralizer then 7 is a centralizer-.
In case R has an identity element, T: R — R is a left (resp. right) centralizer if and only if
T is of the form T'(z) = ax (resp. T'(z) = za) for some fixed element a € R. An additive
mapping T R — R is called a left (resp. right) Jordan centralizer in case T'(x2) = T(z)z
(resp. T'(z%) = zT(x)) holds for € R, and is called a Jordan centralizer if T satisfies
T(zy+yx) = T(x)y+yT(z) = T(y)z+xT(y) forall 2,y € R. In [5], it was shown that
a Jordan centralizer of a semiprime ring is a left centralizer, and each Jordan centralizer is
a centralizer.

Following ideas from M. Bresar [2], B. Zalar [5] has proved that any left (right) Jordan
centralizer on a 2-torsion-free semiprime ring is a left (right) centralizer.

If T: R — Ris acentralizer, where R is an arbitrary ring, then 7 satisfies the relation

T(zyz) =zT(y)z, Vz,y € R. )

It seems natural to ask whether the converse is true. More precisely, asking for whether an
additive mapping 7" on a ring R satisfying relation (1) is a centralizer. In [4], J. Vukman
proved that the answer is affirmative in case R is a 2-torsion-free semiprime ring. The
proof of his result is rather long, but it is elementary in the sense that it requires no specific
knowledge concerning semiprime ring theory in order to follow the proof.

Recently, E. Albag [1] introduced the following definitions, which are generalizations
of the definitions of centralizer and Jordan centralizer. Let R be a semiprime 2-torsion-
free ring, and let 6 be an endomorphism of R. A Jordan -centralizer of R is an additive
mapping f: R — Rsatisfying f(zy+yz) = f(2)0(y)+0(y)f(z) = f(y)0(z)+6(z)f(y)
for all z,y € R. An additive mapping f: R — R is called a left (resp. right) O-centralizer
of Rif f(zy) = f(x)0(y) (resp. f(zy) = 6(z)f(y)) forall z,y € R. If f is a left and
right f-centralizer then it is natural to call f a f-centralizer. It is clear that for an additive
mapping 7 R — R associated with a homomorphism 6: R — R, if Ly(x) = af(x) and
Ry (x) = 6(x)a for a fixed element a € R and for all z € R, then L, is a left f—centralizer
andR, is a right f—centralizer. Clearly every centralizer is a special case of a f-centralizer
with 8 = idg.

An additive mapping f: R — R is called a left (resp. right) Jordan O-centralizer of
Rif f(2?) = f(x)8(x) (resp. f(z2) = O(z)f(z)) forall z € R. It is clear that a left
t-centralizer of R is a left Jordan f-centralizer and, analogously, a f-centralizer of R is
a Jordan 6-centralizer of R. The converse is no longer true, in general. In [1], E. Albas
proved, under some conditions, that in a 2-torsion-free semiprime ring R, every Jordan
f-centralizer is a 0-centralizer. In [3], W. Cortes and C. Haetinger proved this question
changing the semiprimality condition on R. The main result of this paper is the following:
Let R be a 2-torsion-free ring which has a commutator right (resp. left) nonzero divisor
and let G: R — R be a left (resp. right) Jordan o-centralizer mapping of R, where o is an
automorphism of R. Then G is a left (resp. right) o-centralizer mapping of R.

Now, if T R — R is a f-centralizer associated with a function #: R — R, where R is
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an arbitrary ring, then 7" satisfies the relation
T(zyz) = 0(z)T(y)0(z) Vz,y€R. 2

Again, as J. Vukman [4] did on the centralizer case, we are asking whether an additive
mapping T on a ring R satisfying relation (2) is a f-centralizer for every x,y € R. Itis
the aim in this paper to prove that the answer is affirmative in case R is a 2-torsion-free
semiprime ring with some conditions on 6.

Otherwise unless stated, R will be a 2-torsion-free semiprime rings, and 6 an endomor-
phism of R.

2 Results

The main goal of this paper is to prove the following

Theorem 2.1 Let R be a 2-torsion-free semiprime ring and let T': R — R be an additive

mapping such that T(zyz) = 0(z)T (y)6(x) holds for all pairs x,y € R, where 0 is a

nonzero surjective endomorphism on R with (Z(R)) = Z(R). Then T is a G-centralizer.
Note that if we put y = z in relation (2) it gives

T(z*) = 0(z)T(x)8(x), Yz €R. 3)

The question arises whether in a 2-torsion-free semiprime ring the above relation im-
plies that 7" is a §—centralizer.
We shall prove that the answer is affirmative in case I has an identity element.

Theorem 2.2 Let R be a 2-torsion-free semiprime ring with an identity element, ¢ a nonzero
surjective homomorphism on R, and let T: R — R be an additive mapping such that
T(z%) = 0(x)T(z)0(x) holds for all z € R. Then T is a O-centralizer.

3 Proofs

For the proof of Theorem 2.1 the following lemma will be needed.

Lemma 3.1 [4, Lemma 1] Let R be a semiprime ring. Suppose that the relation axb +

bxe = 0 holds for all z € R and some a,b,c € R. In this case (a + c)zb = 0 is satisfied

forall x € 1.

Proof of Theorem 2.1. To prove that T' is a §-centralizer of R, we intend to prove the relation
[T(x),8(x)] = 0, Vz € R. 4)

For the proof of the above relation we shall need the weaker relation below

([T(z),0(z)],0(x)] =0, Vz € R. (5)
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Replacing z by = + z in (2), we get
T(zyz + zyz) = 0(x)T(y)0(2) + 6(2)T(y)0(x), Va,y,z € R. (6)
Putting y = z and 2 = y in (6) one obtain
T(a?y +ya?) = 0(2)T(2)6(y) + 0(y)T()0(z), Vaz.ye R. ™
For z = 23, relation (6) reduces to
T(wyz® + 23yz) = 0(2)T(y)0(a®) + 0(z*)T(y)0(z), Vaz,yeR. (8)
Now replace y by zyz in (7). We get
T (zyz® + z3yz) = 0(z)T (z)0(xyz) + 6(zyx)T(2)0(z), VY x,y€ R. 9)
The substitution z2y + ya2 for y in relation (2) gives
T(zyz® + 2%yz) = 0(z)T(2%y + y22)(2), V =,y € R.
Which implies, because of (7),
T(23yz + zyz®) = 0(z*)T(x)0(yz) + 0(zy)T(z)0(z?), Vz,y € R. (10)
Combining (9) with (10) we arrive at

0(2)[T(z), 0(z))0(yz) - 0(xy)[T(x),6(x)](z) =0, Vz,ye€R. (1)

Putting in equation (11), a = 6(z)[T'(x),0(x)], b = 6(z), ¢ = —[T(z),0(x))0(x)
and z = §(y), this expression can be rewritten on the form azb + bzc = 0, for every z € R.
Applying Lemma 3.1 on the above relation it follows that

[T(2),0()],6(2))0(yx) =0, VYaz,yeR. (12)
Let 6(y) be 8(y)[T(z), §(z)] in (12). We have
[T(z), 6(=)], 6(x)]0()[T(x),6(x)}6(z) =0, Vaz,yeR. (13)
Right multiplication of (12) by [T'(x), ()] gives
[T(z),6(x)), 6()]6(y)8(2)[T(z),(z)] =0, Vaz,yeR. (14)
Subtracting (14) from (13) we obtain
[(z), 6(x)), 0(2)l6()[[T (), 6(2)],6(x)] =0, Yaz,y€R. (15)

Since R is semiprime and 6 is onto we get, [[T'(z), 6(x)],6(z)] = 0, for all = € R.
The next step is to prove the relation

0(z)[T(x),6(z)]0(x) =0, VazeR. (16)
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Substittuting = by = + y in (5) we have, for every z,y € R, [[T'(z), ()],

0(y)] + [[T(2),0(y)], ()] + [[T(y),0(w)], 0(x)] + [T (), 0(z)]. 6(y)]
+{[T(y),0(x)],0(z)]+ [[T(x),0(y)],0(y)] = 0. Putting —x for x in the above relation and
comparing the expression so obtained with the above one we get for every z,y € R

([T (x),0()],0(y)] + [T(x),0(y)],0(x)] + [[T'(y), 0(=)], 6(x)] = 0. (17)
Replacing y by zyz in (17) and using (2), (5) and (17) we obtain

0 = [[T(z),0(x)),0(xyz)] + [[T(x), 6(zyz)],0(z)]+
+[[0(2)T (y)0(x), 6(x)), 0(z)] =
= 0(=)[[T'(z),0(x)],0(y)]6(z)+
+H[T(2), 6())0(yx) + 0(z)[T (), 6(y)l0(z) + 6(xy)[T(x)
0(x)],0(z)] + [6(x)[T (), 6()}0(z),0(z)] =
= ( T (2),60(x)], 0(y)10(x) + [T(x), 0(x)][0(y), ()10 (z)+
+0(z)([T(x), 0(y)], 0(2)]0(x) + 6(x)[0(y), 0(2)][T (2), 0(2)]+
+0(2)[[T(y), 0(x)], 0(x)]0(x) =
= [T(x),0(x )][9(y),9($)19(?ﬁ)+9(x)[9(y),9($)]{T(ﬂ") 0(z)] =
= [T(2).0(2))0(yz?) — 6(z*y)[T(x), 6(x)]+
+0(zyr)[T(2),6(x)] — [T (2), 8(x)]0(zyz)

Therefore, for every z,y € R, we have
[T (), 8(2)]0(yz?) — 0(zy) [T (x), 6(x)] +8(zy2) [T (2), 0(2)] - [T (x), 6(x)]6(zyz) = 0.
Which reduces because of (5) and (11) to
[T(x),6(x)6(yz?) — 6(z%y)[T(2),8(z)] =0, Vz,y € R.
Left multiplication of the above relation by 6(z) gives
0(x)[T(x), 6(x))8(ye?) — 8(z*y)[T(2), 0(z)] = 0, ¥,y € R.

One can replace in the above relation, according to (11), 6(x)[T'(z),0(x)]6(yx) by
O(zy)[T(x),6(x)]0(z), which gives

0(zy) [T (), 0(z))0(z?) — 8(z3y)[T(z),0(z)] =0, VYaz,y€R. (18)
Left mutiplication of the above relation by 7'(x) gives
T(2)8(zy)[T (z),0(x)]6(2) ~ T(x)8(z°y)[T(2),8(z)] =0, Va,yeR  (19)
Substitute 7'(z)6(y) for 6(y) in (18) which leads to
0(2)T (2)0(y)[T (), 0(2)]8(2%) — 0(c*)T(2)8(y)[T(z),0(z)] =0, Va,y€ R (20)
Subtracting (20) from (19) we obtain for all z,y € R

[T (2). 6(2)]0(y)[T(2),6(x)]0(z*) - [T(x),0(z*)0(y)[T(x),0(x)] =0.  21)
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Which can be rewritten in the form
T(2), 0PI (), 0(z)) — [T(z),0(2))0(y) [T (), 6(2)}6(a2) = 0,V 2,y € R.
If we take a = [T'(z),0(z®)], b = [T(x),0(z)],c = —[T(z),
6(z)]0(z?) and z = 6(y) in the above relation, it can be rewritten in the form azb+bzc = 0,
for every z € R. Applying Lemma 3.1 again, it follows that

([T(x),0(z®)] — [T(),6(z)10(z*)0(y)[T(z),0(x)] =0, Vz,yeR = (22)
Which reduces for every z,y € R to
(6(x)[T(z),0(2))0(x) + 0(z*)[T(z),0(x))8(y)[T(x), 6(x)] = 0. (23)

Relation (5) makes it possible now to write [T'(x), 6(x)]0(x) instead of §(z)[T'(x), 0(x)],
which means that, in the above expression, #(z2)[T'(z), 6(z)] can be replaced by
0(x)[T(x),0(z))0(x). Thus we have, for every z,y € R,

0(2)[T(z),0(x)]0(zy)[T (z),0(x)] = 0.

Right multiplication of the above relation by #(x) and substituting §(yz) for 6(y) gives
finally 6(z)[T(z),0(x)]0(xyx)[T(x),0(x)]0(z) = 0, for every z, y belonging to R. By the
the semiprimeness of R and the surjectivity of § we have that 6(x)[T(z),0(x)]0(x) = 0
‘holds for every z € R, and so (16) follows.

Next we prove the following relation

0(z)|T(x),0(x)] =0, VzeR. (24)
The substitution of yx for y in (11) gives, because of (16),
0(z)[T(x),0(z))0(yz?) =0, Vaz,y€R. (25)
Putting 6(y)T'(z) for 6(y) in the above relation we obtain
0(x)[T(x),08(x)]0(y)T(x)8(z*) =0, VYz,y€R. (26)
Right multiplication of (25) by T'(x) gives
0(z)[T(z),0(z))0(yz2)T(z) =0, Vaz,y€R. 27)

Subtracting (27) from (26) we obtain 8(z)[T(z), 8(x)]0(y) [T (z),

6(x?)] = 0, for every =,y € R, which can be rewritten in the form
0(x)[T(x),0(z)|0(y)([T(x), 0(2)]0(z) + 6(x)[T (z).6(x)]) = O,
Vz,y € R.

According to (5) we can replace [T'(z), 6(z)]é(z) in the relation above by
8(z)[T(z),6(x)], which gives 8(z)[T(z),0(x)]0(yx)[T(x),0(x)] = O, for all z,y € R.
So, by the surjectivity of 6 and the semiprimeness of R we get 6(x)[T(z),0(x)] = 0, for
each x € R. Whence relation (24) holds. It follows from (5) and (24) that

[T(z),0(z)]0(z) =0, Vx € R.
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Substituting x by = + vy in the expression above, we obtain for all z,y € R that
[T'(x),6(x)]0(y) + [T(x),0(y)10(z) + [T(x), 6(y)I6(y)+

[T(y),6(2)}0(z) + [T'(y), 0(z))6(y) + [T'(y),0(y)l6(x) = 0.

Replacing now z by —z in this equation and comparing the relation so obtained with the
above one we arrive at. [T(z),0(x)]0(y) + [T'(x),0(y))0(z) + [T(y),8(x)])0(x) = 0, for
every x,y € R.

Right multiplication of the last expression by [T'(x), §(x)] gives, because of (24),
[T(z),0(x))0(y)[T(x),0(x)] = 0, for all z,y € R. So, by the surjectivity of & and the
semiprimeness of R we get (4).

Let now A(z,y) stands for T'(zy + yx) — T(y)0(x) — 0(x)T(y). Our next task is to
prove the following relation

T(zy +yzx) =T(y)0(z) +6(x)T(y), YzeR. (28)
In order to prove it we need the relations below
0(x)A(z,y)0(z) =0, VzxeR, (29)

and
[A(z,y),0(z)] =0, VzeR. (30)

Let us first prove relation (29). The substitution zy + yz for y in (2) gives
T(z*yxr 4+ zyz?) = 0(x)T(zy + yx)0(z), VYz,y € R. 31
On the other hand we obtain, by putting z = % in (6),
T(z%yz + zyz?) = 0(z)T(y)0(z*) + 0(2*)T(y)f(z), Vaz,y€R. (32)

By comparing (31) and (32) we arrive at (29).
Substituting z by =+ z in relation (29) and using (29) again we get for every z,y, 2 € R
that
0(x)A(z,y)0(z) + 0(z)A(2,y)0(z) + 6(z)A(z,y)6(z)

+0(2)A(z,y)0(x) + 0(2)A(z,y)8(z) + 0(2)A(z,y)0(x) =0

Putting now —z for z in this expression and comparing the relation so obtained with the
above one, we obtain 8(z)A(x,y)0(2)+0(2)A(z,y)0(z)+0(2) Az, y)0(x) = 0, for every
x,vy, 2 € R. Right multiplication of this relation by A(z,y)0(x) gives, because of (29),

O(x)A(x,y)0(z)A(z,y)8(z) =0, Vz,y,z€R. (33)
Now, let us proving relation (30). The linearization of (4) gives
[T(x),0(y)] + [T(y),0(x)] =0, Vz,yeR (34)

Putting xy + yu for y in the above relation and using (4) we obtain
(1), 6(xy + y)] + [T(ay + ya), 0(2)] = 8(2)[T(x), 6(y)] + [T(x).6(y)}0(x)+



58 M.N. Daif, Mohd. Sayed Tammam El-Sayiad and Claus Haetinger

[T(zy + yz),8(z)] =0, for all z,y € R. Thus we have [T'(zy + yx),
O(z] +6(x)[T(x),0(y)]+ [T(z),0(y)]0(z) =0, forall z,y € R. According to (34) we can
replace [T'(z),6(y)] by —[T'(y ), 9( )] in this expression. Therefore, [T'(zy + yx),6(z)] —
0(x)[T(y),0(x)] — [T (v),6(x)]0(x) = 0O, for all z,y € R, which can be rewritten in the
form [T'(zy + yz) — T(y)8(z) — 6(x)T (y),0(x)] = 0O, for every z,yy € R. The proof of
relation (30) is therefrom complete.

Relation (30) makes it possible to replace in (33) 6(z)A(z,y) by
A(z,y)f(x). Thus we have

A(z.y)0(z)8(2)A(z,y)0(z) =0, Y,y ,2€ R, ‘ (35)
whence, by the surjectivity of 6 and the semiprimeness of R, it follows that
A(z,y)0(z) =0, Vz,y€R. (36)
Of course we also have,
0(z)A(z,y) =0, Vz,y€R. (37)

The linearization of (36) with respect to x gives A(x,y)0(z) + A(z,y)8(x) = 0, for all
z,Y,z € R.

Right multiplication of the above relation by A(x,y) gives, because of (37),
A(z,y)0(2)A(z,y) = 0, for all z,y,2 € R, which, by the surjectivity of § and the
semiprimeness of R, gives A(«x,y) = 0, for every z,y € R. The proof of relation (28)
is therefrom complete, too.

In particular for z = y relation (30) reduces to 27'(z?) = T'(z)f(z) + 6(z)T(x), for
allz € R.

Combining the above relation with (4) we arrive at T'(2?) = T'(z)0(z), for all z € R,
and T(z?) = ()T (z), for every z € R, since R is 2-torsion-free.

By [1, Theorem 2] it follows that T" is a left and also right 6 —centralizer, which com-
pletes the proof.

In particular, we get [4, Theorem 1] as a corollary.

Corollary 3.2 Let R be a 2-torsion free semiprime ring and let T: R — R be an additive
mapping. Suppose that T (zyz) = zT(y)x holds for all x,y € R. In this case T is a
centralizer.

We conclude by proving Theorem 2.2.

Proof of Theorem 2.2. Let 1 denote the identity element of R. By assumption, relation (3)
holds for every x € R. Putting x + 1 fox .« in (3) we obtain, for every = € R,

3T(2%) + 2T (z) = T(x)0(x) + 0(z)T(x) + 0(z)ab(z) + ab(z) + 6(x)a, (38)

where a stands for T'(1). Replacing .: by —z in (38) and comparing the relation so obtained
with the abeve one, we obtain

67'(2?) = 2T'(2)8(z) + 20(z)T(z) + 20(z)ab(z), ¥V z € R. (39)
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From (39) and since R is 2-torsion-free we have
37(z?) = T(x)0(x) + 0(z)T(z) + O(2)ab(r), ¥ € R.
Substituting from the above relation in (38) we get
27 (x) = ab(x) + 6(x)a, Vx € R. (40)

We intend to prove that a € Z(R). According to (40) one can repldce 27 (z) on the
RHS of (39) by af(z) + 6(x)a and 6T (x?) on the LHS by 3af(r?) + 30(x 2)a, to get

ab(z?) + 0(z*)a — 20(z)ab(z) =0, Vx € R.
The above relation can be rewritten in the form
[[a,0(z)],0(z)] =0, V€ R. 41)
The linearaization of (41) gives
[[a, 8(z)], 6(y)] + [la,6(y)], 6(x)] = 0, Y,y € R. (42)
Putting zy for y in (42) we obtain, because of (41) and (42) that, for every z,y € R,

0 = [la6(=)], 9(fcy)] + [[a,0(zy)], 0 )]]Z

= [[a,8(=)],0(x)]0(y) + 0()[la, 6(2)], O(y)]+
+[[a, 0(=)]6( ) ()] + [( [7 ()], 6(x)] =
= 8(@)[a,0(x)).0 ]+[[ (z)],0(2)]0(y)+
+a,6()][0(y ) (r)] z)(la,0(y)], 6(x)] =
= [a,0(2)][6(y), 0(2)]-

]
Thus we have [a, 6(z)][0(y), §(x)] = 0, for each z,y € R. The substitution 6(y)a for 6(y)
on this relation gives [a, 8(z)]0(y)[a,8(x)] = 0, forall z,y € R. So, by the semiprimeness
of R and the surjectivity of @ it follows a € Z(R), which reduces (40) to the form T'(x) =
af(z), for every z € R. The proof is now complete.
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Abstract

Let T'S¥ Ry (c, i, 20) denote the class of univalent analytic functions having nega-
tive coefficients with two fixed points which are «- starlike functions involving Ruscheweyh
derivatives. We determine the coefficient inequality, distortion theorem, extreme points
and radius of starlikeness for the class T'S¥ Ry (a, p, 20). Also, the analogous results
are obtained for the class TCs R (v, 1, 2¢), the class of a- uniformly convex functions
involving Ruscheweyh derivatives.

1 Introduction

Let S denote the class of functions of the form f(z) = a1+ -, a, 2" that are analytic
and univalent in the unit disk U : |z| < 1. Let T denote the subclass of S consisting of
functions whose non-zero coefficients from second on, are negative; that is, an analytic and
univalent functions f is in T if and only if it can be expressed as

o0

f)=a1z =) lan|e" (1.1)
n=2
for which either f(29) = zg or f'(z9) = 1 with —1 < 29 < 1.
Let the subclass T’ consist of the functions f in T satisfying
f(20)

(1 =A==+ Af'(20) =1 (0 <A< 1529 #0). (1.2)
20

Keywords and phrases : Analytic functions, univalent functions, starlike functions, - uniformly starlike
functions, - uniformly convex functions, Ruscheweyh derrivates, radius of starlikeness.
AMS Subject Classification : Primary 30C45, 30C50, 30C55.
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For 0 < a <1 and integer ;» > —1, consider the class 7'S* Ry («, i1, zg) of univalent
analytic functions which are o- uniformly starlike involving Ruscheweyh derivates with
respect to symmetric points and consists of function f in T satisfying the condition

z(DHf(2))" z(D*f(2))
o) > |- pire 4
where the operator D* f is the Ruscheweyh derivate of f defined by
2(2# 1) f(2))* z
Dif(e) = SR = e ()
= a1z — Z An(p)lan|2"
k=1
with

o ntp—1Y\ (A D)(EA2) (n+n-1)

wi= (") - (1) '

Further, f € T) is in the class TCsR)(a, p, 20), the class of a- uniformly convex
functions with symmetric points, if and only if zf’ € T'S*R) (v, s, o).

Rusheweyh derivates were introduced in [6]. One may refer [1] for uniformly starlike,
to [4] [5] for - uniformly starlike and to [8] for analytic functions with negative coeffi-
cients, also see [2], [3] together with references there in.

In this paper, we discuss coefficient inequality, distortion theorem, extreme points and
radius of starlikeness for the T'Sy R («, i, 20) and the analogous results for the class
TCsRx(a, p, 2p)-

2 Coefficient Inequality

Theorem 2.1. Let f € T) is in the class T'S* R («, p, o) if and only if

D {n(1+0a) —a(l = (=1")An(r) — (1 = )(1 = A+ 222 Han] < 1 — . 2.1)
n=2

Proof. Let f € T'S{R)(a,p, 20). Using the fact that Re(w) > alw — 1| if and only if
Relw(1 + ae™) — ae™] > 1 for real \, and letting w = Duf(gi’gif)(,_z) in (1.3), we get

2(D*f(2))
Dif(z) — Dif(-z)

which on simplification gives

Re{ (1 + ae) — ae”} > 0,

o0

<za1—z n|an[An(,u)z”> (1+ae™)—ae™ <2a1z - ?‘;(1 - (*1)”)An(u)}an}z"> > 0.

n=2

[NV
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The above inequality holds for all z in U. Letting = — 1~ , we have

1(1—a) Z{n +a)—a(l —(

=2

(=1")}An(p)]an] > 0. (2.2)

Moreover, from equation (1.2), we obtain the value of a; as

o0
a =1+ Z(l = A+ n))|ay|2f !
n=2

which on substituting in (2.2) gives

A +a)—a(l = (-1")An(k) — (1 — )1 = A+ nA)2d YHan| <1 - a.

M8

S
Il
N

This verifies the inequality (2.1)
suppose that the inequality (2.1) holds. We will now show that (1.3) is

. Conversely ,
satisfied which in turn verifies that f € T'S} Ry (a, j1, z0). Using the fact that Re(w) < 6 if
and only if |w — (1 4+ )| < |w + (1 — J)|, it is enough to show that

(DA f(2)) _[ a’ 2(DHf(2)) H
ID“f(z)—D“f(—Z) Y Dif o) - Drf(=a) 1]

el

2(DH£(2))
< |mrorat - lmr o
Put ¢! = |n~f(1;/ij;§i)f(-,) . Then note that
_ D) ADHf(z)
b= ' ) - D) T T DRAe) 1”
2] S
DR f(2) = DRF(=3) [‘“(3 @)= dn+1- ()
+a(n —1+ (—1)")}An(u)|an|:|
and
_ 2(D*f(2)) 2(D*f(2))
S 7T B s R 7y T 1”
|2] =N
< |Dif(z) — Drf(—2)| [al(l Tt nz:;z{n R

faln =14+ (=1)")} An(u ran[}



64 Vanita Jain

so that by using (2.2) , we get ' — F' > 0.

Remark 2.2. The result in Theorem 2.1 is sharp. The extremal functions is given by

{n(1+a)—a(l - (=1")}A,(n)z — (1 — )"

) = i o) —all = (C)" ) An () — (1= ) (L = A+ an T

n > 2.

3 Applications of Coefficients Theorem

In this section, we present distortion theorem, extreme points for the class T'S? Ry (cv. i1, o)
as consequences of the coefficient inequality established in Theorem 2.1.
Theorem 3.1. If f € T'SIR) (v, , 20), then, forz e U

|j B 11—« ‘2}
N T s A

. 1-a 9 )
< 2)| < r+ P (3.1.1)
<l <alr+ s ’
e 2
a|r - ——
! 2(1+(y)r
. l—a ,
<|DFfR)| <ay|r+ —-r° 1.
_‘ f(2) ~al[r+2(l+(x),} (3.1.2)

and
- bt
o (1+a)(l+ p)

" 1—« N
<If(2)) < (11[1+—(1+(’1)(1+H),} (3.1.3)

Proof. Since {A, (1) },>2 is non-decreasing, in view of the inequality (2.2), we get

2(1+a)(1+p) Z |an|
n=2

<{n(l+a)—a(l = (-1")}Ap(w)lan| < a1(1 = «),

which gives
o

ar(l —a)

An()lan| < 22— 1.4
Z,) ()l I'Y, 2(1 + a) G-1.4)
n==z

ai(l — «)
nl < 3 3:.15
“:jal_ 2(1 + a)(1 + p) ¢ )

Therefore, using (3.1.5) in (1.1), we get



A class of a-uniformly - - - 65

|£(2)

- i l1-a 2
—“L_2u+wu+uf}
f(2)] € o {' Tl ]

This yields the result (3.1.1). Also, if f € T'STR\(«, pt, 20), using (3.1.4) in (1.3), we get
the result (3.1.2).

Further, note that

o 00

lai| — rz nla,] < f'(2)| < |ay| + 'rZ njay,|.

=2 n==2

But, in view of Theorem 2.1, we have

o0

' a;(l —a)
2l S T

which in view of above, yields the result (3.1.3).
Theorem 3.2. Let f|(z) = a;2 and

fa(z) =a12
B (1—a)z"
{nl+a)—al —(-1)")}A,(p) — 1 —-a)(1-A+ ”')‘)38—1 ‘

where & > 1. Then f € T'S*Ry(a, p, 20). if and only it it can be expressed in the form

o< o<
flz) = Z dp fn(2), where dy, > 0 (mdz d, = 1.
Proof. Let us write
2y =Y dnfulz) =2
=]
-y (1 - &)dnz (321
— (n(l+a) —a(l = (=1)") Ay () — (1 —a)(1 = A+ nA)z
Put ,
4 = {(n(1+a) —a(l = (=1)") A, () — (1 = a)(I = A+ nA)}Han]|
" 1—a )
n=23...
and
o



66 Vanita Jain

Now, first assume that f € T'ST Ry (o, i1, 20).. Then, by Theorem 2.1, we have

Y A1 +a) = a(l = (=1)")An(k)
n=2

—(1—a)1 = A+nA)z " Yan| < 1 —q,
which gives
- .
> dn <1 and di >0.
n=2
Conversely, let fo:Q dn, <1 and dy > 0, which, by using in (3.2.1), verifies that

o<

f(Z) = a1z — Ztnzna

n=2

where
oC

00
D t=),
n=2

(1 - a)d,
(n(1+a) —a(l = (=1)")An() — (1 — a)(1 = A +n\)zp~!

oo
£ 2k
n=2

Hence f € T'S;Ryx(a, p, 20)-

Theorem 3.3. Let f € TS} Ry)(«, 11, 20)- Then f(z) is starlike in |z| < rx(a, 1), where

WU+®—a0—«anMM}ﬁT

ra(e, u) = inf { n(l - a)

Proof. Noting that

' 2f'(z) ’ a2+ 35 s — 1+ (1)) an]|z["
f(z) = f(=2) T 2ay]2] = 3o0h,(1 = (1)) lan] 2]

f(z)-
if 300, nlan||z|* ! < a;.

we find that 'L‘?_Z) - ll <1 for |z| <1

Hence f is starlike if

ra(a, i) = inf {n(l T a)n(—la—(la)— (—l)vn)An(u)}m,n =2 3usne.

n

which completes the proof..
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4 Class TC Ry (a, pt, 29)

In this section, using the fact that Let f € TCsRy (e, 1, o), if and only if 2 f" € T'S; Rx(x, p, 20),
and the results proved for the class
TS*Rx(a, 1, 20). in Sections 2 and 3, we obtain analogue results for the class T'Cs Ry (e, 1, 20),
which are stated without proof.

Theorem 4.1. A function f(2) = a1z — Y . slanlz™ is in class
TCsRy(a, p, 20), if and only if

o0

> n{(n(1 +a) — a(l = (=1)")) An(x)

n=2

—1=a)1=A+nA)2""Yan <1-a.
0

This result is sharp.

Theorem 4.2. If f € TC,R)(a, i, 20), then, for z € U,

1 -« 2
“P‘4a+mu+uf}

l-a 9
Slf(z) <a [r+4(1+a)(1+“)r} 4.2.1)
aj [r — 131%%7'2} < \D"f(z) <a [r - 4—(1116:1)7”2] 4.2.2)
and

a;|l— 1-a r

1[ 2u+mu+m}

te, 1 -«
< }f (2)| <ay lil + TEEE +#)r}. (4.2.3)

Theorem 4.3. Let f;(z) = a;2 and

fn(z) = a12

_ (1=a)z"
n[{n(l+a) — a(l = (=1)")}An(p) — (1 —a)(1 = A+ nX)zg ™"

=2, 3

where k > 1. Then f € TCsR)(a, i, o), if and only if it can be expressed in the form

o0 oC
flz) = Zdnfn(z),where d, >0 and Zdn =1

n=2 n=2
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Theorem 4.4. Let f € TC R)\(cv. i, zp).. Then f is convex in the disc 2l < rala.p),

where

1

il dm) —aid - {10 , (/1)} R

n?(1 — «)

rala,p) = inf{
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Abstract

The present paper is to investigate the effect of porous medium on transient free
convective flow of a viscous incompressible electrically conducting fluid along an in-
clined isothermal non-conducting plate in the presence of transverse magnetic field.
viscous dissipation and Ohmic dissipation. The governing equations of continuity,
momentum and energy are solved using explicit finite difference scheme. The velocity
and temperature distributions are discussed numerically and presented through graphs
and Tables. Skin-friction coefficient and the Nusselt number at the plate are derived,
discussed and their numerical values for various values of physical parameters are
presented through tables.

1 Introduction

Thermal boundary layer flow problems are classified into categories e.g. (i) free natural
convection flow and (ii) forced convection flow and have many applications in the area of
industries and engineering.

The study of natural convection flow (Schlichting and Gersten 1999; Bansal 1977) finds
its applications in nuclear reactor, spacecraft design, chemical industry etc. the unsteady
MHD free convective flows of dissipative fluid are important because of non-linearity of
the governing equations.

Keywords and phrases : Transient free convection, magnetic field, porous medium, viscous dissipation,
Ohmic heating, finite difference technique.
AMS Subject Classification : 70D05, 76W0S5.
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The problem of free convection flow past a prous/non-porous vertical plate has been
considered by many researchers, e.g. Kumar and Yadav (2007) have studied unsteady MHD
free convection flow through porous medium with heat and mass transfer past a porous
vertical moving plate with heat Source/sink. Mittal et. al. (2010) have studied on the
vorticity of unsteady MHD free convection flow through porous medium with heat and
mass transfer past a porous vertical moving plate with heat source/sink.

Seigal (Seigal 1958) solved the problem of unsteady free convective flow along vertical
plate using integral method. Raptis and Tzivanidis (Raptis and Tzivanidis 1981) obtained
the numerical solutions of unsteady flow along accelerated vertical plate and unsteady MHD
with constant heat flux and presented exact solution. Soundalgekar et al. (soundalgekar et
al. 1977) considered the transient free convection of incompressible dissipative fluid on ver-
tical plate. Muthucumaraswamy (Muthucumaraswamy 2003) studied unsteady flow along
accelerated plate with mass diffusion. MHD free convective flow of dissipative fluid on the
vertical plate has been discussed by Sridhar et al. (Sridhar et al. 2006). Recently, Sharma
and Singh (2009) have discussed on Numerical solution of transient MHD convection flow
of an incompressible viscous fluid along an inclined plate with Ohmic dissipation.

The aim of present paper is to investigate unsteady natural convection in the boundary
layer in a viscous incompressible electrically conducting dissipative fluid through porous
medium along an inclined isothermal non-conduction plate considering the Ohmic heating
in the presence of transverse magnetic field. The problem is coupled non-linear partial
equation whose exact solution is not possible; hence finite difference technique is employed
to obtain effects of physical parameter on velocity and temperature profiles.

2 Formulation of the Problem

Consider unsteady laminar two-dimensional free convective flow of a viscous incompress-
ible electrically conducting fluid through porous medium along an inclined non-conducting
plate and y*-axis is normal to the plate. Magnetic field of uniform intensity B is applied
in y*- direction. Initially, the temperature of fluid and plate are assumed to be same and
for t* > 0, the plate temperature is raised to 7,,. While formulation of the problem, it is
assumed that the external field is zero, also electrical field due to polarization of charges and
Hall Effect are neglected. Incorporating the Boussinesq approximation within the boundary
layer, the governing equations of momentum and energy are function of y* and t* in the
presence of transverse magnetic field (Bansal 1944) are given below
ou* 0%u* oB2 , v

= V53— + 9B8(T" — Too) cosy — ut —

% =5y ) TR .

* 2% 2, %

pC’p%% o k% + p(%) + o Biu*? (2)

Where u* is velocity of fluid in z* direction, ¢ is acceleration due to gravity of the Earth,

B is coefficient of thermal expansion, ~ is inclination angle form the vertical direction, p

is density of fluid, C}, specific heat at constant pressure, v the kinematic viscosity, k the

thermal conductivity, 7* is temperature of fluid and 7., is the temperature of the far away
from the plate.
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The initial and boundary conditions are
"<0, =0, T* =T, forally*
*>0, u*=0 I"=T1y aty*=D0 3)
u* =0, T"=Tyx asy* > oo
Introducing the following non-dimensional quantities
1
Ty — T, L
y:{gﬂ( wV oo)} v,
- 1
202 T = 2) 3
= {g Al u{/ ) } t*, u = {vgB(Tw — TOO)}_%U*a
0 T — T
Tw - Too
and Pr = _/{_kC_p into the equations (1) and (2), we get
ou 0%u 1
aza—zﬂJrHcosv—(M—l—E)u 4
00 1 6% ou
— = ———+ Ec| — | + EcMu? 5
o = Prog C<8y>+ el )
T* =Tl . . .
Where § = { ———— ¢ is dimensionless temperature
Tw - Too .
B2
M = {v02 o } is magnetic parameter
Ugp
o S04 .
K™ == —5 is the porosity parameter
U
0 2
Ec=<{ ————— 5 is Eckert number
{ CP(Tw - Too) }

uo = {vgB(Ty — Too)}% and Pr is Prandtl number.
t<0, u=0, =0 forally
t>0, u=0, =1 aty=0

u=0, 6§ >0 asy— oo

3 Method of Solution

(6)

The equations (4) and (5) are coupled differential equations; therefore exact solution is not
possible. Hence explicit finite difference method (Jain 2000;) Muralidhar and Sundararajan
2003) is employed to seek the solution of the equations (4) and (5) under the boundary
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conditions (6). The finite difference equations (4) and (5) are as follows

igl — Uij _ Uitlg — Wij F U1 g
At (Ay)?

1
;,j €087y + (M — E) Ui g, )]

Oige1 — iy _ 1 Binr— 205+ 01y
At Pr (By)?

+ Be (%ﬂ) + MBe(uy)? ®

Where index i refers to y and j to time ¢, and during computation Ay = 0.1 and At =
0.00125. The scheme is found to be stable and convergent while checking for different
values At of and no significant change was observes.

4 Skin - Friction

The skin-friction coefficient at the plate in non-dimensional form is given by

T du
Cp=—==— : 9)
I o/ (dy)Fo

-
ks 3’9’ y*=0

5 Rate of Heat Transfer

Where

The rate heat transfer at the plate in the form of Nusselt number is given by

qL (d@)
Nu=— 95 __ () (10)
k(Ty — Teo) dy y=0

‘Where

The values of Cy and Nu at the plate are evaluated using Newton's interpolation formula.

6 Results and Discussion

Numerical calculations have been carried out for dimensionless velocity of fluid (u) and
temperature profiles @ for different values of parameters and are displayed in Figures-(1) to
(7).

Figure - (1) depicts that with the increase in magnetic field intensity, the fluid velocity
decreases. This agrees with the natural phenomena because in the presence of transverse
magnetic field, Lorentz force sets in, which impedes the fluid velocity.
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Figure - (2) depicts that with increase the permeability of porous medium, the fluid
velocity increases due to Darcy’s law.

Figure - (3) depicts that the increase in angle of inclination reduces fluid velocity be-
cause; increase in angle (vy) reduces buoyancy forces.

Figures - (4) and (5) depict that with increase in Prandtl number, fluid velocity and fluid
temperature decrease. The boundary layer and thermal boundary layer thicknesses reduce
with increase in the Prandtl number.

It is seen from figures - (6) and (7) that fluid velocity and fluid temperature increases
with the lapse of time. The boundary layer and thermal boundary layer thicknesses increase
with the time.

It is seen from table - (1) that velocity distribution of fluid, dust particles and temper-
ature distribution for Ec. The increase in the viscous dissipative heat leads to increase in
velocity distribution of fluid, dust particles and temperature distribution.

It is observed form table - (2) that with the increase in the value of magnetic field
intensity and porosity, fluid temperature increased. But increase in angle of inclination
reduces fluid temperature.

It is seen from table - (3) that skin-friction coefficient decreases and Nusselt number
increases with the increase in the magnetic field intensity, angle of inclination or Prandtl
number. The increase in the viscous dissipative heat and porosity leads to increase in skin-
friction and decrease in the Nusselt number. As the time increases, skin-friction increases
and rate of heat transfer decreases.
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Table- (1) Numerical values of Velocity distribution of fluid and temperature distribu-
tion for different values of Ecat M = 0.5, K = 2,7 =0° Pr =0.71 & t = 0.1.

Velocity distribution of fluid - Temperature distribution of

y (u) fluid (6)
Ec=03 Ec=3.0 Ec=03 Ec=3.0
0.0 | 0.0000000 | 0.0000000 1.0000000 | 1.0000000

0.1 0.0142652 0.0142662 0.8500521 0.8501312

0.2 0.0210752 0.0210769 0.7053034 0.7053852

0.3 0.0227342 0.0227363 0.5704130 0.5705028

0.4 0.0211911 0.0211935 0.4490045 0.4491069

0.5 0.0179715 0.0179738 0.3433617 0.3434678

0.6 0.0141621 0.0141641 0.2543061 0.2544029

0.7 0.0104448 0.0104464 0.1812493 0.1813278

0.8 10.0071632 0.0071644 0.1223794 0.1 224368

0.9 0.0044048 0.0044055 0.0749224 0.0749600

1 0.0020815 0.0020818 0.0354223 0.0354418
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Table- (2) Numerical values of temperature distribution for different values of M, K

and v at Fc = 0.3, Pr = 0.7landt = 0.1.

y |M=05K=2| M=10,K=2 | M=05,K=10 | M=05K=2
y=0 J=0 y=0° v =45°

0.0 1.00000000 1.00000000 1.00000000 1.00000000
0.1 0.85005205 0.85005642 0.85005225 0.85004765
0.2 0.70530335 0.70531412 0.70530353 0.70529881
0.3 0.57041301 0.57042647 0.57041318 0.57040802
0.4 0.44900454 0.44901686 0.44900474 0.44899886
0.5 0.34336172 0.34337096 0.34336193 0.34335583
0.6 0.25430608 0.25431205 0.25430628 0.25430070
0.7 0.18124928 0.18125268 0.18124946 0.18124492
0.8 0.12237938 0.12238105 0.12237951 0.12237619
0.9 | 0.07492239 0.07492303 0.07492248 0.07492030

1 0.03542233 0.03542245 0.03542237 0.03542125
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Table- (3) Numerical values of skin friction coefficient and Nusselt number for differ-
ent values of M, K, Pr,~,t and Ec.

Pr Y M K Ec t Cr Nu
0.71 0 0.5 2 0.3 0.1 0.18828026 | 1.50822077
0.71 0 5 2 0.3 0.1 0.17448563 | 1.50822086
0.71 0 10 2 0.3 0.1 0.16165149 | 1.50822466
0.71 | 30 0.5 2 0.3 0.1 0.16305517 | 1.50827419
0.71 | 30° 5 2 0.3 0.1 0.15110858 | 1.50827425
0.71 | 30 10 2 0.3 0.1 0.13999384 | 1.50827710
0.71 | 45 0.5 2 0.3 0.1 0.13313373 | 1.50832760
0.71 | 45 2 2 0.3 0.1 0.12337930 | 1.50832764
0.71 | 45 10 A 0.3 0.1 0.11430411 | 1.50832954

1.2 30° | 0.5 2 0.3 0.1 0.14346648 | 1.96220964
1.2 30° 5 2 0.3 0.1 0.13412413 | 1.96221378

1.2 30 10 2 0.3 0.1 0.12532919 | 1.96221883
2.1 .| 30 0.5 2 0.3 0.1 0.12268656 | 2.60122297
2.1 30 5 2 0.3 0.1 0.11575942 | 2.60122974
2l 30 10 2 0.3 0.1 0.10915619 | 2.60123618
0.71 0 0.5 5 0.3 0.1 0.18928890 | 1.50821732
0.71 0 0.5 10 0.3 0.1 0.18962780 | 1.50821615
0.71 0 0.5 2 1.3 0.1 0.18828609 | 1.50736611
0.71 0 0.5 = 3 0.1 0.18829338 | 1.50629762
0.71 0 0.5 2 0.3 0.1 0.18828026 | 1.50822077
0.71 0 0.5 2 0.3 0.11 0.19728132 | 1.43818307
071 | 0 0.5 2 0.3 0.12 | 0.20580553 | 1.37756619
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Abstract

In this work, we introduce the concept of n-tuple fixed point which is a gen-
eralization of coupled fixed point for mappings in complete partial metric spaces
and obtain existence and uniqueness theorems for different contractive conditions.
Also, we give a very important comment that any n-tuple fixed point of F' : X™ =
X x X x X... x X — X if and only if is a fixed point of G : X™ — X™, where
(X™,p) is a partial metric space induced by a partial metric space (X, p). Our results
generalize relevant results due to Bhaskar and Lakshmikantham [4], Borcut, Berinde
[3] and Hassen Aydi [2].

1 Introduction and preliminaries

In 2006, T. G. Bhaskar and V. Lakshmikantham [4] given the notion of coupled fixed
point and proved some interesting coupled fixed point theorems for mapping satisfying a
mixed monotone property. M. Borcut, V. Berinde [3] introduced the concept of tripled fixed
point for nonlinear contractive mappings of the form F : X x X x X — X, and obtained
existence and uniqueness theorems in partially ordered complete metric spaces X. coupled
comnon fixed point results and coupled coincidence point results existing in literature, e.g.,
[1,5,9,10].

In a recent paper, Hassen Aydi [2] introduced some coupled fixed point results for
mappings satisfying different contractive conditions on complete partial metric spaces.

Keywords and phrases : Partial metric space, Contractive type operator, N-tuples fixed point, Existence
and uniqueness.
AMS Subject Classification : Primary 54H25; Secondary 47H 10.
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The purpose of this paper is to present some n-tuple fixed point theorems for different
contractive mappings and we prove that a point (z1, 3, ...,z,) is n-tuple fixed point of
F : X™ — X if and only if (1,2, ..., y,) is a fixed point of G : X™ — X" where
(X™,p) is a partial metric space induced by a partial metric space (X, p) as follows:

n n
P 2% 2™, (2 ™) = 3 gt ), Y g < 1, (1)
=1 =1

where 21,22, ..., z" ¢, 42, .. " € X, J1,J2, -, Jn are nonnegative constants.
Now, we present some basic notions and resuits due to T. G. Bhaskar and V. Laksh-
mikantham [4], M. Borcut and V. Berinde[3].

Definition 1.1 [4]. Call an element (z,y) € X x X acoupled fixed point of the mapping
Fif
Flz,y) =z, F(y,z) = y.

Theorem 1.1 [4]. Let (X,<)bea partially ordered set and suppose there is a metric d on X
such that (X, d) is a complete metric space. Let F' : X x X — X be a continuous mapping
having the mixed monotone property on X. Assume that there exists a constant k [0,1)
with

d(F(z,y), F(u,v)) < g—[d(xu) +d(y,v)] V z>u, y<o. (2)
If there exist zg, yo € X such that
Zo < F(zo,y0) and yo > F(yo, zo),
then there exist z,y € X such that
z=F(z,y) and y = F(y,x).

Definition 1.2 [3]. An element (z, y, z) € X x X x X is said to be a tripled fixed point of
the mapping F if

F(z,y,2) =z,F(y,z,2) =y and FlE g0 = &

Theorem 1.2 [3]. Let (X, <) be a partially ordered set and suppose there is a metric d on
X such that (X, d) is a complete metric space. Let F': X x X x X — X be a continuous
mapping having the mixed monotone property on X. Assume that there exist constants
Jik,L€[0,1) with , j + k + 1 < 1 for which

d(F(z,y,z), F(u,v, w))

< Jd(z,u) + kd(y,v) + ld(z,w) Y z>u, y<wv, 2>w. NE))
If there exist zg, yo, 20 € X such that

zo < F(z0,Y0,20), Yo > F(yo,z0,20) and zp < F(z0,y0,20),
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then there exist z,y, z € X such that
= F(z,y,2), y=F(y,z,2) and z= F(z,y,2).

In 1994, S. G. Matthews [6] introduced the notion of a partial metric space as a gen-
eralization of metrics where self-distances are not necessarily zero and obtained a Banach
contraction mapping for these spaces. First, we summarize in the following the basic no-
tions and results established in partial metric spaces.

Definition 1.3 ([8, 7]). Let X be a nonempty set. A function p : X x X — [0,00) is called
a distance on X. The pair (X, p) is called a partial metric space if p satisfies the following
conditions:

(p1) p(z,z) = p(x,y) = d(y,y) <= ¢ =1y,

(p2) p(z,x) < p(-’f: ),

(p3) ( 1y) = (yax)a

(pa) p(z,2) < p(z,y) + (Y, 2) — PY, ),
forall z,y,z € X.

Remark 1.1. We note that if (X, p) be a partial metric space then p(z,y) =0 =z =y
but the converse my not be true.

If (X, p) a partial metric space, then the function d: X x X — [0,00) given by

d(z,y) = 2p(z,y) — p(z,z) — (¥, ) (4)

is a metric on X.

Definition 1.4 ([6, 8]). Let (X, p) be a partial metric space. Then,

(i) a sequence {z,} in a partial metric space (X, p) converges to a point x € X if
and only if p(z,z) = lim p(z,z,) = lUm p(zn,Tn);

n—o0 n—oo

(i) a sequence {x,} in a partial metric space (X, p) is called a Cauchy sequence
if there exist a > 0 such that for each € > 0 there exist k such that for all n,m > k,
| p(Eh, Zm) — & [< €

(iii) A partial metric space (X, p) is said to be complete if every Cauchy sequence
{z,} in X converges to a point in X, such that p(z,z) = B }rilxgoop(xn, Lz )«

Lemma 1.1 ([6, 7]). Let (X, p) be a partial metric space;

(1) {x, } is a Cauchy sequence in (X, p) if and only if itis a Cauchy sequence in the
metric space (X, d).

(2) a partial metric space (X, p) is complete if and only if the metric space (X, d)
complete; furthermore, nlggo d(zyn,z) = 0if and only if

plz,z) = lim p(zy,z)= lim p(xn,:tm). (5)

n——+oc n,m—-+0oo



86 Ahmed H. Soliman

Theorem 1.3 ([2]). Let (X, p) be a complete partial metric space. Suppose that the mapping
F: X x X — X satisfy the following contractive condition for all T,y,u,v € X.

p(F(z,y), F(u,v)) < kp(z,u) + Ip(y,v)] (6)

where k, ! are nonnegative constants with k + [ < 1. Then F has a unique coupled fixed
point.

2 N-tuple fixed point theorems on partial metric
spaces

Throughcut of this section, X or (X, p) will denote a partial metric space.

Definition 2.1. An element (z!,2?...,2") € X" is called a n-tuple fixed point of F :
X" - X if F(z!, 22, iy @) = :)sl,F(xz,xl,...,x”) =z2... F(z", z" ], ey ) =

z",

Remark 2.1. We note that in the Definition 2.1, if n = 2 then F has a coupled point and if
n = 3 then F has a tripled point.

Theorem 2.1. Let (X,p) be a complete partial metric space. Suppose F' : X" — X
satisfies the following contractive condition for all z! ,x2, .z
2 eyt e X

bl

PP 2% ™), Py o2, ™) < 3 (et o), (7
|

n
where j1. j2, ..., jn are nonnegative constants with > ji < 1.Then F has a unique n-tuple

i=1
fixed point.
Proof. Choose g, 3, ..., 2 € X and seta} = F(z}, a2, ..., 28), 22 = F(z3,x},...,x2), ...
and ry = F(aff, 25", ....z}). Repeating this process, set Tpn = F(zl,,z2,..,2%),

2 — e . ; — =] 1
Tmt+1 = (@, Tiga s T )y o and 28 o= F(zp, 371, .. z})). Then by (7) we have

1 1 1 2
.7)("1"1717‘77m+1) == p(F("L.m—hxm—l’“"mgz—l7

F(a:i,?, ;(7;2n, e Zi))

IN

.jlp(m}n—‘l’x;n) +j2p(:r$n-la Irzn) +...+

j’flp(x%,—l’ T?n) (8)
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Similarly, we obtain

2 2 2 1
p(mm=rm+1) = p(F(xm—l"’Bm—lv"'7$nm——1)’
F (5, Ty s Tpn))

< giplad_y,2h) + jop(Tm—1,Tm) + - +
jnp(len—l’l'?n)v
p(w?nyw?nﬂ) = p(F(zm- 1, T 11"" m'}n-—l)?
F(zh, zp o Tr))
< ip(@mo1, T m)+J2P( et o T
]np(mm-—lﬁmm) (9)
Therefore, by letting
dm = p(xgn’m}n+l) o p(x;lnﬁxfn-i-l) + .. +p(xnm’$nm+l) (10)
we have

G = Pl Tt + P 3n+1)+--~+p(x%,:cﬁl+1)
< (1 + fo + oo+ Jn) [P(@o1,Th) + D@15 T3)
+.. +p( Tm— l’xn )]
= (j1 +J2 + - + Jn)dm-1.

Consequently, if we set § = j1 + j2 + ... + jn, then, for each n € N(the set of all natural
number ) we have

dm < 8dm—1 < 6%dpm2 < ... < 8"dp. (1
If dy = 0 then p(a:o,xl) - p(zo,:rl) + ... + p(z8,27) = 0. Hence from Remark 1.1, we
get that 73 = z} = F(z}, 23, -, 1,0), FE = @ = F(:co,xo,...,:co),... and zj = 27 =
F(ap, ™1, ..., z}), meaning that (2,3, ...,z¢) is a n-tuple fixed point of F. Now, let

do > 0. for each k > m, we have, in view of the condition (p4)

plzhy o) S p(xl{nmllc—-l) + p(Th_1, Th—s) — P(Th—1> Th—1)
+p(z}h_ Th_s) + P(Th_3, Th_s) — P(Th_3, Th_3)
4 p(Thy2 Tm1) F P( Tt Th) = DT 415 Trn)
< p(zh, 2h_1) + P(Th_1: Th_2) + o + P(Ths 1, Trn)-
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Similarly we obtain

y v 2 2
p(m27$$n) S p(xiaxi—l) + P((Ei_l,x%_g) + e +p(zm—+—l"rm),

p(zk, zp,) < p(xk, Th_1) + p(xR_1, Th o) + ... + P 1 B )

Thus
P(hs Tra) + (@, T2) + .. + (2R, 2) < (dko1 + dgz + ... + dum)
< (14824 L+ 6M)d
5171.
< do. 12
S 7% (12)

By definition of J, we have d < 2p(z,y), so, for any k > m

dlah, 7k + dat,a2) + o+ Az ah) < (b ah) + 2p(ed a2
+... + 2p(z}, zi,)
5'[”
-4

< 2 dp. (13)

which implies that {x;,}, {22 }, ... and {27} are Cauchy sequences in (X, d) because of
0<déd=gi+jo+...+jn<1. Since the partial metric space (X p) is complete, hence by
Lemma 1.1, the metric space (X, d) is complete, so there exist u!, u2, ..., u™ € X such that

lim d(x ul) = lim d( )= = lgn g(x"m,u") =0 (14)
m—0o0

m—00 m—0o0

From Lemma 1.1, we get

" 1
p(u',w') = lim p(ah,u) = lim p(zh,zh),

m—oo
2 92y _ .
p(u',v’) = lim p(zf,u?) = Jim p(ag,, z7,),
(15)
n — n s n n
p(u”,u") = lim p(zp,u") = lim p(z},2p,).
By condition (p2) and (11) we have
p(xrlnf ) < T)(x1111$11n+1) S dm S 6md0a (16)
which show that limp, _, 1.0 p(z},, 21 ) = 0. It follows that
p(ul,ul) = lim p(z m,ul) = hm p(J:m, m) = (. an

m—00
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Similarly, one has

2

2\ 13 2 2y _ 2 a2 e
p(u y U ) - n}'l_r)noop(xm’u ) - n%gnoop(xmvxm) - 0’

(18)

p(u", ™) = lim p(zh,,u"™) = lim p(zpn,zy,) =0.
m—00 m—0o0
By usinge the contractivity condition on F' one obtain
y g y

p(F(ul,u?, ..., u"),ul) < p(F(u!,u?, ey ), Tl 1)

+P($}n+1, Ul) - p(£3n+1,3371n+1)
< p(F(ul,u?, ..., u™), (19)
F(Irln?xzn? 11‘71;).)) +p(x:n+1,ul)
< jlp(x}'n’ ul) + jQP(IEru ’11,2)
+. + Jup(z, u™) + p(:c,lnﬂ, ul),

and letting m — +oo, then from (17) and (18), we obtain

p(F(ul,u?,...,u"),u!) =0, s0 F(u!,u?,...,u™) = u'. Similarly, we have

F(u? ul, .. u") = u?, F(ud,u?,...,u™) =3, ... and :

F(u™ u™!,...,u') = u™, meaning that (u!,u?, ...,u™) is n-tuple fixed point of F.

Now if (v!,v2, ..., v™) is another n-tuple fixed point of F, then

pul,v') = p(F(u!,v?, .. um), F(v!, %2, ...,v™)
< gip(ut,v!) + o+ Jup®, ")

p(u?,v?) = p(F(?, !, ... u™), F(v? o, . v™))
< jip(u?,0%) + o+ Gnp(u”, ")

(20)

p(u™,v") = p(F™,u™ Y, . ul), F(o™ o™, o))
ip(@™ ™) 4 ... + Jup(ut,vh)

IN

It follows that
p(ul»vl) —+—p('u2,1)2) ’_ _l_p(un"vn) < (]1 +j2 + ... +jn)
[p(ul,vl) + .o+ p(u”,v™))

In view of (J1+ja+...-jn) < 1, this implies that p(ul, v!)+p(u?, v%)+...+p(u”,v") = 0,

sou! = v!,...-and v = v™. The proof of Theorem 2.1 is completed.

Remark 2.2. Theorem 2.1 extends the Theorem 1.3 (Theorem 2.1 of [2]) for n = 2.
If we put j1 = jo = ... = Jp = % in Theorem 2.1, we have the following corollary
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N

Corollary 2.1. Let (X, p) be a partial a complete metric space. Suppose F : X" — X
satisfies the following contractive condition for all z!, 22, ....s". ¢!, 32, .. y" € X

p(F(z!, 22, ..., ™), F(y', y?, ™)
< EpG',yY) + p(2?y?) + ..+ pla”, y)] 1)

where k£ € [0, 1) with Then F has a unique n-tuple fixed point.

Example 2.1. Let X = [0, c0) endowed with the usual partial metric p defined p : X" —
[0,00) with p(z,y) = max{z,y}. The partial metric space (X,p) is complete because
(X, d) is the Euclidean metric space which is complete. Consider the mapping F : X" —
X defined by F(z!,22,...,z") = &21—4@3 Forany z!,22, ... 2™ € X, we have

p(F(z', 2%, ... z™), F(y', 42, ..., y"™))

max{z' + 2%+ ... + 2" y' + 42 + .. + "}

max{z',y'} + ... + max{z", y"}] (22)
[p(z', ') + ... + p(z", y™)],

N S LN [

which is the contractive condition (21) for k = % Therefore, by Corollary 2.1, F has a
unique n-tuple fixed point, which is (0,0,....0).

‘Theorem 2.2. Let (X, p) be a complete partial metric space. Suppose F : X" — X satis-

fies the following contractive condition for all

1,2 1,2
BT ey B Y sy € X

p(F(zh,...,2™), F(y',...,y™))
< kp(F(o',....z™), =) + Ip(F(y, ...,y™), y!) (23)

where k,1 € [0,1) with k + 1 < 1. Then F has a unique n-tuple fixed point.

Proof. We take the same sequerices {z1,}. {22}, ... and {«™} given in the proof of
Theorem 2.1 by

1 _ 51 n 2
z’m-%—l - F(“"mv '--axm)a .'Em+1
— 2 . _ 1
- F(z'm* "’7‘1’77:1)’ “"z;;l+1 - ﬂ("1“1;;),! "":L‘m) (24)

Applying (23), we get
plEmedmya) < Oplal, 2l )
(@ T 1) < Op(cp, )

(25)

p(xgwxnm+l) < 5?(12;’3%—1)
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where § = 1=;. By the definition of d we have

d(x}n’xgn—i—l) S 2p(x11'm$3n+1) S 6mp(-r%a$%])
d(ﬁmﬁnﬂ) < 2p(x3n’m$n+1) = 5mp(1'%’mg)

(26)

d(xn %+1) < 2P( Ty m+1) < 6 P(xumo)

Since k + 1 < 1, hence § < 1, so the sequences {z .}, {z%}, ... and {z],} are Cauchy
sequences in the metric space (X, d) The Eamal metric space (X, p) is complete hence
thanks to Lemma 1.1, the metric space (X, d) is complete, so there exist ulu?, . ut e X
such that

lim d(z),,u') = lim d(z2,u?) = ... = hm d(z?,u") = 0. 27)

m—0o0 m—»00

Again by Lemma 1.1 we get

S § A |- 1 1y —
pu',u') = lim play,u') = lim p(Em,zm),

9 3 .
p(1L~vu2) = nll_r_)léop(xgnvu?) = rr%l—xvnoop( m’mgn)v

(28)
no,mny __ 13 n ny _ 1: n n
p(u U ) - rr}l_r)p;’op(xmiu ) 7 n}l_l}(lx])(ivm,.’l?m)-
But, from condition (p2) and (25),
p(:z;!n"’l"}n) S p(xrln-B:nH) S 5mp(171:-7:0)= (29)
$0 limym— 400 P(z,, 1) = 0. It follows that
1,1y _ 1y — 1y
p(u JH) = hm p( zh ul) = ”Panp( e ) == (30)
Similarly, we get
p(u?,u?) = lim p(ey,w?) = lm plam zm) =0,
€2))

p(u",u") = lim p(af,,u") = lim p(zp, op) = 0.

m—0oQ
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Therefore, we have, using (23),

p(F(ul,u2,...,u"),u1) ~<_ p(F(ul*UQ’"'7un)"r'rln+l)+p(m7171+1’u1)
< p(Flu!,u? ...,u"),F(z}”,xfn,...,le )
+ p(-’;vln,-f—l’ ul)
< kp(F(ul,u?, .., u™),ul) (32)
+ WD(F (T T T), Th) + P24, 0
< kp(F(ul,u?, ., u™),ul) +1p(zpyy, 22))
1 1
* p(InH'l’u )

and letting m — +oo, then from (29)-(31), we obtain
p(F(ul,u? .. un),ul) < kp(F(u!,4®, ..., u"),ul).

This is a contradiction, so p(F(u!,u?,...,u™),u!) = 0 that is

F(u',v?,...,u™) = u!. Similarly, we have F(u2,4], ..., u™) = u?, ... and

Flu*, w1, . u!') = v, meaning that (u!,u2, ..., u™) is n-tuple fixed point of F. Now,
let {v!, ..., v") is another tuples fixed point of F), then by using the condition (p2) and (23)

p(ul,vl) = p(F(ul,u?, o u™), F(v!, 02, ..., 0"))
< kp(F(u',u?, . u),ul) + Ip(F(v', 0%, ..., 0"),v!)
< kp(ul,u) + Ip(v!, v") (33)
(

< kp(u,0') + Ip(ul,0!) = (k + p(ul,0?),

that is, p(u',v') = O since k + 1 < 1. It follows that u! = o!. Similarly, we can have

u? =2, ... and u™ = o™,

Theorem 2.3. Let (X,p) be a complete partial metric space. Suppose

F @ X" 5 X satisfies the following contractive condition for all
2

! x2 .. 2, yl,yQ, eyt e X
p(F(a:l,...,x"),F(yl,...,y”)) < k:p(F(z%,...,ac”),yl)
+lp(F(y1,...,y"),Il) (34)

where k,1 € [0,1) with £+ 2/ < 1. Then F has a unique n-tuples fixed point.

Proof. Since k + 2/ < 1, hence k + [ < 1, and the proof of the uniqueness of n-
tuple fixed point in this theorem is trivial. To prove the existence of fixed point, choose the
sequences {z,,}, {z2,}, ... and {27} like in the proof of Theorem 2.1 as follows:

1 . 1 n 2
Tmy1 = F('Tm""’xm)’ Tm+1

;F(w%...,m%),...xﬁwl = F(:qu,...,x}n) (35
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Applying (31), we get

Il

P(Tms T 1) (F(w'}n 1 Ty )F(m}n,---,r”))

< kp(F( me—11 1 lm 1) )+lp( Tm—1>
F(min, ...,m%))
S kp(l‘,ln+1, )+lp( m—H’ 71‘n 1) (36)
< kp(mrln-{-la m)+lp( nz+17£71n)
+  Ip(Zp, Toey) — 1D(Tmmy Z1n)
S (k + l)p(xrln-t-lvx}n) + lp(x'}mx:n—l)
It foilows that for any n € N
k
P(Tis Tmg1) < 1—-—7—_kp($'1"’$’1"“) (37

Let us take n = le‘:E Hence, we deduce that

J(w:n’x'}n-f-l) S 2{7(1',1,”, :L"}n-H) S 27]mp(m%v x(l)) (38)

By using the condition 0 < k + < 1, we get that 0 < n < 1, so the sequence {z,,} is
Cauchy sequence in the complete metric space (X, d). Of course, similar arguments apply
to case of the sequences {z2,}, ... and {z%,} in order to prove that

d(z2,,22,11) < 2p(22,, 22 41) < 20" p(at, )

(39)

d(zm, Tm1) < 2P(Thn, Tm1) < 207 p(2T, 70)

and, thus, the sequences {2}, .. and {z} } are Cauchy sequences in the complete metric
space (X, d). Therefore, there exist u!, 42, ...,u™ € X such that

lim d(xm,u )) = hm d(22,, 1,2)) =..= lim d(z! 24ty =10, (40)

m—r0o0 m—r00

From Lemma |.1, we get

p(ul,u!) = lim p(zi,u!) = lim p(z},,zl),

m—0o0 m—0o0
2 R, _ 2
p(u*,@®) = lim play, v®) = lim p(ah, op),

4D

n : n o .n
pu™,u") = lim p(zp,,u") = lim p(zp,, o).

By (p2) and (39) we obtain that

p(xrln’ ) < p( Lops 71n+1) = T]mp(ﬂtl,.’to), (42)
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taking n. — co, we obtain limy,_, o p(z},, z;,) = 0. It follows that

p(ul,ul) = Tr}gnoop(xmvul) = hm p( m7‘T71'n) =0. (43)
Similarly, we get
p(u27u2) - rr}.gnoop( ‘m» 2) = TT}I_IPOOP(‘IL‘%"L’IEn) = 0’
(44)
p(u",u") = lim p(ay,, ") = lim p(zp,ap,) = 0.
Therefore, we have, using (34)and (p4),
p(F(ul,u?,...,u™),ul) < p(F(u',v?, .. u™), xlq) + p(xh 1, ul)
< (l'( Lu? o, u), F(z), 22, ..., 2"))
=t ( m+1’u )
< kp(F(u u?, . um),zl) (45)
+ Ip(F (@, 2, oy T), u1) + P21, u')
< kp(f* (uh,u?, o u™), 2, + kp(,, u')
+ Ip(z, Tmt+1, U 1)+p(ul»$}n)+l)(xrln+1aul)~

Letting m — 400, yields, using (44),

p(F(ul,u?, ..., u"),ul) < kp(F(ul,u?, ..., u™),ul).
This is a contradiction, because k < 1, we have p(F(u!,u?,...,u"),ul)
= 0 that is F(ul,v® .,u") = ! Similarly, from (44) we have
F(u?,u!, .. u") = % .. and F(u",u"!, .. ul) = u”, meaning that (u!,u2,...,u")
is n-tuples fixed point of F. :
When k = | = § in Theorem 2.2 and Theorem 2.3, we obtain the following corollaries.

Corollary 2.2. Let (X, p) be a complete partial metric space. Suppose F : X™ — X satis-

fies the following contractive condition for - all

1,2 1,2
B B snsglET s 5 s W € X

PP e W', ny™) < SIp(F(!, . a"),at)
p(F(y', . y™),yh)] (46)

where a € [0,1). Then F has a unique n-tuples fixed point.

Corollary 2.3. Let (X, p) be a complete partial metric space. Suppose F : X — X satis-

fies the following contractive condition for all
ol 2?2yl Pyt e X
p(F(!,...a"), F(y, ..,y") < g[p(F(l‘l,...,x"),yl)
+ p(F(y',....,y"),z")] 47)

where a € [0,1). Then F has a unique n-tuples fixed point.
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3 Comments

In this section we show that n-tuples or generalized coupled fixed point equation if and
only if fixed point equation:

Definition 3.1. Suppose that X™ be a nonempty setand let G : X™ — X" bea mapping, w
say that G has a fixed point Fagt; B2, ey u™) if
Gl 1%, s W) = [, 02, ..., u"™).

Lemma 3.1. Suppose that (X, p) be a partial metric space and let p : X™ x X" — [0, c0)
defined by (1).
Then (X™, ) is a partial metric space.

Theorem 3.1. Suppose that (X™, p) be a complete partial metric space and let G : X™ —
X™, be a contraction mapping defined by

ﬁ(G(ml,ﬁcg,...,x”),G(yl,y2,...,y")) < kﬁ((:z:l,:L'Q,...,:r”),
W'y ™). (48)

where 0 < k < 1. Then G has a unique fixed point in X".

Proof. The proof follow directly by Banach contraction mapping for partial metric
spaces.

Lemma 3.2. Suppose that (X, p) be a partial metric space and let p : X2 x X2 — [0, 00)
defined by

p((z,y), (u, 0)) = kp(z,u) + Ip(y, v), (49)

where z,y,u,v € X, k,l € [0,1) withk + [ < 1.
Then (X?, p) is a partial metric space.

Theorem 3.2. Suppose that (X2, p) be a complete partial metric space and let G : X2 —
X2 be a contraction mapping defined by

B(C(x,y), G(u,v)) < k 5((2, y), (u,v)).
where 0 < k < 1. Then G has a unique fixed point in X2, i.e., C~J(u, o) = (%, )
Lemma 3.3. Suppose that (X, d) be a metric space and let d° : X3 x X3 — [0, c0) defined

by
&*((z,y,2), (u,v,w)) = jd(z,u) + kd(y, v) + ld(z,w),

where z,y, z,u,v,w € X and j, k,l € [0,1), j+k+1< 1.
Then (X3, d®) a metric space.
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Theorem 3.3. Suppose that (X?,d®) be a complete metric space and let F* : X% — X7,
be a contraction mapping defined by

B(F3(z,y, 2), F3(u, v,w)) < k &((z,y,2), (u,v,w)), 0<k <1
Then F* has a unique fixed point in X?3.

Lemma 3.4. Suppose that (X, d) be a metric space and let d* : X* x X* — [0,00) be a
distance function defined by

d*((z,y), (u,v)) = =ld(z, u) + d(y,v)], 0 <k <1,

N | o

where (z,y), (u,v) € X x X.
Then (X2, d?) a metric space.

Theorem 3.4. Suppose that (X2, d?) be a complete metric space and let 2 : X% — X?,
be a contraction mapping defined by

d*(F*(z,y), F*(u,v)) < k d*((z,u), (y,0))-
Then F? hac a unique fixed point in X2, i.e., F2(u,v) = (u,v).

Remark 3.1. (1) Theorem 3.1 < Theorem 2.1,
(2) Theorem 3.2 < Theorem 1.3 [Theorem 2.1, [2]],
(3) Theorem 3.3 < Theorem 1.2 [Theorem 7, [3]],
(4) Theorem 3.4 < Theorem 1.1 [Theorem 2.1, [4]].
We mean by ”<” that is "if and only if”.
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Abstract

Let 12 be a semiprime ring with involution ‘*’ and let 7 : R — R be an additive
mapping satisfying any one of the following conditions: (¢) 27 (z" ') = T'(z)(z*)"+
(@*)"T'(x), (41) T (xyx) = *T(y)z* and (344) 3T (zyz) = T(x)y*z* +2*T(y)z* +
x*y*T(x) forall z,y € R. Then T'(zy) = T (y)z* forall z,y € R.

1 Introduction

Throughout R will represent an associative ring with center Z(R). A ring R is n-torsion
free, where n > 1 is an integer, in case nz = 0, x € R, implies z = 0. As usual, the
commutator zy — yz will be denoted by [z, y|. Recall that a ring R is prime if aRb = {0}
implies a = 0 or b = 0, and is semiprime if aRa = {0} implies a = 0. An additive
mapping D : R — R is called a derivation if D(xry) = D(z)y + «D(y) holds for all pairs
2,y € R and is called a Jordan derivation in case D(z?) = D(z)z + zD(z) is fulfilled
for all € R. Every derivation on R is a Jordan dcrivation but the converse need not be
truc in general. A classical result due to Herstein [8, Theorem 3.3] , asserts that a Jordan
derivation on a prime ring of characteristic different from two is a derivation. A brief proof
of this result can be found in [5]. Further, Cusack [5] extended Herstein’s theorem for
2-torsion free semiprime ring (see also [4] for an alternate proof). An additive mapping
T : R — Ris called a left (right) centralizer in case T'(zy) = T(z)y (T(zy) = 2T (y))
holds for all .y € R. Following Zalar [13] T is called a centralizer if 7 is both a left and
a right centralizer. If R has an identity element. 7 : 2 — R is left (right) centralizer iff

Keywords and phrases : Additive mapping, sciiprime ring, involution.
T This research is supported by grants from UGC (Grant No. 36-8/2008(SR))
AMS Subject Classification : 16W25, 16N60, 16R50.
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T is of the form T'(z) = ax (T(x) = za) for some fixed a € R. An additive mapping
I : R — R is called a left Jordan centralizer (resp. right Jordan centralizer) in case
T(x*) = T(x)z (tesp. T(z?) = zT(x)) holds for all = € R. Following ideas form Bresar
(4], Zalar [13] proved that any left (right) Jordan centralizer on a 2-torsion free semiprime
ring is a left (right) centralizer. An additive mapping D : R — R, where R is an arbitrary
ring, is a Jordan triple derivation, if D(zyz) = D(z)yz + 2D (y)z + zyD(z) holds for all
pairs r,y € R. One can easily prove that any Jordan derivation on a 2-torsion free ring is
a Jordan triple derivation (see [4]), but not conversely. The converse of the above problem
was explored by Bresar [4] who proved that any Jordan triple derivation on a 2-torsion free
semiprime ring is a derivation. Inspired by this result Vukman [9] proved the following
result:

Theorem 1.1 ([9, Theorem 1]). Let R be a 2-torsion free semiprime ringandT : R — R
be an additive mapping satisfying T(zyz) = 2T (y)x for all x,y € R. Then in this case T
is a centralizer.

Obviously, any centralizer T : R — R, where R is an arbitrary ring, satisfies the re-
lation T'(ryx) = 2T (y)x for all z,y € R, which means that Theorem 1.1 characterizes
centralizers among all additive mappings in 2-torsion free semiprime rings.

An additive mapping x — z* on a ring R is called an involution if (z*)* = z and
(zy)* = y*z* hold for all z,y € R. A ring equipped with an involution is called a
ring with involution or *-ring. Let R be a ring with involution ‘+’. An additive mapping
T : R — Ris called left (right) x-centralizer, if T'(zy) = T(z)y* (T(zy) = z*T(y))
holds for all z,y € Rand T : R — R is called left (right) Jordan x-centralizer, if
T(z%) = T(z)z* (T(z?) = z*T(z)) for all z € R. If T is both left as well as right
Jordan s#-centralizer of R, then it is called Jordan *-centralizer of R. For any fixed element
a € R the mapping T'(x) = az* (T'(z) = a*a) is left (right) Jordan *-centralizer.

LetT: ® — R be an additive mapping satisfying

T(ryxr) = z"T(y)z* forall z,y € R. (1.1)

In view of Theorem 1.1 it is natural to ask whether the additive mapping satisfying (1.1)
is left (right) Jordan x-centralizer. The present paper deals with the study of similar kinds
of problems involving additive mappings in semiprime rings. In fact, it is shown that if
an additive mapping 7" on a 2-torsion free semiprime ring R satisfies (1.1), then T(xy) =
T(y)z* (T'(ry) = y*T(x)) for all z,y € R. Further, it is also shown that similar con-
clusion holds when the underlying ring R satisfies the property 37 (zyz) = T(x)y*z* +
T (y)x* + x*y*T(x) forall v,y € R.

2 Main Results

We begin our discussion with the following theorem which is motivated by Theorem 2 of
Vukman anc Kosi-Ulbl [11].
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Theorem 2.1. Let n > 2 be a fixed integer and let R be a 2n-torsion free semiprime *-ring
with identity element. Suppose that there exists an additive mapping T : R — R such
that 2T (z"1) = T(z)(x*)" + (z*)"T(z) for all z € R. Then T(zy) = T(y)z* for all
z,y € R.

For developing the proof of the above theorem we need the following result:

Proposition 2.1. Let R be a 2-torsion free semiprime ring with involution x. Suppose that
T : R — R is an additive mapping satisfying T(z?) = T(x)x* for all z € R. Then
T(zy) = T(y)x* forall xz,y € R.

Proof. Given that
T(2?) = T(z)z* forall z € R. (2.1

Let us introduce a function S on R by the relation S(z) = T'(z*) for all z € R. Replacing
x by 22, we get S(z2) = T(I*Q) for all z € R. Therefore, we have an additive mapping
S : R — R satisfying the relation

S(z?) =T(z*") = T(z*)z = S(z)x forall z € R.

Hence, S is a left Jordan centralizer. It follows from the result of Zalar [13] that S is a left
centralizer. Now we have T'(zy) = S(y*z*) = S(y*)x* = T(y)x* forall z,y € R, which
completes the proof.

Proof of Theorem 2.1. We have
2T (z™1) = T(x)(x*)" + (2*)"T(z) for all z € R. (2.2)

Similarly, as in the proof of Proposition 2.1, we introduce a function S on R by S(x) =
T(z*) forall z € R. Now, 2S(z" 1) = 2T ((z*)"*!) for all z € R. Then, by (2.2), we get
forallz € R

28(z") = T(z*)z" + z"T(z*)
= S(z)z" + z"S(x).

Then, by Theorem 2 of [11], S is a Jordan left centralizer. Therefore, S(2?) = S(z)x
for all z € R. Now, using main theorem of Zalar [13], S is a left centralizer i.e., S(xy) =
S(x)y for all z,y € R. Hence, using the same techniques as used in the proof of Proposi-
tion 2.1, we get the required result.

Theorem 2.2. Let R be a 2-torsion free semiprime ring with involution . If T : R — R
is an additive mapping satisfying T'(zyx) = x*T(y)x* for all x,y € R, then T(xy) =
T(y)x* = y*T(x) holds for all z,y € R.

Proof. By hypothesis

T(zxyx) = z*T(y)z* for allz,y € R. (2.3
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As in the case of Praposition 2.1, we introduce a mapping S on R such that S(z) =
T(z*) for all z € R. We have S(zyz) = T ((zyz)*) = T(z*y*z*) forall z,y € R. Then,
using our hypothesis, we find that for all z,y € R

Sleyz) = aT(y*)z
= zZS()e.

Hence, S satisfies all the requirements of Theorem 1.1 and therefore S is a two-sided
centralizer. Using the same techniques as we have used in previous theorem, we get the
required result.

Corollary 2.1. Let R be a prime ring with char R # 2 and involution x and let T : R — R
be a nonzero left Jordan x-centralizer. If T(x) € Z(R) holds for all x € R, then R is
commutative.

Proof. By hypothesis, we have that [T'(z),y] = 0 for all z,y € R. Replacing = by 2, we
have [T'(z%),y] = Oforallz,y € Ri.e., [T'(z)z*,y] = 0forall z,y € R. This implies that
T(x)[z*,y] + [T(z),y]z* = 0 for all z,y € R. Since by hypothesis [T'(z),y] = 0 for all
z,y € R,wegetT(z)[z*,y] = Oforall z,y € R. Replace y by yz, to get T'(z)y[z*,2] =0
for all z,y, z € R. Therefore, T'(z)R[z*, 2] = {0} forall z, z € R.

Thus, the primeness of R and the fact that (R, +) is not the union of two of its proper
subgroups show that either T'(z) = 0 for all z € R or [z*,z] = O for all z,z € R. But
since T' # 0, we find that [z*, 2] = 0 or [z, 2] = 0 for all z, z € R i.e., R is commutative.

The main theorem of Vukman and Kosi-Ulbl [11, Theorem 1] was extended by Ashraf
et. al. [3, Theorem 2.3] as follows: an additive mapping 7" on a 2-torsion free semiprime
+-ring satisfying 27 (zyz) = T(z)a(y*z*) + a(z*y*)T(z) for all z,y € R and auto-
morphism ¢, is a Jordan a-*centralizer of R i.e., R satisfies T(z?) = a(z*)T(z) and
T(z?) = T(z)a(z*) for all z € R. In view of this result for o = I and Proposition 2.1, we
obtain the following result:

Theorem 2.3. Let R be a 2-torsion free semiprime x-ring. Suppose
T : R — R is an additive mapping satisfying 2T (zyz) = T(z)y*z* + =*y*T(z) for
allz,y € R. Then T'(zy) = T(y)z* for z,y € R.

Further, motivated by the work of Bresar [4], Vukman and Kosi-Ulbl obtained the fol-
lowing result:

Theorem 2.4 ([12, Theorem 1]). Let R be a 2-torsion free semiprime ring and T : R — R
be an additive mapping satisfying 3T (zyz) = T(z)yz+zT (y)x+zyT (z) forall x,y € R.
Then there exists an element \ € C, the extended centroid of R such that T'(x) = Ax for all
T €R.

Inspired by the above theorem, we prove the following result for
semiprime *-ring:
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Theorem 2.5. Let R be a 2-torsion free semiprime ring with involution x and T : R — R
be an additive mapping satisfying 3T (zyx) = T(z)y*z* + ™1 (y)x* + z*y*T () for all
x,y € R Then T (zy) = T(y)x* forall z,y € R.

Proof. Given that

3T (zyz) = T(x)y*z* + v*T(y)z* + z*y*T(x) forall z,y € R. (2.4)

Let us introduce a mapping S on R such that S(z) = T'(z*) for all z € R. Then, for all
ty&€ R

3S(zyx) = 3T{z"y*z")
= T(@")ye +2T(y")s + 2yT(a")
= S(x)yr + zS(y)z + zyS(z).

Hence, by Theorem 2.4, there exists A € C such that S(z) = Az for all z € R. Therefore,

T(zy) = S(y'z*)

Ay*m*

(My™)z*

S(y*)z”

= T(y)z*forallz,y € R.

This gives the required result.

(1]

(2]

(3]

(4]
(5]

(7]

(8]
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