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Abstract

The notion of afiizzy set which was introducedby Zadeh,provides a natural frame-

work for generalizing the notions of general topology which may be called Fuzzy

Topology. The concept of"Flzzy Topological Space" was propounded by c.L. chang

in igOS and is regarded as the generalization ofthe notion of topological spae.

Our aim is to derive some results of general topology in the broader frame work

of the fizzy setting.

1 Fazzy Topology

A family r C lx of fuzzy sets is called afazzy topology on X if it satisfies the following

three axioms

(id,xer
(ii) For all A,B Q 7 I AA.B e r

(iii) For all i e I if Ai € r then l) Aa e r

Keywords and phrases t Fuzzy sets, Fuzzy topological space.
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72 Sunil Kr. Giri, Shashi Shekhar Kr. Singh and Swati Kumari

The pair (X , ,) is called a fuzzy topological space. The elements of r are called fiizzy
open set or r-open fuzzy set or open fuzzy set. In other words, every member of r is called
topologically open fuzzy set. A fuzzy set K e Ix is called closed or fuzzy closed set if
and only if its complement is open that is iff .[fc € r. We denote by ,c the collection of
all fizzy sets in this fuzzy topological space. Evidently, we have

O Oc:Xand Xc:O€rc
(ii) if K, M e rc, then KV M € rc and

(iii) if {ki, j e .I} thenA{&7 : j e I} e rc
The above definition of fazzy topology, proposed by change in 1968 can also be stated

as follows
Afuzzy topology on X is a subset r g Ix such that

(i) 0,1 e r
(ii) V,4., B er + AltB e r
(iii) v(Aj)j er c r * 

;:g 
Ai e r

ln 1976, R. Lowen suggested an alternative and more natural definition. This involves
the changing of condition (z) Namely 0, 1 € r to (i)' for all constant a e I,e e r.

The mathematical reason behind this change can be expressed in the following way.
From change's definition one can easily observe that the constant function between fuzzy
topological spaces are not necessarily continuous. In general this can be true only if one
uses the alternative definition.

R. Lown introduced the notion of fuzzy topology in the following way

2 Fuzzy Topology Redefined

A fuzzy topology is a family r e lx of fuzzy sets on X which satisfies the following
condition

(i) Va e I,ae r
(ii) VA, B e r + AltB e r
(iii) v(, j)j et C r * 

;:g 
Ai € r

orV! Ai €r
.iet

obviously, we have

(i) ac e rc



(ii) il K,M e rc therl KVM e rc and

(iii) if (,(j)j€r € rc then /t{kia1\ e rc

The fuzzy topology z is termed as "discrete" if it contains all of the fuzzy sets on X

and be called as "indiscrete' fuzzy topology if it contains only 6 and X'

3 Coarser and Finer ToPologies

Let 4 and 
"2 

are two fuzzy topologies for X if the Inclusion Relation z1 C 12 relation

holds, we say that 12 is finer than 1 and ri is coarser than 12'

EmmpleLet X: {p,q\,LetAbeafuzzy setonX defined as A(P) : 0'6"a(q) : 0'a

;"; ; = {O, a,f1 is a fuzzy topology and (r, r) is a fuzzy topological space' We have

Ae) : oVP € x andl(P) = Na € X.

TheorpmlTheintersectionofanarbitrarycollectionoffirzzytopologiesforXisiself
a fuzzy toPologY for X.

Proof.^ f-eli : {"1 : ,\ € -I} be a family of fuzzy topologies for X' We have to show

that
r = n{?.1 : .\ e I}is a fuzzy topologies for X'
tf 1: Sthenn{fi:.\ e 1} = X

Thus in this case the intersection of fuzzy topologies is a discrete fuzzy topology for X'

Again, let I I S ther- n{"r : .\ e I} satisfies the following properties :

i Since in ?r in n{rr:.\ € 1} is afinzy topology for X so d: rx'X € 4 for all

) e 1. Hence@ € o{q : .\ € I} andX e n{q : } e 1}'

ii Let A and B ar€ any two fuzzy topologies of ri'e' A,B € 7:n{a: ) e f} then

AandBelforall ,\e /. Since I is afuzzy topology for XV] e f'
+ AnB € 7)V) € I
+ AnB € o{q: 

^€ 
I} --r

Hence n{?.r : } e 1} : r is afinzy topology for X'

iii Let,4a e z: o{rr :,\ e.I} forall a € I ther. Aa € rrV) e /andVo e f'
Since ?r is a fuzzy topology for X, it follows that

U{Aa:rt€1}€7I,V.\=I-
It iollows thatU{Aa:0 € 1} € n{1 :'\ e /}:r
Therefore, r : U{r.r : ,\ e 1} is a fuzzy topology for X'

4 Neighbourhood ofaFuzzY Set

A fuzzy set C in a fuzzy topological spae (X, r) is said to be a neighbourhood' In short'

nbhd oi a fuzzy set .4 iff there exists an open fuzzy set B € 7 such that A < B < C'
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The neighbourhood system of a fuzzy set -4 is defined as the family (collection) of all
neighbourhoods of the set A.

5 Neighbourhood of a Point r of X
Let (r, r) be a fuzzy topological space. Then a fuzzy set Ay in r is said to be a neigh-
bourhood of a point z belonging to x, if l afizzy open set B such that B { A* and
B(r) : A"(X) ) 0 and the symbol A, stands for the neighbourhood of a point r € X, ifA, € r. We say that A* is an open set.

Theorem 5.1 If ,4 and B are fuzzy sets in a fuzzy topological space (r, r) such thatA, and Bx are neighbourhoods of fr e X then so is ArA,br. 
-

Proof. Let (r,r) be a fuzzy topologicar space and ret Ar, B, Ne fuzzy sets in (*,r).

Let r be any element of X. We further assume that C and D are fuzzy open sets
i.e. C,D e rand are such that C 1 Arand D < B, wirh C(") *_ A,(X) > O unAD(X):8,(X)>0.

In other words we can say that A, and B, we neighbourhoods of x and so we have
C { A, andD < B,with C(X): A*(X) )0and i(Xl: B,(X)>0.

Now we claim that A*/\8, is a neighourhood of r e X.

We have (CAD)(X) : min{C(r), D(")} < min{A,(X), B,(X)} : (A,trB,)(X).
...cLD < ArLBl
We also have (CAD)(X) : min{C(X),D(X)}

: minAa(X), Br(X) > 0
: (A,LB|)(X)

... (cLD)(x) : (A*LB,)(X) > o.

This establishes that ArLB, is a neighbourhood of X.

Theorem 5.2 A fuzzy set A in a fuzzy topological space (r,r) be open if and onry if
for every fuzzy set B contained in A, Ais neighbourhooa of A.

Proof. (+) Suppose that (r, r) be a fuzzy topological space and Ais afuzzy open set
i.e. A € r. According to assumption there exists uiurry set B on x such that B < A.
This implies that A is a neighbourhood of B.

(+) obviously, we have -4 c A. Therefore, there must exists an open fuzzy set o such
that ,4 C O C,4. And hence A : 0, which implies that Ais an open set.

Theorem 5.3 The fozzy set A in a fuzzy toporogical space (x,r) be an open fuzzy set



if and only if for all X having A(X) > 0 there exists B, ( A such that A(X) : Br(X)'

proof. (+) Let (r, r) be afuzzy topological space and A e r i.e. ,4 is an open fuzzy

ser. Let X be an arbitrary element of X and is such that A(r) > 0. It follows that A(X) is

afuzzy neighbourhood of r e X.

Let us suppose that A : B, then we get that

B,l Aunoalx; : Br(X) (e)LetussupposethatC: sup{openB' < A: A(X)>
0 and A(X) : B,(X)

:V{8, <: A(X) > 0 and A(X): B,(X)}
i

It follows thaL C € r and C : A.

6 Closure of aBuzzY Set

Let (r,r) be a fuzzy topologi"al .pac" and A be afizzy set on ,xi.e. A € 1r. Then the

infimum (Greatest Lower Bound) of all closed fuzzy sets containing is called closure of A

and is denoted by Z. SYmbolicallY

A:inf {K: Al K,Xc er}
:inf{K:A3K,l-Ker}

Now we will establish a result which is analogues to a result of closure of sets in classi-

cal topology.

Theorem 6.1 If A be a fuzzy set in a fuzzy topological space (r, r) and 7 is the clo-

sure of A then

(i) Z is the smallest closed fuzzy set larger than A.

(ii) Z : A if and only if A is closed.

Proof. (i) Let (r, r) be a fizzy topological space and Abe a fuzzy set of X. Let Z is

the closure of A. Then, from the definition of closure of a fuzzy set, we have

A:inf{K:A1K,t-Ker}
:\t{Kr:AlKt',Kl e r}
i€I

It follows thatAis a closed fuzzy set in X and A <A. Because 7 is the greatest lower

bound (infimum) of K > A such that Kc e r.

Hence 7 is the smallest closed fttzzy set larger than A i.e. A < A-

(ii) Let us assume thatA: A

Since 7 is a closed fuzzy set and it equal to A, hence A is also a closed fuzzy set.
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Conversly, we suppose that .4 is a closed fuzzy set of X, then
A:inf{K:A1.K,L-K€r]t

Now since A is closed and A> A.
:.4 < .1,

But we have A <A
,.,4: A

7 Interior of aEuzzy Set

Let (r,r) be a fuzzy topological space and ,4 e Ix. Then the interior of A is denoted
by Ao ot Int.A and is defined as the supremum (Latest Upper Bound) of all fuzzy sets 0
contained in A such that A is a neighbourhood of 0.

Thus we see that

Ao : IntA: sup(0:0 ( /,0 e r)
We ca1 easily observe that Ao is the largest open fuzzy set smaller than A. In other

words, the union of all interior fuzzy sets of ,4 is called the interior of ,4 and is denoted by
Ao.

Next we will derive a result which is analogous to a result of interior of a set in general
topology.

Theorem 7.1 rt,Ao is the interior of afuzzy set in a fuzzy topological space (r, r), then
(i) Ao is the largest open fuzzy ser smaller rhan ,4. (ii) A is open if and only if Ao': A.

Proof. Let (x,r) be a fuzzy topological space and .4 is a fuzzy set in a fuzzy topological
space (r, r). Then, from the definition of interior of afazzy set, we have
Ao:Sup{0:0( A,0er}

And there exists an open fuzzy set U such that
0<USA,whereUer

Therefore, sup 0 ( supU 4 A

Let us suppose that supU : U1

.'.Ao<Ur<A

But U1 ( Ao because [! is an interior fuzzy set of A.
.'.4 l Least upper bound of interior fuzzy set of A : Ao
.'. Ao : Ut
and Since Ut : supU, where [/ is an open fuzzy set. It follows that Ao is the largest open
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fuzzy set contained in A.

Next we consider that A is an open fuzzy set. Then we have A < Ao.

But we also have Ao < A.
,qt :,q

Conversely, we assume that Ao ( A. Since Ao is open, .4 is also an open fuzzy set.

Example Let A,B and C are fuzzy sets of -I defined as

Io if os"=1]
A(X): ( r ',II zr-l if:<r<1 I( "2- )

I r if o<.r] 'l

' ori="sltB(x):1 -4r*2

Io tt]<r<t )

,,,\ [o ifo<"=il
c(x) :1 4r-r irr_<r.i II s "'4-* -- )
Then r : {O,A, B, AV 8,7} is a fuzzy topology on .I.

We can easily verify that

c,(A) - Bc, C,(B) : Ac C,(AV B) :T
Int (Ac) : 6r lnt (Bc) : 4 and Int (AV B)c :O

PROPERTIES OF CLOSURE

Theorem 6.2 Let (r, r) be afuzzy topological space and A, B e r . Then

(i) 6: 4
Gi)X : r
(iii) A < 7
(iv)A1B+A<B
(v) 7! B :Ar-tB
(vi)ZnB{AaB
(vii) .4 : .4

Proof.

(i) sin $isafuzzy closed set =+ O : d
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(ii) Again r is a closed fuzzy set hence X : r
(izi) We know that 7 is the smallest closed fuzzy set larger than A, therefore A <A
(zu) From the definition of closure of afuzzy set in a fuzzy topological space (r, r), we

have

A:i,nf {K: Al K,Kc er} til
B:inf{L:B1L,Lc e r} tiil
But according to assumption, we have

A< B

Hence, we can say that all fuzzy closed sets .L satisfying [ii] will also satisfies [i].
on taking greatest lower bound (infimum) of fazzy sets in til and [ii] we will get A :B
(v) We know that Z and B are closed fuzzy set therefore AuB wi[ also be a closed fuzzy
set.

SinceZ)AandB>A

...AuE > ,qu e
ThusZuBis afuzzy closedsetcontainingAUB. Therefore,fromthedefinitionof the
closure of ,4 u B. We have
AoB >TOE tiiil
On the other hand, we also have

A<AuB+A<TuB

AndB<AuB+B<TuE

.'.AuB <TOB tivl

Therefore, on combining [iii] & [iv] we get

TOB:At-tB

(vi) Since A andB are fuzzy closed sets, therefore

A <A and, B <B
Obviously, we can say that A nB is a fuzzy closed set.

Since.4nB< A+ToB<A

AndAnB< B+A-CB<B
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Therefore, TnB <AaB

(vii) Since Z is a fuzzy closed set.

:
Hence, A: A

PROPERTMS OF INTERIOR OF AFUZZY SET

Theorem 7.2 Let (2, r) be a fuzzy topological space and A, B e r. Then

(i)Q':d
(i1) ro : r
(iii)A<B+Ao<Bo
(iv) Ao u Bo < (Au B)o
(v) (A n B)o : Ao f) Bo
(v1) (Ao) : ao

Proof. (i) & (iii) since / and X arefuzzy open sets, therefore

do :6andro : r
(iii) From the deflnition of interior of afuzzy set in a fuzzy topological space (r, r) we have

Ao:sup{O:0S.A,oer} til
Bo:sup{M:M3B,Mer) tiil

But from the assumption, we have A < B if follows that every fuzzy open set 0 satisfy-

ing [i] will also satisfies [ii]. Therefore, on considering supremum of all open fuzzy sets in

lil and [ii] we get Ao < Bo.
(iv) We have A < Au B + A < (AU B)o from [iii]

B<AuB+ B'3(AuB)',

.'. Ao u B' < (Au B)o

(v) We know that f.or fuzzy sets A and B, Ao, Bo arefuzzy open sets.

Consequently Ao n Bo is an open fuzzy set. We also know that Ao ( ,4 and Bo < B.

.'. Ao u B' < (Au B)

SinceA, B e rarefuzzy opensetsthensoisAn BandhenceAo nBo S@nB)
Thus (i) Reduces to Ao fl B' < (AU B)o tiil
(vi) We also have An B ( A and (An B)' < B
Therefore, (Aa B)' < Ao o Bo [iii]
Hence from [ii] and [iii], we get that (A n B)' : Ao f\ Bo
(vii) Since A' is an open fuzzy set, therefore

(Ao)o : Ao

79
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Abstract

Key agreement protocol between two members of the same group is called a Secret

Handshakes (SH) scheme. Under this scheme two members share a common key if an

only if they both belong to the same group. If the protocol fails, none of the panies

involved get any idea about the group affiliation ofthe other Moreoverif the transcript

of communication of a successful protocol is evesdropped by a third party, she/he

does not get any information about the group affiliation of the communicating parties

The Concept of SH was given by Balfanz et al in 2003 who also gave a practical

SH scheme using pairing based cryptography. Zhou et al in 2007 discussed two SH

schemes based on ElGamal signature and DSA signature. The present paper Proposes

two SH schemes based on a variation of ElGamal signature. It is shown that proposed

schemes are not only secure under the random oracle model, but are computationally

more efficient than the schemes of Zhou et al.

I Introduction

Balfanz et al [2] in 2003 introduced a new cryptographic primitive called Secret Hand-

shak (SH). It is a mechanism to prove group membership secretly. Using this protocol two

Keywords: Secret Handshakes, Credential, Privacy Preserving Authentication, Elcamal, DSA, Computa-

tional Complexity.
AMS Subject Classiffcation I I lT7l.

'Research supported by the research project t144003 of the Serbian Ministry of Science, Technology and

Development.
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participants establish a secure, anonymous, unlinkable and unobservable communication
channel only if they are valid members of the same group. In a SH protocol, two members
of the same group identify and authenticate each other secretly and share a common key for
further communication. Moreover if the handshake protocol fails, the group affiliation of
the participants will not be revealed. Further, a third party observing the exchange between
two legitimate group members leams nothing about the group affiliation of the parties. In
other words, performing the successful SH is essential equivalent to computing a common
key between two interactive members of the same group. Hence the SH change accord-
ing to the group members involved. L. Zhou et al [14], proposed two SH scheme based
on ElGamal and DSA. In this paper we propose two new SH schemes which are based on
variations of ElGamal. we also discuss and compare the computational complexity of our
schemes. This paper is organized as follows: In section 2 we define basic terminology and
give brief account of the work done so far. In section 3 we propose two new SH schemes.
In section 4 we discuss security of our schemes. In section 5 we compare the computational
complexities of our schemes with that of Zhou et al.

2 Related Work

Balfanz, et al [2] introduced a 2-party sH scheme by adapting the key agreement protocol
of Sakai' et al [9] based on bilinear maps. The scheme is secure under the bilinear Diffie-
Hellman assumption. To achieve the unlink-ability, the scheme uses one time credentials
which means that each user must store a large number of credentials.

Castelluccia, et al [3] addressed the problem of SH through the use of so-called CA-
oblivious encryption. Though slightly more efficient, the solution does not support reusable
credentials. This solution is secure under CDH assumption.

Ateniese' et al ul introduced sH scheme with dynamic matching. Somiotti and Molva
[l2] also proposed a similar concept of dynamic controlled matching. Both schemes allow
more flexible type of handshakes. Users holding credentials for different properties can
conduct a successful secret handshake; if credentials match the other user,s matching ref-
erences. The difference between the two schemes is the conrol that the GA retains over
the matching ability. However, neither of them supports revocation of credentials. Somiotti
and Molva [11] presented an SH scheme with revocation.

Vergnaud [13] consmrcted a SH scheme using RSA signature and Zhou, et al [14]
constructed a sH scheme using ElGamal and DSA signature. Both the schemes rely on
random oracles for their security.
Secrrt Handshakes (SH) Schemes:

In SH scheme their exists three entities for a group G, a user, which may or may not belong
to the group, a member which is a user which belongs to the group and a group admin_
istrator (GA) who creates the goup (by generating secret key and pubric key ior the groupy.

A secret handshake scheme consists of the following algorithms:

Create Group:
This is an algorithm run by a GA, which takes params as input and generates a key pair
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GPl @roup public key) and G,Ss (group secret key).

Add User:
Add user is an algorithm between a user U and the GA of some group. It takes, Params

and GA s secret key G,Sft as input and outputs a public key P6 and secret key 56 for U and

makes U a valid member of the group.

Handshake:

This is an authentication protocol and it is executed between users A and B, who want to

authenticate each other on the public inputs /D,a, ID9, and Params. The private input of
each party is their secret credential, and the output of the protocol for either party is either

'reject' or 'accept'. The output is 'accept' if and only ifA and B belong to the same group.

A secret handshakes scheme must have the following properties:

Completeness/Corr€ctness:
If two honest members A, B belonging to the same group and A, B run handshake protocol

with valid credentials of their 1D, and group public keys, then both members always output
"accept".

Impersonator Resistance:

The impersonator resistance property is violated if an honest members Y of the group G
authenticates a non member.4 as a group members, with non negligible probability. For

this property to hold, we must have

Pr [A succeeds in making V output accept ly € GandA( G l] < e, where e is negligible.

I)etector Resistance:

A detector resistance property is violated if an adversary ,4 can decide with some non

negligible probability, whether some honest party I/ is a member of some group G by de-

termining the relationship between the public message ofthe member and the public key of
the group, even through .4 is not a member of G. For this property to hold, we must have

Pr [A Knows whether V is the valid member : public information of 7, and A ( G) < e

where e is negligible.

We now describe two SH schemes given by Zhou et al [14]. The first scheme is based

on EIGamal signature scheme and the second one is based on DSA.

2.1 ElGamal based SH Scheme [14]:
ElGamal Signatures are generated as follows:

Key Generation: Chooses a large prime p and a generator g of group Zl, select a ran-
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domnumbers,l < s <p- l asthesecret. compute y - gsmodp. Thenthepublickeyis
{p, g, y}, and private key s.

Signature Generation: To sign a message M, the signer chooses r e p Zi such that
gcd(r,p - 1) : 1. Computethepair (a,B)asa - g,modpand B: (M - a*s) *.

r-lmod(p - 1), as signature on M.

Verification: Signature, are valid iff gM - yda?mod p.

The SH scheme runs as follows:

Create Group:
TheGArunstheElGamalkeygenerationalgorithmtocreateparams {p,q,g,y,s,H1,H2}
where par;,d q are large primes. g is aprime divisor of p - 1, g is generator modp of order
Q,A : gsmod p is public key of GA and s is the secret key of GA. fI1 : {0, l}. -+ %[
and H2: {0, 1}* -+ {0, l}n are two cryptographic hash functions.

Add User:
To add a user U with identity IDu to the group, GA computes hy : HIIDI) as U's
public key. To compute secret key for U, GA chooses a random nonce ru e n zfi and
computes ag : gru rnod p, and 0u : (hu - du * s) * rrlmod, q
GA then gives the user U his signature (au , gu) as secret key on hy.

Handshake:
Tlvo users A and B conduct the secret handshake as follows (-+ stands for "send to"):

( B -+ A: (ID6,ea,rle),
Cu : o*u*r)mod, (pq), and \a : ga x (/cs + 1)-i * akf mod,q, where ks e pZ,

,/ A.-+ B : (IDa,et,q.t,V), ee : q(ke*t)*od (pq),4e : ge
rrkf modq, where kt e aZq

vo : Hz((,r,,,-, a c) * (ea mod, p)ne)h,')"'^

B -+ A: (Yt), where

vr: Hz((,rn"-,, c) * (eemod,p)ne1h^')"*

A verifies, if

vr : Hz( (,r,,,-,, q) ,, (e n moa p)neyht') "'

modp ll IDe

* (ke + 1)-1 *

ilIDBilo)

mod, p ll I D ell lDB ll 1)

moctpll IDelllDB ll 1)
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/ B verifies, if

Vo: Hz ,r, ll ,)((rrr,^*"q) * ((e mod,p)ne:h")"t" modplltoall

2.2 DSA based SH Scheme [14]:
DSA generates signature as follows:

KeyGeneration choose alarge choose alarge primep, aprimedivisor q of p - l and
a generator g mod p of order q. Pick s as random such that 1 < s ( q and compute
y : gs mod p. Then the public key is {p, Q, g,A}, and private key is s.

Signature Generation: To sign a message M signer chooses a random number r < q.
compute the pair (o,B) as o : (g' modp) mod q and B : (M +o * s) * r*r mod, 11.

(a, B) as a signature-on M.

verification: To verify the signature, the receiver first computes u : p-r ntod, p, 21 :
(M * u) mod_q and 22: a * u mod, q. Then output true if the following equation hold
o : (g', * AZr) mod q

The SH scheme runs as follows:

Create Group:
The GA runs the DSA key generation algorithm to create params {p,q,g,U,s,Hr,Hz},
where pandq arelargeprimes. gisaprimedivisorofp- landgisgenerator motd,pof
order q and g - g' modp is public key of GA and s is the secret key of GA. Ir1 : {0, 1}i -,
v,[ and H2 : {0,1}* -+ {0, 1}" for some n, are two cryptographic hash functions.

Add User:
To add a user [/ with identity IDy to the group, GA computes hu - H1(1D17) as
public key of [/. for secret key GA computes a{J : (gru mod, p) mod q, and g,, :
9y f au x s) * rrrmod, g, where ru e p %[
GA gives the user (/ his signature (oy, 0u) ,rhy as secret key of U.

Handshake:
Users A and B conduct the secret handshake as follows:

> B -+ A:(IDB,Cn,rle),where eu:l$u*r)mod(pq), \a: ga*(ks+1)-, *

lP mod q and 1s : (ghu * A"B)P;| mod, p

> A -+ B : (IDa,Ce,rlt,Vr), where <o =,,rf"*r)mod, (pq),rta : ge*(ka * 1)-1 *

ft'modg, and 'yA : (gho * gae19o1*od, p, and



86 Manmohan Singh Chauhan, Preeti Kulshestha and Sunder Lal

mod,pll rDall lDB Ilo)

mod,pll IDalllDB ll 1)

mod p ll IDall IDB ll 1)

mod.pll rDalllDB ll o)

v. : Hz( (tr,-*-. r, * Ka*oa rlnafi')1\o

B -+ A: (Yr), where

vt = Hz( (,r,-"",. ,, * Ge*oa ,1r^1h;')'b'

,4 verifies, if

vt = Hz(({r,*,-,r r, * Gemoaplnafi')1y

B verifies, if

u. : ,, ((t "(amod 
q) * Ge*oa n1n^f;')'b'

3 Proposed Scheme

In this section we present our proposed Secret Handshake (SH) Schemes. These schemes
are based on two variations of ElGamaI [4] signature.

3.1 SH Scheme based ELGV-I:
First Variation of ElGamal which we denote by ELGV- 1 generates signature as follows:

Key Generation: Same as in 2.1

Signature Generation: To sign a message M, the signer chooses r en Z| such that

Scd(r,p - 1) : 1. Computes the pair (",0) as q: gt modp and p: (M -a,,r)*
s-1 mod, (p - l).

Verification: Signature, are valid iffgM : AFaa mod.p.

The SH scheme runs as follows:

Create Group:
The GA runs the ElGamal key generation algorithm to create params {p,q,g,y, s,H1, H2},
where y : gs mod p, inwhich s is the group secret. GA also selects two collision- resistant
qryptographic hash functions I11 : {0, 1}* -+ %i and I12 which takes arbitrary strings as

input.

Add User:
To add a user U to the group G, the GA allocates a unique identity lDu to the user
and computes hu = H{IDu). GA generates a random nonce rU ep Z[. GA gives
the user U the corresponding signature (ou,\u), where oy : g"u mod, p Md Au :
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(hu - ru * o,u) x s-r mod q

Handshake:
Two users A and B conduct the secret handshake as follows:

> B -+ A: (IDs,ee,rla),ea -a9'+r)mod,(pq), and rla: gax(ka*1)x
apmod.g, where ks epZ,

> A -+ B : (IDn,C,q,rle,Vr), Ce: of,e+t)*od, (pq), and

rrkf mod,q, where ke e aZ, and

vo: Hz((,r,* mod, q) * ((Bmod,rler;";') 
(kt+r*aY

> B verifies, if

vo : Hz ((orr^ rnod q) * ((amo4 oyeelh;')(k'+l*aP
\\

B aborts if verification fails. Otherwise:

B -+ A ' 
(Y1), where

vt : Hz( (,r,,,^ mod q) * ((amod, o1e 
tlhi'; 

(ta+rl-ofr 
mod, p ll r D ell /DB ll 1)

A verifies, that

vt : Hz((,r,r" mod q) * ((6mod.rycr;h;')(fra+l)*olA moa p ll r Dt ll /DB ll 1)

to complete the protocol.

rl.q: 0e + (ka * 1) *

modpll IDell /DB ll0)

mod, p ll I D ell lDB ll 0)

A and B computes the shared key for further communication as follows:

A computes

K A :* ( ((r,, 
s mod, q) * ((smod, p),r)" 

) 

(ke+\*a?

B computes

KB :* ( ((r,, 
a mod' q),r ((nmod,o),^)n' 

) 

(ke+1)*of;B

mod p ll r D eil lDB ll 2)

mod.pll IDelllDB ll 2)
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Correctness:
To see that Ka: KB, we observe that

- 
( (,,,r, u mo. q) * (( Bmod, p),u) nr' 

) 

(oo* t).":" 

)
\\t' 

'.\\D'tuvqYt 
' ) 

/

: 
( ( (ou,.ro,*,)*af;B 

mod ot * (og'*\*od,r)'*'.") "') 
t- ."0 

)

- 
( f ( .s*BB*(ke+r1*o!81 *, gre*(hs..1)'$'*'r 

) 
"') 

tt"+'l-"i^ 

)[\\'

- g(ka +1)*crkf *(ke+\*"?
Similarly for B.

3.2 SH Scheme based on ELGV.2:
Second Variation of ElGamal which we denote by ELGV-2 generates signature as follows:

Key Generation: Same as in 2.1

Signature Generation: To sign a message M, the signer chooses r ep Zi such that
gcd(r,p - l) : 1. Computes the pair (a, p) as a - g'modp and B : (s* a * r *
M)mod(p - t).

Verification: Signature, are valid iff gP - yoaMmodp.
The SH scheme runs as follows:

Create Group: Same as in 3.1

Add User:
To add a user U to the group G, the GA allocates a unique identity I Du to the user
and computes hu : Ht(IDu). GA generates a random nonce ru €a z[. GA gives
the user U the corresponding signature (au, gu), where au : gru mod p, where Bu :
(s*au*hu*ru)modq.

Handshake:
Two user A and B conduct the secret handshake as follows:

> B -+ A: (IDs,Ca,rln), where ks e pZq,

Cu : o9'*r)mod,(pq), and rla : ha * (ka + 1)-1 * aPmod, q

> A -+ B : (IDa,ee,rl.q,Vo), where k4 e pZr,
e a: o*^+1)'^od, (7tq), and Ta: he* (&,a + 1)-1 * af;mod q, and
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V" : uz (10rc, ^oa d + (ea mod, plnalee*oY

) B verifies, if
V, : Hz ({orr^ *.0 o, * ((a mod plne)aa.'kf

B aborts if verification fails. Otherwise:

> B -+ A: ([), where

Vr : Hz (lorr^ ^* n, + ((a mod,plne)PB.'P

> .4 verifies, that

Vt : Hz (@rr, *.0 r, * ((s modplne)r.e.aY

to complete the protocol.

modpll IDall 1rB ll0)

mortpll IDall /DB ll 0)

modpll IDl1ll1DB ll t)

modpll IDallrDB ll 1)

A and B computes the shared key for further communication as follows:

A computes

Kt : Hz (lr" ** 
" + (qB mod p)\B)PA-*fA

B computes

K a : Ez (t ru ^* r, * (eA rno(t p)q^)e 
B.'EB

Correctness:
To see that I(a = 1{8, we observe that

: (y4o ^oa o) * ((e mod p)na)PA*o?

: (u"f ' 
- 
" * (o$,+rr; 

r'"r*'+rt-'.*;') o""l'

: (e,-"$'*') * nr 
e*na*af;e 

)0e*"? : ggr*..o; *po*of;,

Similarly for B.

4 Security

If an adversary can forge a valid signature then he can also attack the SH protocol based on
such signatures. Therefore the probability to attack an SH scheme cannot be smaller than

motlpll rDaI rDBll2)

modplllDnlllDB ll2)
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the probability to forge a valid signature on which the SH is based.

Theoreml: The proposed SH scheme based on ELGV-I is impersonator resistant under
the assumption that ELGV-I signature is existentially unforgeable in the random oracle
model.

Proof: The proposed SH scheme is impersonator resistant if there is no polynomially
bounded adversary "4 who can win the following game against the challenger with non-
negligible probability:

o The challenger randomly picks (p,q,S,y), and send to adversary ,4.

o The adversary responds with an ID1

o The Challenger then picks random pair ((,1, A,r), where (,4 e pZp*q,andqa€pZn
and send to "4.

o Then adversary ot:tputs k/o ep Zo.

o The adversary wins the game if (shA)kt-@ne +(f;!)modp

Given an adversary ,4 that wins the above game with probability 6, we consEuct another
adversary B that can successfully forge the ELGV-I with probability e.

o 6, when given the ELGV-l public key (S,p,q,y),sends it to,4.

o ,{ responds with 1Da.

o B computes h.q : .HlI D.q), picks a random pair ((a,qi and sends to,4.

o Then ,4 output' s k/n e p Zo and send to B.

o 5ilgs (grr.n)tl : (Att^ * Cf;) *oa p,hence the pair ((a,r1a) canbe viewed as the
ELGV- l signature on the message k\ in (gh",p,q,y1.

Then B succeeds in forging the signature if and only if ,4 wins the above game.

Hence, if the advercary ,4. can impersonate a user with valid credential, a polynomial time
algorithm can be constructed to forge the ELGV-I signature. But the assumption is thar
ELGV- 1 signatue is existentially unforgeable. so we can see that ifthis assumprion holds,
the probability e that "4 can impersonate a valid user in the protocol should be negligible in
value.

Theorem2l The proposed SH scheme is detecror resistant under rhe computational Diffie-
Hellman (CDH) assumption in the random oracle model.

Proof: The CDH assumption is: Given a cyclic group G, a generator g € G, and group
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elements go, gb theprobability to compute gab is negligible'

The proposed SH scheme is detector resistant if no polynomially bounded adversary wins

the following game against the challenger with non-negligible probability:

o GA holds a key for ELGV-I (g,p,q,9,s), and the challenger gets the (9'p'q)' and

gives it to the adversary .4.

o TheChallengerasksthememberforatriple (IDl,C'q,'l.A)'where e'a': oY*'moclpq

and r;a : PA * &a + \ x almodq fot adversary A' (Ca,?,4) is the ELGV-I sig-

nature on I Da

o The adversary ,4 outPuts Al e Zp.

The adversary wins the gameifu/ : Y.

Given an adversary ,4 that wins the above game with probability e, we construct another

adversary 6 that can successfully break the CDH assumption with probability e'

o Given (g,p,q),6 Passes to 1,.

o Given (e,n,rt,i, B cancompute nair*(ke+L)-'*'7rA : g't7'and g(k'n+l)*o? :
(aqo *|oeny;'.

Let a be gjt * (tr,n+ 1)-1 * olkn mod' qand b be (ke+1)-t * almodq as defined

in the CDH problem.

B Send the pair (Ca,ni to v4. Subsequently, 6 obtains y from A'

o B Cancompute g,l;' - Ge;';' * o)''''

Then 6 has successfully broken the CDH assumption with probability e.

Thus if CDH assumption holds, the probability e that A can violate the detector resistance

propefiy should be a negligible value.

Theorem 3. The proposed SH scheme based on ELGV-? is impersonator resistant un-

der the assumption that ELGV-2 signature is existentially unforgeable in the random oracle

model.

Proof. The proof runs exactly in the same manner as the proof of Theorem 1, except

that in this case the adversary wins the game if k)kL - (yee . <T) mocl p'

Similarly given an adversary Athatwins the above game with probability e, an adversary

B can be constructed who can successfully forge the ELGV-2 with probability e' ln this

case deflning relation is
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(g)"o : (?1c"4*c{ mod p, and therefore the pair (c"a,rta) can be viewed as the ELGV-2
signature on the message k/oin (g,p,q,y).
Using suitable modifications we can prove the following:

Theorem 4' ]'he proposed SH scheme is detector resistant under the computational Diffie-
Helhnan (CDH) assumption in the random oracle model.

5 Comparison Thble

In this section we compare computation complexity of the proposed schemes with two
known schemes namely SH scheme based on ElGamal and SH scheme based on DSA by
L.Zhou et al [14].
In the following table (M) denotes the number of multiplications, (1) denotes rhe number
of inversions' (E) denotes the number of exponentiations, and (r/) denotes the number of
hash evaluations needed to complete the scheme.

Scheme Add User Handstrat<es Phase
M I E H M I E H

EIGamal 2 I 1 I l0 4 8 4
DSA 2 I I I 10 8 t6 6

ELGV.l 2 I I I l0 2 8 4
ELGV.2 2 *

1 I 10 2 8 4

In the Add user phase ElGamal variations based SH schemes are as good as the ones based
on ElGamal and DSA' However our ELGV - 2 schemes needs one inversion less than El-
Gamal and DSA.
During the secret Handshake phase our schemes for multiplication are comparable to El-
Gamal and DSA. For inversion our schemes are better to ElGamal and DSA. For exponen-tiation, our schemes are better to DSA and comparable to ElGamal. For evaluation of hashfunctions our schemes are better to DSA and comparabre to ElGamal.

6 Conclusion

In this paper we proposed two SH schemes based on variations of ElGamal signature. we
also compared the computational complexity of the new schemes with two known SecretHandshakes schemes' we observed that the proposed schemes are comparable to knownschentes fbr most operations and better in some operations.
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Abstract

In this paper, we give a survey of recent results in the study of marix domains

of triangles in certain sequence spaces, their dual and mulliplier sPaces, and matrix

kansformations between them, We present our own general results on matrix domains

of arbitrary triangles in .FK spaces, and demonstrate how our results easily yield those

published in various papers. We also deal with a special treatment of matrix domains

of the matrix of partial sums.

L lntroduction

Many authors recently studied sequence spaces that are the matrix domains in certain

sequence spaces, such as the classical spaces l, for 1 ( p < oo, co, c and l*, and their

generalisations; the matrices include those of the difference operators, or of the classical

methods of summability. Fol instance, some matrix domains of the difference operator

were studied in 128, &, 42,43,26,541, of the higher order difference operator in [47, 46,

45, 44, 15.36, ll, 491, of the Cestrro matrices in [9, 60], of the Euler matrices in [2' 5, 6],

of the Riesz matrices in [], of the Ndrlund matrices in [67], and of triangles in spaces of
strongly summable ([32]) and bounded sequences [4,8, 14,48,50], in particular, the sets

of A-.convergent or bounded sequences in [29,58,36,40,41,21,22,52,55], and in mixed

normed spaces in U8, 19, 23, 27 1.
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The main topics of their studies concern the topological properties, the determination of
the dual spaces' in particular the p-duals of the matrix domains, and the characterisations
of classes of matrix transformations on the matrix domains.

Almost all of the spaces arc F K spaces, and all of the matrices of the matrix domains
are triangles. In a recent paper ([53]), we were able to establish general results on the
most important topological properties of matrix domains X7 of arbitrary triangles T in FK
spaces X. Furthermore, we reduced the determination of the B-duals of the matrix domainsX7 to the determination of the B-dual of X and the characterisation of the class (X,"o).
Finally, we reduced the characrerisations of the crasses (xr,y) to those of (x,il and(X, 

"o)' 
our general results directly yield those in the papers mentioned above as special

cases.

Here we give a survey of the general results including the special cases studied in t20land [43], and their applications in [25,26, 54, 56, 57,15, 46]
In the meanwhile, the results of t53l have frequently been applied, for instance in [11,12, 13, 14,46,3,47
First we list the standard notations and definitions that will be used throughout the paper.
A sequence (b")Po in a linear metric space X is called a (Scha)der) bisis it,for'everyr e x, there exists a unique sequence ()r)Eo of scalars such that r : l;?:r^rbr.Let a; denote the set of ail compl.* ."qo.r..s , : (rr)po. As usufi *. *.i," (*, c,

c6 and $, and bs, cs and /1 for the sets ofall bounded, 
"orr".!"ir, null and finite sequences,

and for the sets ofall bounded, convergent and absolutely.oir".g"n, series, and lo: {e €r^''; fpolzrlp < *)for0 <p< oo.Leteand 
"@) 

(n:0,1,1..)denotethes'equences
with e6 : 1 forall k, and "*) 

:1 ande[") : 0for k * n.Fore € u, alml : Dp:o;kek)denotes the m-section of r.
A subspace X of u is called an FK space ifit is a complete linear metric space withcontinuouscoordinates Pn: X -+C (n:0,1,... ), where pr("): rrrfor.u..yr.qu"r..

: '-\"k)tr:o 
e x' AnFK spaceX ) /issaidto have'AK if everysequenceu:

9l)E, in X has a unique representation u : D[oro"(*), ,iuiir, lim___ )1*l : ,. IBK space is a normed FK space.

Example 1'1 (a) The space u is an FK space with AK with respect to the meyic given by

d(*,il:[ * *frlhrorarr,ae u

Also convergence in (w,d) and coordinatewise convergence are equivalent. Thus the topol-
ogy ofan FI{ space X is larger than the relative ropitogy ofu on X.
(b.) Let.p : (p*.)Pr be a bounded sequence of positive ioi, ora M : m,.{ 1, supl p6}.
Then the sets L(p): J:-. r,.r : lpolr rlro :'crcir and co(p) : {r e u, fi_l_*iffip,: 0\ (([63, 33]) are FK spaces ittn-gx *tth their naturar"metrics defined by d61@,u) :(Dpol"r - ,rfn)r/u for alt r,a e 4p) and d,s,1r1(*,y) : supr lrl _ ySo[ii fo, oltr,a e cs(p) ([34, Theorem l, corollary l]. If p ] ii, a constant, thenthe spaces l(p.")and cs(p ' e) reduce to^the classic,ar spaces $ and cs which are BK spaces with AK with
':tp::, to llrllo: (IEol" r1n1t/r for atl r € (, and llrll- : ,rpo ;rsl1, r ayr € cst.(c) The sets c and {.* are BK spaces with respect to ll - ll".; cs is a closed subspace oJ.c l
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and c is a closed subspace o.f l*. The sequence (b(")7* -r with bel) : e and 6(n) - "(n)forn:0,1,.. . isaSchauderbasisforc,moreprecisely, every sequence r: (xp)f=ohas
aunique representation tr: {.e* DLo("r -{)e(t'l where (: Iim6-j- ry. The space
(,oo has no Schauder basis since it is not separable.
(d) The spaces cs and bs are BK spaces with 111116": supz I I[:o xpl; cs has AK.

Remarkl.2 Here we do not consider the spaces l*(p): {r € cd : sup6lrrlpo < *}
(163)) and c(p) : {r e w i r - € . e e q(p) for some € € A} (t331). In general, their
natural metric ds,@1 of Example 1.1 (b) does not make them linear metric spaces unless
0 < infl p6 3 px < supr p* 1 oo in which case the spaces reduce to l.* and c. Suitable
linear topologies for (*(p) and c(p) were introduced and studied in [16].

If r and gt are sequences, and X and Y are subsets of r,.r, then we write ry : (rtyt)Po,
r-r *Y : {a € u i at e Yi and M(X,Y) : 0zex r-7 *Y : {a e w : a,i e
Y forall r e X\for the multiplier space of X andY.When Y : (r,Y : cs,or y + l,.s.

weusethenotationsua: r-lx{1,x0 : r-7,r,csand fr1 : r-lxbs,and Xd : M(X.tt).
XP : M(X,cs) and X1 - M(X,bs) for the a-, p andyduals of X.It is clear that it'
a sequence space X is normal, that is, if r € X and lyxl < lrtl (k: 0,1,... ) for sorne
sequence g imply y e X, then the a-, B- and 7-duals of X coincide. The following resulrs
are known.

Example 1.3 (a) If X ) Q is an FK space with AK then XB : X1 ([70, Theorem 7.2.7
(iii)l ).
(b) Let X andY be subsets of u andt denote any of the symbols a, B or1- Thenwe have
([70, Theorem 7.2.2] and [30, Lemma 2])

(t) X c Xtt, (iil Xt 6;gttt, (iii) x Cy imptiesyt c Xt;

if I is an arbitrary index set and {X, : t e I} is a family of subsets X, of a, then

(ir) : [-lxj
t€I

(c) The condition p € l* is not needed here. We have ({(p))P : (*(p) : {r e w :

sup;rlrplrt < oo) if 0 < p* l lforallk(t63,Theorem7l); if px ) landqp -
pnl(px - 7) for all k then

(((p))P:

also

(p,")'

p, {,., ,I bxyo .r,,,-,, . *]

p, {..,,[ @lN-r/ao. *]

([35, Theorem I 1]); (l.l)

(co(p))o : Mo: ([35, Theorem 6]), (1.2)
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(t*(p)):M*- a
N>1

I
< m ) ([63. Theorem 7]), (1.3)

)
([30, Theorem 1]). (1.4)

lo.r,flarllrr/P*
(,(p))a : (co(p))0ncs

If X is a linear metric space then X/ denotes the space of all continuous linear func-
tionals on X; if X is a normed space then we write X* for X/ with ll/ll = sup{l/(")l ,

ll"ll : t). The relationship between the p- and continuous duals of an FK space is given
by the following well-known result.

Proposition 1.4 (170, Theorem 7.2.91) kt X ) S be an FK space. Then X0 C X, in
the sense that each sequence a e XA can be used to represent a function l" e X, with
/,(r) = lf,=oal xy for all r e. X, and the mnp T : XP -+ Xt withT(a) : Jo is linear
and one to one. If X has AK, thenT is an isomorphism.

Example 1.5 (a) lf 1( inf1pl, < pk < Q: sup&p& < aforall kand [(q) has its
natural topology given by the linear metric d.61@,b) : (Dpol"r - bkls\tla for all
a,b e l(q), then (l(p))t and (.(q) are linearly homeomorphic ([35, Theorem 4]).
(b) We have ti : t*foro < p < 1, t$ : 1r1o, I < p < x and. q = pl@ - t),
4:.P : tP*: lr,uF = dandQg =-u; funhermore, tiforr < p i *o*i$or"
norm isomorphic to their p4uals, and ! e c* if and only if

l@): xy Jj1ro + i rtrr. wherea= (,f1e('tl;;-, € h and

xr : lk) - i /1",0,;, and llf ll = lxrl + llollr
h=1

([68, Examples 6.4.2, 6.4.3 and 6.4.4]). Firully li is not given by any sequence space
([68, Example 6.4.8]).

Let A -- (o"r)Eo be an infinite matrix of complex numbers and z : (r6)po e o.
Then we write,4,, : (a"r)Eo (" = O,f,...) and,4ft : (a,r),,_ao (k : 0, f,... ) for
the sequences in the n-_th row and the k-th column of :4', and Anx : ff;='anyry and
4s : (A"*)f=s provided An e nP.If X is a subset of u,then XA: {, e";-, At e X}
is the matr* domain of A rz X. Given any subsets X andy of a.r, we write (X,y) for
the class of all infinite matrices ,,4 that map X into y, that is, ,4 e (X,y) if and only if
X cYg

Example 1.6 (a) Let p : (p*)70 be a bounded sequence of positive reals, and q1, :
pt/(px-7)ifpx>0. If p* >'l.foralt k, thenwe have A e (((p),t,,) if and onty if

oo

sup I la,,6lqlB-qk < afor some real B > 7 ([ jl, Theorem I (i)]), (1.5)
" k=o

if 0 < pt < Tfor all k, then we have A e (t(p),1*) if and onty if
sup la,llpe < cn ([3 ], Theorem I (i)]); ( 1.6)
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also A e (cofu), (.) dand only if

oo

r"pI lanlrlg-rlox l afor some real B > 1([30, Theorem 10 (i)0. (1.7)
n k:o

As special cases, we obtain A e ($, [,*) for I < p < a if and only if

@

*rp I lonklq < a, where q : pl(p - l) (t70, 8.4.5D1 or [65, 5.])
n k-o

and,for 0 < p < l, if and only if sttpn,xlo"xl l x, and A e ("",1*) if and only if

sro i lo,rl < x ([70, 8.4.5A] or [65, t.]). (1.8)
n k:o

(b) We also have (l*,1*) - (c,l*) : (co,l*).
(c) We have A e (c, c) if and only tf ( I .8) is satisfied and

,l$oru : a* exists for each k (1.9)

and
oo

,,tlf L ank: a exists. (1.10)

fr=0

This is the famous Silverman-Toeplitz theorem ([66], or [70, Theorem 1.3.6] or [65, 1i,.]).

(d) We have A e ({p, q) if and only tf

99

@.

[m I la,,rl :0.
r7-)&-

Ic:0

(l.l l)

This is rhe famous Schur theorem ([70, Theorem 1.7.19] or [65, (21.1)]).

Remark 1.7 A complete list of the known results of the characterisations of the classes

(X,Y) where X is any of the spaces l(p), 
"o(p), "(p) 

or (.*(p), andY is arry of the spaces
((q), 

"o(q), 
c(p) or l*(q) is given in [17, Theorem 5.1].

An infinite matrix f : (t"x)T,t_o is said to be a triangle if tnk - 0 for n ) k and

tnr*0(n:0,1,...).
The following result is well known, and will frequently be applied throughout.

Proposition 1.8 ([70, 1.4.8, p. 9], [10, Remark 22 (a), p. 22]) Eve4' triang,le T has a
unique inverse .S : (s"r)ilr =s which also is a triangle, and r : f(S(r)) : S(T(r)) Jbr
allrew.
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2 The Bases of Some Matrix Domains in Tfiangles

In this section, we summarize some important topological properties of matrix domains of
triangles. We also determine the bases of some matrix domains of triangles.

Many of the results in this section and their proofs are taken from [70], with minor

modifications; they are stated here for the reader's convenience.

It is well known that the topology of a locally convex metrizable space is defined by a

sequence (pr) of seminorms in the sense that r -+ 0 if and only if p^(r) -+ 0 for each

n (170, 4.0.21 or 169, # 7-24, Theorem 7-2'2, Example 4-1-81). We use the notation

(X, (p,,)) for a vector space X with its metrizable topology given by the sequence (p") of

seminonns in the sense just mentioned.

Example 2.1 (a) The space (r, (lP"l) is an FK space where (P") is the sequence of coor-

dinates, and r@) -+ r (m-+ oo) in w if and only tf tf) a 11, (m -+ oo) for each n.

(b) The space c is a BK space with p(r) : ll"ll*; there is only one seminorm, a norm in

this case, and n* -+ 0 (rn -+ oo) in c if and only if llz(-) 1;* -+ 0 (rn -+ oo).

The theory of FK spaces can be applied to matrix domains.

Theorem 2.2 (U0, Theorem 4.3.11) Let (X,(p")) and (y, (q")) be FK spaces' A be a

nxatrix defined on a, that is, X C ua, and Z : X nYa : {r e X : Ar eY}. ThenY is
an F K space with (p") u 1q^o A); this means that Z is given all the seminorms Pr,P2, . . .

andqloA,ezoA,....

Proof. The countable set (p,r) U (g, o .4) of seminorms yields a metdzable topology

larger then that of X, hence of a;, since (X, (p")) is an FK space.

We have to show that Z is complete. Let (r-) be a Cauchy sequence in Z. Then clearly it
is a Cauchy sequence in X which is convergent by the completeness of X, Iimr*- rm : t
in X, say, that is, lim---y* pn(r* - l) : 0 for each n. Since rm € YA, it follows that

Ar,n e Y, and so (Az-) is a Cauchy sequence in Y, because qn(Ar*) : (Qn o A)(r*).
So (Ar-) is convergent by the completeness of Y, Iim-*- Ar* - binY, say. Then

Iim--e- Ar* - At, since the matrix map .4 : X -+ ar between the r,K spaces X
and a,r is continuous ([70, Theorem 4.2.8]). We also have lim-; * Ar* : b in a.r since

rhe topology of the FK space Y is stronger than the topology of a.r on Y. This yields

b : At,and so t € Z and lim--* pn(r* - t) : 0 and lim---(q, o A)(*"r- t) :
linr--- qn(Ar* - b) : 0 for each n.

The following result is obtained from Theorem2.2.

Theorem 2.3 (UO, Theorem 4.3.31) Let A be a row-finite matrix. Then (ca,(p,,)) is an

F I( space where

])-1 : ll ' lla, that is, po(n) : llArll-, and p"(r) : lrnlfor n:0,1,2,. . . .

If A is a triangle, then (ca,p-r) is a BK space.

Proof. We apply Theorem 2.Zwith X : u and Y : c, so that Z : cl. The seminorms

of X arep,, with p"(r) : lrnlfor n : 0, 1,.... Also Y is a BK space with q : ll' ll-,
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andsopo-eoA.
If .4 is a triangle, then .4 : cA -+ c is one to one, linear and onto, so c,4 becomes a Banach
space equivalent to c with the norm llrll"o : llA"ll-. To see that the coordinates pn are
continuous, let B : A-1, also a triangle by proposition l.g. It follows that

l*nl: lB,(Ar)l: li u*ue**l <l7o I

Since Ar € c and c is a BK space by Example 1.1 (c), Bn e c*, and so p,, is continuous.
The Part (a) of the next result is a special case of Theorem 2.2 when A is a diagonal

matrix with the sequence z on the diagonal.

Theorem 2.4 (u0, Theorem 4.3.61) Let (y,q) be an FK space and z be a sequence.
(a) Then z-r *Y is an FK space with (pr) U (hn) where

pn : lrnl and hn : en(z . r) for all n.

(b) IfY has AK then z-L *Y has AK also.

Proof. (a) We deflne the diagonal matrix D : (drn)T,x:sby d,nn - zn and dn* : O
(k * ") for n : 0, 1, . . ., and apply Theorem 2.2 andExa;;G t. t (a) with X : r,.,.

(b) We fix n. Then we have prr(r - ,l*11 :0 for all m.a n, that is, limr,,_y_ p,r(r _
,['"1; : g. Since Y has AK, we also oUiain hn(r - i*\': qn(2.1.'"-Zt;;iil :
qn(z ' r - , ' ,1m11 -+ 0 (m -+ oo). Therefore it roitows that r[*] -'" i, )1, *?,rri ,oz-r*XhasAK.

Example 2.5 Let a : (ar)Eobe asequence of positive reals, and z: lf a: (1/or)po.
The spaces tlo : ,-t ,* $for 1 1 p --oo, sg : z-r * c0, sf) : z-r * c and ,o : ,-, * (ro
were studied in [38J. They are BK spaces with llrll : (DEo(" xlla1,)o)t/n for (o and
ll"ll : sup6(lrll/a p) in the other cases.

Theorem 2.6 (u0, Theorem 4.3.6)) Let z be a given sequence. Then (zp , (p^)) is an AK
space with

p_r(*): llrlla, and pn(r) : lrnlfor ail n ) 0. e.r)
For any k for which ,* * 0, the seminorm pk may be omitted. If z e $ then the seminorm
po maJ- be omitted.

Proof. The space (r,,(p"))is an AK space with the seminorms given in (2.r) by
Theorem 2.4,the definition of z0,andsince the space cs has AK with llI llo" u, Example
1.r (d).

If zp / 0 and the matrix A : (a,rt) is defined by arx : zk for 0 < k ( n and an ft : 0 for
k > n (n : 0,1,... ), then we obtain

(;,u-,) wt".

and so p4 is redundant.
lf ze dthenz9:u.

l,rl :--#Js2ffi,
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Theorem 2.7

space with

([70, Theorem 4.3.8]) Let A be a matrix. Then (wn, h") u (h,,)) is an AK

lm I

p,(r) : lrnl and hn(x) - sup lI o"or*l for all n.* ln:o I

DP)*: p, (* 
-: 

_l-')*or, n:0,1,. .

For an., k such that Ak has at least one nonzero term, pp may be omitted.

For any k such that An e 6, hn may be omitted.

proof. We observe that wn: 1Lo APr, and each space Afl is an A1( space with

,p,r(r) : lrrl and h,r(r) : suPr,,lILo anxrxl by Theorem 2.6. Also the intersection of

countably ntany AK spaces is an AK space by [70, Theorem 4'2'151'

lf a,r1, / 0 then we have lrrl : 2.h"(r)llar,7rl as in the proof of Theorem 2.6, so p6 is

redundant.

lf A,. € d then h,, can be omitted by the last part of Theorem 2.6'

Theorem 2.S (t70, Theorem 4.3.12)) Let (Y,(q")) b" an FK space and A be a matrix'

Then Yt is an FK space with (p,) U (h") U (q, " A) where (p.,,) and (hn) are as in

Theorem 2.7.

For any k such that Ak has at least one nonzero term, pp may be ontitted.

For any n such tlmt An e Q, hn may be omitted.

If A is a triangle, only q o A is needed.

Proof. We apply Theorem 2.2with X : u)A, which is an FK space by Theorem 2.7.

Then Z - Ys and the seminorms are obtained from Theorens 2.2 and 2.7 .

The remaining parts follow from Theorem2.T and the fact that if A is a triangle then the

map A : Yr1 -+ )' is an equivalence.

Example 2.9 We writeE: 2(t) : (rrrL,)ff*: sfor the triangle with orr1, : Tfor 0 ( A' ( zr

(r:0,1,...), and L: A(1) : (Ar,*)f*:oformatixwithL,r,n: 1, An-l,rt,: -1
andL,,r1r:0otherwise. Letnx e lN\t1). ThenwewriteL@) - 4(m-t) 'Lantl

'(m) 
: 5(m-1) . E. Since the matrices A, and E are obviously inverse to one another and

matrix multiplication is associative for triangles ([70, Corotlarl 1.4.5]), the matrices L{"')
and E@) are also inverse to one another. It is well known that

and

Alr), : i(-r)t (T)""-r: 
o:-"fr,_,,,,(-')"- 

r(^T*)'* Q,)

(2.3)

(a) Letp: (pn)Eobe abounded sequence of positive reals and &/ : max{1,sup1.7r1'},

and tn e tN. B1t ihroran 2.8, Example 1.1 (b), and (2.3) and (2.2), the spaces (l(p))1r,"r,

(1(p))6r-r and cs((p),6(m); : (c0(p))^( m) at€ F K spaces with the total parunorms

([l* (. I -;-'),,1") 
"^',

g(t(p))rt.,t(*) :
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--,(-r)'-' 
(-: r),,1") 

""

erzrp))>(r) : ([l*",[)''' ono ow61(x): ([ @x - *x-ror)''n'

kt
=max{o,lc-rn

g1t1p17 or,"r(r) 
:

&t
ax{0,fr

([],:-

and

9c6((p),A(''))f'l : 'i' 
l,

In the special case of rn : l, we write bu(p) : (!(p))t, antl the spaces (l(p))r' bu(p) and

("0((p), L) are FK spaces with the total paranorms

and
9"o(1,),a)(r) : 'tP l'n - *x-lPulNI

(b) Since cs, c and l* are.B-K spaces with ll ' tl"9 p Omy1ile t'| (b) and (c)' the sets

"i1[i;;1 
j'1"0;o,-,iiat*11 : c6(n\ and l*(b@'); : (lo)6t m\ ar€ BK spaces with

llrlllz*)or*r : 'P 
l,

kt
:n'rax{0,k--,(-')o-' 

(r:,).'\'r

and the Eets c11.,r) and (ln)261 are BK spaces with

rrrrrlz-)"1^, :,tp1= f- 
. 

[ -;-')",1
Also the sets (lp) 61,,) and (t)1*t are BK spaces with

/ *l
llrllrzrlol*1 : (l 

I

1r=o lj:

,(-r)k-i 
(-ir)",1

-,,,(-')*-' 
(-:') 

" l) 
"'

(2.4)

(2.s)

(2.6)

(2;t)

kt
rnax{0,fr

and

*,,12,y,,^ : ([18 (- \ -;-')",1')
For nt: l, the noruns in (2.4H2'7) reduce to

lr I

llrilrr*ro :..;nlrr - rr-rl, ll'll(s-t" :'tlplI'rl : ll''ll* (Exantpte 1't (d))'
* lj=o I



llzllo,, = €,*- *r-rl') andlltllss,: ([iE,rD"'
The next result for the convergence domain is an immediate consequence of Theorem

2.8.

Corollary 2.10 ([70, Theorem 4.3.13D l^et A be a matrix. Then cn is an FK space with
(p") U (h") where pa(x): ll,,arll"o, and pn and hn (n : 0, 1, ...) are as ii Thror"*
2.7.

For any k such that Ak has at least one nonzero tem, pk may be omitted.
Fol any n such that A* e S, hn may be omitted.

Theorem 2.ll ([70, Theorem 4.3 .l4D kt x and y be FK spaces, A be a matrk, and X
be a closed subspace of Y. Then Xa is a clo.ced subspace of i1.

Proof. Since Y is an I'K space, so is y,a by Theorem 2.11. Consequently the map
! : Ye -+ Y with /(c) : ,4.c is continuous by [7b, Theorem 4.2.81. Then Xa: f-rtXjis closed.

Example 2.12 By Theorem 2.ll and Example l.l (c), (co)zt^t is a closed subspace ofc2ot which in tum is a closed. subspace of (1,-)21^1; i"r)o,^, ^ 
a closed subipace iy

c6o1 which in tum is a closed subspace of (ld at7t.

Now we study the bases of some matrix domains of triangles.
Throughout, let ? be a triangle and S be its inverse (proptition 1 . g).

Theorrm 2.13 ([24, Theorem 2.3] or [53, hoposition 2.1]) f (b("))." o is a basis of the
linea_r metric sequence space (X,d.), rhen (,Sb("ty- o X " Oiri )y Z : *r with the metic
d7 defined by d7(2, 2) : 417 

",7 
2) 

.for 
alt z, Z e' Zl.

Pmof. We *r11" 
"(n) 

: Sb@) .@: 0, 1,... ). First, we note that c@) e Z for all
r4 since ?c(a) : 

"(S6(n)) 
: 6(n) 5, proposition 1.8.;;1i;) i i.- t_r, ,2igiven. Then s : Tz € X and there is a unique.sequence (,\*)po of scalars such that

l^' :El-o^rb(") -+ x (rn -+ oo). w"p,it,r;i: ff.ila'";;;;1;,i;_'.:
Then it follows that

lnm
T zl^l :\\^r.{"): !,'.,a(") = a(^) 1o, *: 0, 1,... ,

hence dTQl^l , ) = d(Tzlml ,Tz) = d@@l ,r) _+ 0 (rn _+ oo).
Since X : (X7)s by proposition l.g, an application of Theorem 2.13 yields

Remark 2.14 The matrix domain X7 of a linear metic sequence space has a basis if and
only if X has a basis.

Example 2-15 Since l,n has no Schauder basis by Example I.l (c), the spaces bs andt*(A) have no Schauder bases eithea by Remark i.14.
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Now we consider some special cases of Theorem 2'13, in particular' when X has AI('

Comllary 2.16 (I'24,Corollary 2'51 or [53, Corollary 2'31\ Let X be an FK space with

iK and"the ,equ)n",r, 
"(") 

(n : 0, 1,. '.) and c?-t) be defined by

k

and cf l\ = I'oi (ft : 0, 1,... ).
j=o

(a) Then every sequence z : (zr)Bo € Z : Xr has a unique representation

,:i1r*,1","r.

(b) Then every sequence u = (r,)Po € V: XrOehasaunique representation

u: te*ira - te)c@),

whcre l. is rhe uniquely determiied complex number such that u = z * le for z e Z = Xr'
(c)Then every sequence w -- (ur,)Eo € W : (X @ e)r has a unique representation

u' : ls(-l) +l(r^w - Qc@),
n=0

t,,t [o (o <
"t' : l'o* (k >

k<n-l)
n)

(2.8)

(2.e)

(2.10)

(2.11)

where (, is the uniquely d.etermined complex number such that Tw - l'e e X'

Proof. First, we note that 6@) : 5"@\ for n : 0, L, " , and set) -- 5t' hence the

sequences (c(");- o and (c(");"o -, are bases of Z and W, respectively, by Theorem 2'13'

(,;')t./'jtz:"(il^f=" e Z k gwen. Then c: Tz € X and (2'9) follows if we take

\n : Tnz (n : 0, i, .. ) in the proof of Theorem 2'13'

(b)letu: (.,,,)Po eV: Xr Oebegiven. Then there are uniquely determined

z e Z and) eo such thatu: z * {e, and iehave z -- Df=o1r*'1"t") by putt (u) tt

follows that u : le * z : le + Lp-oT^(u - le)c@).

(c) Let a; : (?r,)Po e W. ihen u = Tu e U = X O e, and there are uniquely

determined r € Xandl € C such that u = t*le. Weputz: w -76(-t)' 16tn

z e Z,sinceTz: T(u - tcet)) =Tw- ff(c(-t)) : u- le = r e X' andsowe

have z:D?=o(f*r)"("\ : lf=o(T^w - l)c(") by Part (a). Now (2.11) is an immediate

"onr"qu"n"{ 
tilr" e u : z + IcGl),

Now we apPlY CorollarY 2.16.

Example 2.17 (a) We consider the spaces (l(p))ar*r and (cs((p), Lt^\) for bounded se-

qurnra p = (pr)Eo of positive ,ril, ora'i e-tl. we put 7 - 6@) ' Then S : D(mt

)nd ro, iinr" ln" iiirt l.(p) and cafu) are FK spaces with AK bv Exnmplg 1'1 (b)' the

;;;;;;;;@t oy in" srr,o:*, t rr, ("t"1 ;- o oi @@D r,^t and cs((d, L(^) are given

by (2. j) in Emmple 2.9 and (2.8) in Corollary 2.16 by

(n) lo (o<ft<n-1)
ci. =\1_+,t___,) (r>").
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and so every sequence r e (l(pD t<,a or r € co (b) , 6(nz) ; has a unique representation, by

(2.9) in Corollary 2.16 (b), r : DLo( tP) d."@) 1J47, Theorem ll for (cs((p), A(-);,1.1.
If m : L then we obtain c(n) : 

" - "[n-rl for all n e [,1o, wheree[-r] : (O)Po, and every
sequence r e (1.(p))6 or r e co((p), a) has a unique representation

, : i{r, - rn-r) .(e - sln-t1) whereul : o.
n:o

(b) We consider the space (l(y))z<.u for bounded sequences p : (pn)?:o of positive reals
and m € tN. We put T - 5(rn). Then S : 6(rn) and so, since the spaie l(p) is an FK
space with AK by Example t.t (b), the sequenc"s c(n) of a Schauder basis 1c("))* o of
({.(fl)2<^t are given by (2.2) in Escample 2.9 and (2.8) in Corollary 2.16 by

(2.12)

^(n) _ lt-\o-"(,l*)Lk -\o

-(n) _ le\k-"(#*)'k -\o

(ft22)
(0<k<n-1) if n 1m,

and

But since (oT*) :0for k )- m * n + L, the sequences c(n) are given by (2.13)for all n.
If m:'!.thenweobtain"(n) - u(n) -u(n*l) foralln:0, 1,... andevery sequence
x : (r")70 e (/(p))r has a unique representation n : Dnofit sril@@) - "(n+t);by (2.e).
(c) We consider the BK space c(L) : (co O e)6 of Example 2.9 (b). Then the seqaence

6Gt) ;n Q.8) of Coroltary 2.16 is obviously given by 
"L-') 

: Xf=o.rr.j : k + ! for k :
0,1,.. .. Ifwewrite (k*L)forthc sequence (lc+1)Eo thenevery sequcnce w e c(L)has
a.unique representation,u) : limr** Lwn. (k + 1) + XPo(Ato, - lim,r_1 * Awn)(e -
,[n- tl ; by (2. t I ).
(d) Finally we consider the space cs : (co O ,)". Then we obviously have cer) : e(0)

for the sequence in (2.8) of Corollary 2.16. Now every sequence w € cs has a unique
representation by (2.1 1)

(2.14)

(n*m > ,t > r)
(o<k 1n-Lork>n*m) tfn2m' (2'13)

We write A : Tw - (.. e ythere / : limn roo Tnw :limr*- Eto wp. Then y € cs and
so the series l;?=oune(n) andlf=oyne(n+r) converge (in tn7'i*-norm), antl it follows
from (2.14)

w. : t. e(0) + ir,,",*, - r(n+r); : g. 
"@)-,. i a'eu,)- i yne,-+r)

oo @ /n co \
u, : I wn. s(o) + D { f ro - I.u ) (r,", - "(n+r;;n:0 n:0 \k=0 f:O /

: i,,. "(o) 
,,-I (uI,,-) (e(n+r) - "(n)).
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: t. e@)+ s0 .e(0) + itu, - an-t)e@) - wo'e(0) + i r,, ' ,{")
n:l

: i wn. e(n),

n:o

that is, cs has AK (ExamPle 1.1 (d)).

We also apply Corollary 2.16 to obtain some recent results concerning the Schaudcr

bases of some matrix domains of certain triangles.

Example 2.15 (a) Altay, BaSar and Mursaleen in [2, 5] introduced oncl studied the Ettler

sequence spaces, defined as follows. Let O < r < 1 and Er : (ei,)f,*:o be the Ettler

matrix of order r with

^r _ I (T)(r - r)-krk (o < /c < n)
Ente -{ 

t;lr' - r)n-k'k \v --: ''.j '',, (n : 0,1,...),
[o (k>")

and el : ([p)p. (1 S p < oo), e5 : kde', e[ = cs' and e\ : (t*)o"' Writittg

T : Ee), for short, we observe that the irwerse ^9 
: (srr)f;*:o of the triangle T is given

by

[([)t, -L)n-kr-n (0< kSn)
Enh: { ^ (n : 0,1,... ). (2.15)

[o (k>")
Now [2, Theorem (i), (ii)] is an immediate consequence of (2.9) and (2.10) of Corolhm

2.16 (a) and (b); Coroltary 2.9 (a) also yields Schauder bases for the spaces ef,.

(b) Recently Aydm and BaSar ([7]) introduced and studied the sequence spaces af,(A) and

"[(A) 
as follows. If T : (t,rr)f*=o is the tiangle defined by

)r|r-rft+l) (oSrrSn-1)

(k -- ")
(k>")

(n : 0,1,...),

then the sers a[(A) and ai(L) are the matrix domains of T in c6 and in c. Since the int'erse

matrix 
^S 

: (s"r)il*:s is given by

[t**,, (#-#) (o<k<n-1)
Enk: { :+ (k : n) (n : o, 1,'" ), (2'16)

It+r"
[o (k>")

[7, Theorem 3 (a), (b)] is an immediate consequence of (2.16) and Corollary 2.16 (a) antl

(b).

,r-: 

{

rn*t
n+1

0
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3 The B-Duals of Matrix Domains of Thiangles and Matrix Tians'
formations

In lhis section, we reduce the determination of the B-duals of matrix domains X" of trian-

gles 7 in F'K spaces X to that of XE and the characterisation of (X, ca). We also reduce

the characterisations of the classes (X, Y7) and (Xr,Y).
First, we determine the p-duals of matrix domains of diagonal matrices which have no

zero terms on the diagonal. The result is almost trivial.

Proposition 3.1 Let u : (zr)Po be a sequence with uy I 0 for k -- 0.,1,..., and

l/u - (l /uy)f;lo. Then we have (u-t * X)P = (1/u)-r * lP f6r arbitrary subsets X of

Proof. Since x e u-l * X if and only if y: va e X and at: by where b = alu :
(os/21)po, it follows that o € (u-l*X)fl i16d only if b e X€, that is, o e (llu)-\ *xP .

Let a be a sequence and 7 be a triangle. Then we write B : B@'\ -- (b*)f*=o
for the matrix _with bn11 =ansnpfor0(frSnandb,,r:0fork>n(n:0, 1, "').
Furthermore, if (X, d) is a linear metric space and o € a,, we write Bx(0,6) for the open

ball of radius d > 0 centred at 0, and

ll"lli : llollx,a "r€

provided the expression on the right hand side exists and is finite which is the case whenever

X is an FK space and a 6 f,p @roposition 1.4).

We need the following lemma.

Lemma 3.2 ([53, Lemma 3.1]) Let X be an FK space with AK and Z : X7'. We write

R : St for the transpose of S. Then we have (XilP C (XP) R.

Proof. First we observe that a e Za if and only if B e (X,cs), since o € Xif and

only if z : Sx e Z, ard az = a(Sr) : (aS)r, -- Br.
We assume a e Z0 arrd wite C : EB. Then B e (X, cs), by what we have just seen, and

this is the case if and only ifC e (X,c) by [5], Theorem 3.8]. Since X is an FI( space

with .AK, it follows from [51, Theorem 1.23'j nd [70, 8.3.6] that

:*'{lf*'-l ,rto,0),

R1a : lim c,s : i ,r"r* exists for each k, (3.1)

and sup,, llO"lli,o < oo for some d > 0, that is, there is a constant 1{ such that

Inl
lc"xl = llu*arl < K for att nand forallr € Bx(0,6). (3.2)ftat

Let r e X be given and p : 6lZ. Since B;(0,p) is absorbing ([68, Chapter 4.1, Fact

(ix)l) and X has AK, there are a real ) > 0 and a non-negative integer lno such that
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olml - s-r rlml € 876 (0, p) for all m ) ms. r-et m ) ms be given. Then we have for alr
n ) mby (3.2)

lE"-"-l 
: 

^ l* ",uaytl: xlc-rt*rl < .rn,

and so by (3.1)
lm I

lI(no")"ul : ^ ]$ lc,yL*J1 < .\K.
It:o I

Since rn ) ms was arbitrary it follows that Ra € 11 , and since r € X was arbitrary, we
conclude Ra e ffr.yr1 : x].Finally, since X has AK, we have x1 - x9 by 110,
Theorem 7.2.7), and so a e (XA)4.

Now we reduce the determination of (xr)P to the determination of XF and (x, c6).

Theorem 3.3 ([53, Theorem 3.2D Let X be an F K space with AK, T be a triangle, S its
irwerse and R: St. Then a e (XflP if and only if

a e (XB)p andW € (X, co),

where the matrixW is defined by

(0<&<m)' (m: 0,1,...);
(k>*)

la
I D o,',0

umk: \ i=m

Io
moreover if a e (Xil:then we haue

Dorrr: !{arr) (71,2) for all z e Z : Xr.
fr=O /c:0

Pmof. First we assume a e 29. Then .Ba e xa by Lemma 3.2, and so urnkconverges
for all m and k. Thus the matrix I4l is defined. Furthermore we have

m-l rn n-L

L orro: !(ar") (Txr) -\w*1,T1,zfor all m arid ail z € Z. (3.5)

(3.3)

(3.4)

(3.6)

k:0 k=0

Letn e X be given, then z : sr e z andso a € zP anda e @a)p. This implies w:a e c
by (3.5). Since u € x was arbitrary, wehave w € (x, c) c (x, /""). Furthermore, since
Rpa : DFu ojsj,c exists for each &, we hive

,t:0

oo

lim wrnlr: Hm )- 4;s;r, : 0.m-+oo m-+6 /-l J J'"
J:m

and by [70, 8.3.6, p. l23J this and W e (X,/*) together imply W e (X, cs).
Now if a e ZP then the conditions in (3.3) hold by *hat we have just shown, and (3.4)
follows from (3.6).
Conversely we assume that the conditions in (3.3) are satisfied. Then r : Tz € X and so
az e cs for all z e Z by (3.5), that is a e ZB .

We obtain as an immediate consequence of Theorem 3.3
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Corollary 3.4 Let X bean FK spacewithAK,Tbeatriangle, S itsinverse and R: St.

Then o e (Xr)B if and onlv i!'

a € (X\RandW e (X,(.*). (3.7)

Proof. If a € (Xr)P then we have, by (3.3) in Theorem 3.3, a e (XP)aandW e

(X, cg) c (X, /*), that is, the conditions in (3.7) are satisfied.

Conversely. if the conditions in (3.7) are satisfied. then it follows as in the first part of the

proof of Theorem 3.3 that W e (X,cs), hence the conditions in (3.3) arc satisfied, and scr

a e (X7)P by Theorem 3.3.

Now we give some applications of Corollary 3.4.

Exanple j.5 Let nt. Q lN and p : (pr)r:o be a bounded sequence of positive reals..

(a) we detennine the B4uals of ((,(fi)61^1 anct (cs((p),A(-);. Since T : [(m) 17s

matrix n : (r*i)f;,i:s is given by

rki : sik: 
{a'.r-,}-', ll : :,= k _ 1) ror k :0,1,

First let 0 < pn < l for alt k. Then we ltave, by Example 1.3 (c), Ra e (L{p))B y and only

,f

'*lE (.;-[-')"1'-'*' (38)

and W e (l(p),1*) by ( I .6) in Example 1.6 (a) d and onlv if
t tqklm I

.uplI(^*'._-f-'),rl <oo. (3e)t"irlfi\ i-k /"1

Since obviously the condition in (3.9) is redundant, it follows from Corullary 3.4 that a e
((/(p))a<",r )0 y ana on$ if the condition in (3.8) is satisfied.

Now let pr ) 1 and qp: pnl(px - 1) for all k, then we have by (1.1) in Example 1.3 (c)

thur Ra e (4il)0 if and onty

- l* /cn*,;-l--1\ l'u

e- l- ('"n l- f 
-')"1 N-sk 1 * ror some N > t'

and by (1.5) in Example 1.6 (a), W e ((.(p),(.*) if and only if

,l* /m+j-k-1\ l*
'"pI lt ( "'-: _i - ' )rrl ..lr-sk I rcfor some N > t.
"fr=oli:'\ i-k )"'l

(3. l0)

(3.r l)

Therefore it follows from Corollary 3.4 that a e ((/(p))o t,.t)B if and onl-t if the condirions

in (3.10) and (3.1 I ) hold.
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Now let p be any bounded sequence of positive reals. Then we lmve by ( l '2) in Example l '3

(c) that Ra e (cs(p))0 if and onlY if

"" l-a /m.+ i- k - 1\ I -,
fltt : , lail'N-rlnr<aJbrsolreN>l: (3'l2l

7ul7:o\ r-'c / 
|

also, by (1.7) in Example 1.6 (a), W e (co(d,l'*) if and only f

"'l- /m*i-lc-1\ L
'*op.l-t-";-;')"tlr"-'r'-<ooforsomereatrl>1'(3'r3)

(b) Now we determine the B4ual of (L(p))*o' Since T - D(nr)' the matrix R '
?x)f,i:o is given by (Exatnple 2'17 (b))

-11-1;i-ft(rT1) 
U>k) (k:0.1....)rrj:sj/':10 (0sj<k-Lorj>m+k) \"

It follows as in Part (a) that, if 0 < px < 7 for all k, then a e ((!('p))r1,*1)p if and only if

'* 
[ 8,-1)i-e 

(r : r),,["' .. (3.1+1

I

and, tf px > tfor all k, thena e ((/(p))" a*1)P if and only if

o. lr,+k/^tlo*

f lp_(-1)i-r'iri*),,1 
'rtr-sk < aforsonte N > r' (3'1s)

ancl by ( 1.5) in Example 1.6 (a), W e (l'(qt), ('*) if and onlv if

n l*+x / ^ a l'o

'*,ElE,-t,J--(,'] r)"tl' N-sk < xforsome N > | (3 16)

and
nlrn+k /,- \ I

'*'El*it-",- 
r(:-)"1 N4tp* < xror some N > t 13 17)

Remarkl.6 lfm-landp:e,tlrcnitfollowsfrom(3.14)inExample3.5(b)thatu€brt)
if and only, ys.,,pL l DEr ,i I < *, that is, bu1 : cs, a well-known resuh ([70, Theorem

7.3.s (iii)l).
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Remark3'7 (a) The statement of Theorem 3.3 also hords when X : (.*.
,,tlr{;:;"Yrra e (c7)0 if andontyif a e (tinoraw ,(","j, moreovet; if a e (cflg

oo oo

Looro: !(a*r) (Tx") - {afor all z e cr
to:O ,;:0

where€: 
Jgg T1,z ando : Jlf_ i-*u. (3.18)

,b:0

Proof. Let X : c or X : ta. Then X ) cs implies (Xr) : (co)r. Since cs isa BI{ space with AK, it follows from Lemm a 3.2 that a e 'txilp 
i?(rr),];^,ry1t,*o e (4)* : (t)n: llgranaw i tio converselv, ir ) e uolpand,w e (X,c)then it it follows from (3.5) that o e (Xr)p.

(a) Now let X : /oo. We have to show that W e (l*,c) implies W e (l*,c6). IfW e ((.o.,c) then it follows from [70, Theorem l.7.lg] that

i lr-nl is uniformly convergent in rn.
,t:0

But' as before, we also have (3.6), and this and (3.19) together impry w e (r*,cs) by [70,Theorem l.7.lg).
(b)Itrernainstoshowtharo € (c7)pimplies(3.1g). reta € (c7)g andz e cr,.Thenr:Tz € cand(: limpr-.r&exists,hente,therei.rfoi a 

"rsuchthat 
r: a@) 1q".we put z@) - gr(o). rnenli rouo*, tr,uirt;t-;';;i *a'j': sr : ^9(r(0) * (e) :z(o) + (,Se, and we obtain as in (3.5)

nx-l nt, 
TTL

l.oo"r: I(arr) (Tnr) -tr**ro(z@) + €se)k:0 k-0 ft=O

: i@ro)(Txr) - w*(r z@)1 - €w,,e.
k:0

The first term on the righthand side of the last equation converges, since -Ba € (.1. Thesecond term on the righthand side of the rast equation tends to 
-zero, 

since a e (c7)p c(kilr)o implies w i (^,cs). Furthermore, since w e (c,c) implies the exisrence ofa : lim,,* * w^e ([70, Theorem r.3.6]), the idenrity in (s.isi'roIows.
Now we give a few applications of Remark 3.7 and,Coroffary-:.+.

Exatnple i.8 We write R: Rka: DF* ai for all k :0, 1, . . .. We lmve(a) a e (t*1q14 if and only if

(3. le)

(3.20)

(3.21)

ilool . *
,h=0

(mR.,)ff:o e co;

and
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(b) a e ("(A))p if and only if the condition in (3'20) holds and

(mR*,)ff=s e c;

(c) a e ("o(A))B if and only if the condition in (3.20) holds and

(*R")ff:o e l*i

(d) if I < p < x and q : pl @ - 1) then a e buo d and only if

i rroq, . *
k:0

(*t/o&")::. e {*.

proof. We have ? : A and S : E, hence Rpa : DP* ai fot all k. Since, by

Example 1.5 (b), (l*)P : cg : 4 : l, and lfi : /q where q : pl @- 1), the conditions

in (3.20) and (3.24) in Parts (a)-(c) and (d) are the first condition in (3.3) Theorem 3.3. Also

W*: R.rfor allm:0,1,. .., so W e (l*,co) by (1.11) in Example l'6 (d) if and only

ifm
lim ! l.*nl: Jry."(- + 1)'B- : 0 which is (3'21);

*t* 
k:o

W e (c,c) by Example 1.6 (c) if and only if

.r',Pi l.*xl:suP(rn + 1)l.R-l < oo,
* 7- n't

fi* f il)mk : lim (rn + 1)n- exists which is (3'22),
m-rAU rn-+69'

k:0

lim tr,,-6 : lirn ,R- exists for everY k

(3.22)

(3.23)

(3.24)

(3.2s)

(3.26)

(3.27)
rn-)oo rn-+oo

and it is clear that the conditions in (3.26) and (3.27) are redundant;

tr € (ca, 16) lf and only if (3.26) holds which is (3.23);

u e (lp, %) by Example 1.6 (a) if and only if

ITL

,rpI l.*xln: sup(rn + 1)l&"lq ( oo which is (3.25).
*f_ m

Therefore Parts (a) and (b) follow by Remark 3.7, and the remaining parts by Corollary

3.4.

We can improve the result of Example 3.8 (b).

Remark3.9 We have (1.*(L1;0 : (c(A))p.

and
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Proof. First c(A) c /o"(A) implies (l*(A))p c (c(A))0.
To show the converse inclusion, we assume a e (c(A))p. Since (/c + l)Eo e c(A),
the series DEo(k * 1)n6 converges. This implies (3.21) by [5], Corollary 3.16], and so
rl € (/o"(A))B by Example 3.8 (a).

Both conditions are needed in each of the parts of Example 3.21, in general.

Remark 3.10 (a) The condition R e (.1 does not imply (*&")ff:o e loo, in general.
(b) The condition (*R*r)ff:o e cs does not imply R e (.y in general.
(c)Thecondition Re (.rfor 1 < g < mdoesnotimply(ml/q.R")ff:oe l*,ingeneral.
(rt)Thec'ondition (rrtl/o.R*)ff:o€ lroforl < g < xdoesnotimply R€ ln,ingeneral.

Proof. (a) We define the sequence o : (o5)po by

tgfu @:zi1
oo : 

1 
-#ry &:2i - t) (' : o' 1' "')'

[o (otherwise)

Then we have

*^ : {#rP ft: zt1 
u : 0,1,...),

[0 (k7zt1

and we obtain I[olE,tl : Dpo(f + 1)-2 ( oo, that is, R e (.1, b* 2i . R2i :
2i . (j + 1)-2 -+ oo as, -) oo, that is, (*R*)ff:o 4l*.

(b) We define the sequence o : (as)po by

o,A,:

Then we have

and we obtain

fork:0,1,....(k+2)log(k+2) (k + 3)log (k + 3)

R&:

lim

fork:0,1,...,(k+2)log(k+2)

(m + 2) log (rn + 2)

oo, that is, R /. {.1.

obY

that is,, (*R*)?,:oJffh:
(c) We define the sequence a :

(r
,o: I 

j *l

[, '*'

:0,

l&l :
(or)P

{,+

(k : zi1

(k:2i - 1) (J : 0,1'... )'

(otherwise)

(k :2j.)
(J:0,1,...),

(k 7 zt1

Then we have

E&:
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and we obtain DEoln,tlo : DF.U * 1)-c . oo, that is, R < to,bur2l/*.11r, =
2i/a . (j + 1)-1 -+ - as j -+ oo, thx is, (mR.n)ff=o $ l*.

(d) We define the sequence a = (ar)f=o by

Ll
ak - G + r)uc - C;rfr rork : o. r,....

ThenwehavelQ6:(k1t;-llc16tk=0,l,...,andobtainsuprrm-R-:s11p,r,pll4.(nr+
r)-t/, < 1, thar is, (mR-,)ff:o € /oo, but Dnolarl, : DEo(e + 1)-1 - co, thar is,

R/lc.
Now we consider matrix transformations between matrix domains of trianglss.

The reduction of the characterisation of (X, Y7) to that of (X, Y) is almost trivial.

Theorem 3.ll Let X and Y be subsets of u. Then we have A € (X,Yr) if and only if
C € (X,Y), where C = TA, that is, cnx = Di=ot"iaipfor all n,k: 0, 1,. . ..

Pmof. First we assume that ,4 € (X,Y7). Then it follows that An e X0 for all n,
and since ? is a triangle, C* = (T A)n e X9 for all n. Let r € X be given. Since

z: Ax €Y7 nd (TA)a : T(At) by [70, Theorem 1.4.4 (i)], we obtain Cc = (TA)x --
T(At): ?z € Y. This shows C eY.
To establish the converse implication, we apply what we just showed with A,Y7 and T
replaced by C, Y and S. Then C e (X,Y) = (X, (yr)s) implies ,9C : SgA) -
(ST)A : A e (X,Yr) where again we applied [70, Theorem 1.4.4 (i)] for the associativity

of matrix multiplication.
We obtain the characterisations classes of matrix transformations between the matrix

domains of diagonal matrices in arbitrary subsets of u; as an immediate consequence of
Theorem 3.11 and Proposition 3.1.

Corollary 3.12 Let u : (ua)f;=o and u : (ux)f=o be sequences with uy,u1 f 0 for
k: 0, 1,...,andXandY be arbitrary subsets of u. Thenwe have

Ae(u-t r,X,r,-r *, Y)if andonlyif B= (+g*)- e (x,v).
\ t,r ,/ n.k=o

Proof. We denote by D(o) : (d6)f*=o the diagonal matrix with the sequence u on

its diagonal. It folows from Theorem 3.11 that A e (u-r * X,a-r * Y) if and only if
C -- D(u)A: (o,o,r)f*=o e (u-r * X,Y). Furthermore, we have by Proposition 3.1

Cn e u-l *X forall n if and only inCnfu = ("^* l"i?o e XA for all n. Finally,
since rr € u-r *X if and only if y: ys € X, the statement follows from the fact that
(Clu)r : Cy.

Now we reduce the characterisation of (X7, Y) to that of (X, Y) and (X, c6).

Theorem 3.13 Let X be an FK space with AK, Y be an arbitrary subset of u, T be a
triangle and R: St. Then ! e (X7,Y) if and only f A^e (X,Y) antl W(') e (X, cs)

for all n:0,7,..., where Ais the matr* with the rows An = RAnfor n -- 0,1,..., and

the tian1les Wb) are defined by .*) : D?^o^is jk. Moreover if A e (X7,Y) then
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(3.28)Az = A(Tz) for all z e Z: Xr.
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Proof. First, we assume A e (Z,Y). Then 4,, e ZA for all n, hence W(") e (X, co)
and An e XF for alln by Theorem 3.3. Letx e X be given, hence z: Sx e Z. Since
A"e Zlimplies -4,2 : A"1f 11 : Anr for alln by (3.4), and Az e Y for all z < Z
implies .4r : Az e Y, we have .,4. e (X, Y); moreover (3.28) holds.
Conversely, we assume A e @,V) arrd W(n) e (X, co) for all n. Then we have An e XA
for all n, and this and tr{z(") e (X, co) together imply An e Z9 by Theorem 3.3. Now ler
z^e Z be given, hencec: Tze X,mdagun we have Anz= Anr for all n by (3.4), and
Are Yforallr € X implies Az: Ar € Y. Hence we have A e(X,y).
Remark 3.14 (a) The statement of Theorem 3.13 also hods for X : 1.,o.

(b) let Y be a linear subspace of u. Then we have A e (c7,Y) if and only if
A e ks,Y), Wtu) e (c,c) for att n (3.29)

Ae-(at*l\* eywherea@) = li^ i..f)frrn:0, 1,...; (3.30)\ ./ n=0 ^i@ t:6--tnrr- 
-

moreover if A e (c7,Y) then we have

Az : A(Tz)-e("t"1)-oforail z €cTwhere ( :/gAr. (3.31)

Proof. (a) Part (a) is obvious from Remark 3.7 (a) and the proof of Theorem 3.3.
(b) First we assume .A e (cr,Y). Then it follows that A € ((co)r, y) and so ,4 e

(.0, y) by Theorem 3.3. Also An e (c7)A for all n implies Wb) e k,c) for att n by
Remark 3.7 (b). Furthermore, we obtain (3.30) from (3.18). If A e (c7,y) rhen (3.31) is
an immediate consequence of (3.18).
Conversel; we assume that the conditions in (3.29) and (3.30) are satisfied. Then .,i,, :
RA,l e 4 € lr and W\) e (c,c) together imply A^ e (cr)9 by Remark 3.7 (b). Let
z e c1begivet Then we have z : Tz € c. We put z(0) : t - €e where ( : liml-- 21.
Then o(0) e cs and it follows from (3.18) that

.qz : A(r z) - e (",",)1, : 1a,(0) + ( (;" - ("r"')- r) e r,

since,4 e Qa,Y), Ae - (a(");oo o € Y and y is a linear space.
Now we give an application of Theorem 3.13 and Remarks 3.14 and 3.9 to characterise

the classes (co(A),1."), (l-(A),1-) and (c(A),1-).

Example 3.15 (a)WetuneA e (cs(A),/o.) if andonly if

(3.32)

."1,-r
'H,ElI*,1'-

'* (-l,l'",l)
and

<aforalln. (3.33)

and
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(b) We have A € (l-(A),1-) if and only if (3-32) holds and

(c) We have (c(A),1-) : (/-(A),1-).

(3.34)

matrix ,i aft d,ny = Di*at for all n and k. Since

e (t*,1.@) if and only if sup, lpold"sl < oo, we get

/,-\

-,lt (* D^tl:oforattn.
\i=* /

Proof. The entries of the

(cs,l.*) : (1,-,1*,), arrd A
(3.32) in Parts (a) and (b).

Furthermore the conditions (3.33) and

w0') e (l-, co) ((3.21)), respectively.

(3.34) come from W(") € (co, co) ((3.23)) and

Now Parts (a) and (b) follow by Theorem 3.13

and Remark 3.14.
(c) First c(A) c l"o(A) implies (l-(A),1-) c (c(A), /-).
Conversely, A e (c(A),l*) implies A e (cs(A),/"o) and so (3'32) folows by Part (a)'

Furthermore, A* e (c(A))E implies A, € (l-(A))P by Remark 3'9' hence (3'32) and

(3.34) by Part (b). Finally, (3.32) and (3.34) implv A e (l-(A),1-).
Let X and Y be BK spaces and A e (X,Y). Then we define the linear operator 'L1 :

X -+ Y by L a(r) : Ar for all t € X and La e B(X'Y), since matrix transformations

between BII spaces arc continuous by Theorem [70, Theorem 4.2.8].

Theortm 3.16 Let X and Y be BK spaces and X have AK. lf A e (X7'Y) then we

have

llzrll : llr;ll
whcre A is the the natrix dertned in Theorem 3 . I 3 .

Proof. We assume A e (Xr,Y). Since X is a BK space' so is Z : Xr with the

norm ll . ll7 : llf(')ll by Theorem 2.8. This also means that o € B7g(0, 1) if and only

if z : S(r) e 82(11,11. By [70, Theorem 4.2.8], it follows that La € B(Z,Y)' md so

L A e B(X,Y) by Theorem 3.13. Wehave by (3.28)

llr;ll = sup llri(z)ll = sup llArll" r€,8x (0,1) f,€Ex(0'1)

* sup llazll = sup llL AQ)ll = llL All,
reB z@,1) zeBT(0'l)

which implies (3.35).

Now we give another characterisation for matrix transformations on matrix domains of

triangles which is more convenient than Theorem 3.13 in view of the results in [2, 5] and

[7]. We need a two lemmas the first of which is almost trivial.

Lemma 3.17 l,etT be a triangle, S be its inverse, and X be-an arbitrary subset of u' Given

any sequence a e u, we wite B : (b"*)fu=ofor the matrix with

(0<k<n)
(n:0, 1,...).

(k>n)

(3.3s)

u-: 
{,3""-

Then we have a e (Xr)P if and only if B e (X, c)
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Proof. We wite Z : Xa, and observe that z e Z if and only if s : Tz € X; also
z : Sc. Since

nrr.knrl

\ ouro = \ o*l r*i, i : ! 13 ! r1rr3
,t=0 t=0 j=o j=0 k=j

" /t_ \=; f la3sit l*o= Bn' for all n andall a e t'r, (3'36)
t=o \r'=t /

it is an immediate consequence of (3.36) that o e Zp,thatis, az e csfor all z e Z,if and
only if Ececforall ,€X,thatis, B e (X,c).

We obtain as an immediate consequence of Theorem 3.13 and Lemma 3.17

Lemma 3.18 lzt X be an FK space u'ith AK, T be a tiangle, S be its inverse and
R = St. Ilsing the notations of Theorem 3.3 and ltmma 3.17, we have

B e (x,c) (3.37)

if and only if
Ra e XF (3.38)

and

W e (X,cn), (3.39)

We also give an altemative characterisation of the class (Xr,Y).

Theorem 3.19 lzt X be an FK space with AK, T be a triangle, S be its inverse andy
be an arbitrary subset of u. Then we have A e (X1,,Y) if and onty if

A e $,v) (3.40)

and

V(") e (X,c) for atl n, (3.41)

where thz matices i ar7 yb) (, = O, t,... ) are defined as in Theorem 3.13 and by

(rn
rn,r I D,sjla?'j (0< /c < m)a;i: \i=k 

- (*:0, 1, ..).
[0 (k>*)

Proof. First, we assume that (3.40) and (3.41) hold. By Lemma 3.18, (3.41) implies
W@\ e (X,c.d for all n, and this and (3.40) rogether impiy A e (X7,y) by ttreorem
3.13.

Conversely, we assume A e (X.r.,Y). Then (3.40) holds, and also IV(") € (X, co) by
Theorem 3.13. Furthermore A" e (X7)F for all n implies V("\ e (X,c) for all n by
Lemma 3.18.
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Remark3.20 (a) The statements of Lemma 3.18 and Theorem 3.19 also hold for X : t*
by Remark 3.7 (a) and Lemma 3.17, and by Remark 3.14 (a) and Lemma 3.17, respectively.
(b) By Remark 3.7 (b) and lnmma 3.17, we have B e (c, c) if and only if

a € (11)p andW € (c, c) (3.42)

(c) Let Y be a linear subspace of u. Then it follows by Part (b) and Remark 3.14 (b) thnt
A e (c7,Y) if and only if

A e (cs,Y), y(") e (c, c) for all n, and A" - ( c,t,,l) 
- . y.' \ ,ln=o

Corollary 3.21 lzt 0 < r < L. Then we have
(a) (ll,Theorem 4.5)) a e (e\)P if an^d only if

119

(b)(ls,Theorem a.il)a e ({)P fort <p < oo andq: pl@ -l) if andonly if (3.44)

tr 
l,-4 

(i)'' - t)i-kr-i al' *

E 
(1) (r - r;j-t' -i ai co*"'ses for every k;

and

s* (E l= tll 
@ - r1i-"'-"'l')' -'

(c) (Il,Theorem 4.21) a e ("6)P if and only if $.aQ and

'* (EI tll(r - t)j-"-"'l)' *'

(d) (lz,Theorem 4.51) a e ("T)9 if and onty if (3.44), (3.46) and

,mI i (i) @ - t1i-x,-i ai exists;
k:o i:k ' ,

(e) a e ("k)P if and onty if

E l= (l)'' - 
L1k-n'-"'*l' -

;*IEfl @-L)k-nr-o'*l :

and

(3.43)

(3.M)

(3.4s)

(3.46)

(3.47)

(3.48)

and

(3.4e)
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Proof. (a){d) By (2.15), the matrix B of Lemma 3.17 is given by

b"r:'k(;)o - t)j-kr-ja for an n and &'

Applying Theorem Theorem 3.19 and Remark 3.20 we obtain Part (a){d) from ([70, Ex-
ample 8.4.1A; Example 8.4.5D; Example 8.4.5A1.
(e) We apply Theorem 3.3 and Remark 3.7. By (2.15), the matrices R and W of Theorem

3.3 are given by

,,0:{tl)r.-Lf-"rk (.k>n) 
@-0,1,. .)l0 (0<ft<n)\

and
fa
lt (i)(' - t)i-kr-ia (o<k<m)

,-r = { i"=*'"" (rn:0, I,...).
[0 (k>-)

Therefore the condition R(d e tL: /r is (3.48). Finally we have W € (l-, co) by t65,
21 (21.1)) if and only if (3.49) holds.

4 Sets ofpartial sums ofsequences

He we consider the special case of matrix domains of the matrix E of the sum operator in
certain sequence spaces:

It is useful to have a few results on multiplier spaces.

Pmposition 4.1 Let X, XLY,Y1 Cu.Thenwehave

(i) Y cYrimplies M(X,Y) c M(X,,Y1)

(ii) X c X1 implies M(X;Y) c M(X,Y)

(iii) x c M(M(x,Y),Y)

(iv) M(x,Y) : M (M(M(x'Y), Y)' Y)

Proof. (i), (ii) Parts (i) and (ii) are trivial.
(iii) If , € X, then ar e Yforalla € M(X,Y),andsoc € M(M(X,Y),Y).
(iv) We replace X by M (X,Y) in (iii) to obtain

M (x,Y) c M (M (M (x,Y),Y),Y).

Conversely we have X c M(M(X,Y)) by (iii), and so by (ii)

M (M (M (x,Y),Y),Y) c M (x,Y).
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Example 4.2 We have (i) M(cs,c) - t*; (ii) M(c,c) : c; (iii) M(1.*,c) = gD.

Proof. (i) lf a e L*,then au € c for all z € c0, and so /- c M(cs, c).

Conversely, we assume a y' t,,-. Then there is a subsequence a1li; of the sequence a such

that lalg;l > j + l forallj:0, 1,.... We define the sequence rby

:LK:
(k : k0)) 

U : o, r,... ).
(k * k(i))

(4.1)

Then we have u € c6 and a1gyrr131 : (-1)i for all j : 0, 1,..., hence ar I c. This
shows ,4,I(c6, c) c l-.

(ii) If a€ c,then ax € c for all r € c, and so c c M(c,c).
Conversely, we assume a e M(c,c) and it follows that a, € c for all z e c, in particular,

for x : e Q c utd ae: a € c. This shows M(c,c) c c.

(iii) If a € c0 then alr € c for all r € l-, and so co c M (1.*, ca).

Conversely, we assume a / c6. Then there are a real b > 0 and a subsequence (otOl)Eo
of the sequence a such that lrrCill > b for all j = 0, 1,.... We define the sequence r
as in (4.1). Then we have r € l* and ay1i1t1"1i1 : (-1y for all 7 : 0, 1,..., hence

a /. M (1,-, c). This shows M(l- , c) = co.

The matrix A+ of the forward difference operator is defined by

L[r = an - arL+t (n: 0, 1, .. . ).

We have A+ : (!-1)t, where !-l)' is the transpose of X-1.
First we consider the matrix domains of E in the classical sequence spaces, that is

bs : (l-)r, cs : cr, (lr)s (Example 2.3), and css = (c6)r. We alrcady know that the

sets bs and cs are BK spaces with llz116, = sup, I l[=o z6l, and that cs has AI{ (Example

1.1 (d)), and (lr)1 is a BK space with llrll1r,1" : (DPol D!=o"xle)l/p (Exampte 2.9
(b)); every sequence r: (rx)70 e (lr)5 has a unique representation

(4.2)

It is clear from Theorems 2.8 and 2.11 that cso is a .B1{ space with ll . 116, and that cs6

is a closed subspace of cs which in turn is a closed subspace of bs. It easily follows from
Corollary 2.16 (a) that every sequence o = (ar)Po € csg has a unique representation
(4.2); obviously the set d is not contained in cs6.

l*t L: (l"r)f;*=o be the marix with 1,,,,,-1 :1andlnt"--0forkl0(n--
0, 1,. .. ), hence Lnx : xn-1for all u € u and all n.

Example 4.3 (a) Obviously the sets t*, cs anl t, (1 S p < a) are normal, but c is not
normal.
(b) Obviously we have X1 C X for each of the classical sequence spaces 1., (1 < p < o.),
q1, c and l.1at-

tF.

'::(;-)(e(",)-e('+1))



In general, however, l,(gt) does not contain (t(p)) L. To see this, let the sequences p :
(1tp)f;=o and r : (z,t)Eo be defined by

(z (*: z^tpk:<. l. andx1,_
[1 (k:2m + 1) m+l

form = O,l,.....Thenwe have DfiolI,r"lpo : !ff:o(m+1)-2 < a andlf:o1ao1tr -
Dff=o(- + 1)-' : *, hence a € (t(p)) r. \ t(p).

We start with a result for the multiplier space of the matrix domain X7 in a subset y of
Lr that satisfies Y C Yy.

Theorem 4.4 ([43, Theorem 2.31) kt X be a subset of u, y C u be a linear space and.
Y c Y6 We put 21 : (M(X,Y))^+, Zz : M(X,Yt) and fu : M(X,y). Then we
have

21n22C M(x2,Y);
if, in addition, X and Y are normal and Y1 C Y then

M(XE,Y): an zs.

Pmof. We wite Z: X, and observe that z e Z if and only if a =Ez € X;
furthermore, we have z : Az. We can write

az: L(:rL+ a) + L(ar). (4.s)

(k :2m)
(k :2m + 1)

(4.3)

(4.4)

First we assume a € 21 O 22. Let z e Z be given. Then z : Ez e X and a e 4 imply
lA+a eY cY1, that is,.L(rA+a) € y. Furthermore a € 22 implies a, € ya, that is
A(or) e y. Since Y is a linear space, the inclusion in (4.3) follows from (4.5).
Now we show that Y c Y1, implies

Lela € 23 and, € X be given. Then we have ax ey C y1, hence tr(ar) e y and so
L(ar): at- L(ar) e Iz, since Y is a linear space. This showsthata € M(X,y^) : 22.
Now we assume that X and Y are normal and. y1 C y, and a € M(Z,y). Let r e X
be given. Then z: L,x € Z and aAe : az €y. Since X is normal, it follows that
6 € X where ti = (-l)tlrkl for atl k, hence Z -- Li e Z and a2: ((-l)ta,flrsl +
|""-rl))F=o e Y. Furthermore, lapyl 3 laaZpl for all /c implies at € y, since y is
normal. This shows a € 23 which implies a e Z2by (4.6), that is, A(az) € y. Therefore
we have .L(zA+a) e Y by (4.5), since Y is a linear space, and so zA+a e yL c y, thar
is a e Zt. This shows M(Z,Y) C 21n fu. Now this and the inclusions in (4.6) and (4.3)
together yield (4.4).

Since 11 is a normal linear space with (l)r,: h, we immediately obtain the following
result for the a-duals of the matrix domains of !.
Corollary 4.5 ([43, Corollary 2.tl) We have for any subset X of a

23 C 22. (4.6)

(x")^+ nx" c (xr)" (4.7)
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If X is normal then we have

(Xr)" : (X")a+ f\ X".

Remark 4.6 If X is normnl with X C X7 then (Xr)" : Xo.

(4.8)

Proof. We show that X C Xt implies X" C (Xo)a*. Then the statement of the

remark follows from (4.7). Let a e Xo and r €. X be given. Then ar € {.1 and aLr € ly
since X C X r,and from lL"(xL+ a)l < lL"(ar)l+l(aLr)"1 (n : 0, 1, . . . ), we conclude

L(rA+a) € /1, hence rA+a € /r, and so o € (X")a*.
Now we give the a_duals of X2 for the classical sequence spaces.

Example4.T We have bs' : cEd : (cso)" : (+ ((lp)z)o : lq (1 < p < oo; q :
pl(p - 1)) and ((/r)r)' - l,*.

Proof. Since the t*, co and lo (1 S p < oo) are normal by Example 4.3 (a), and

obviously X c X7 for these sets, we obtain the statements for the a-duals, with the

exception of cso, from Remark 4.6. Finally, cs6 C cs C bs irnplies tt : bso C csa C

("ro)o : lr,thal.is csa : (t.
Applying Theorem 4.4, we also obtain a result for the B- and 7-duals of the matrix

domains of E.

Corollary 4.8 ([43, Corollary 2.2]) Let X be any subset of w. We pfi Zt : (Xt)6+ for
t : g,l, Zf : M(x,c),Zl : M(X,l*) and Zs: M(r,cs). Thenwe have

ztnz! c (X:)t forl: B,',.

If, in addition, X is normal, then we have

6ila : zf a 23 and (Xr)' : zf n zl,

and if a e (X2)9, then

Loo"r: itoil, )(Epz) for att z € xz.
k=0 k=0

Proof. Weput Z : XD,Yf : cs,Yl : bs,Yf : cand Yl : /oo. Since bs and

cs are linear spaces with cs C csy and bs : bsL, and since cs6 : c and bsl : loo, (4.3)

implies (xa*)t )M(x,(vJ)"): (xt)6+ nM(x,vil: ztnztc Zt forl:9,1.
NowletXbenormalanda € ZI.wepfiq:csandi'l : /-. First ae Zt implies

az € '?; for all z e Z. Since ij is normal, we conclude a e M(X,th av (4.3). We

obtain from (4.5) with r : Xz

En(az): 8",-r(oA*o) + anrn (n: 0,1,...). (4.12)

Now X(oz) e Yj and ar € Y; together imply uA+a e Yl for all r € X, that is,

a e M(X,YJ)o* : (xt)6+ : zl. rni"shows

(4.e)

(4.10)

(4.11)

ZBcZfi23andZlcZlnZ]. (4. r 3)
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Since Zs c Zf by Proposition 4.1 (i), the identities in (4.10) follow from (4.13) and (4.9).
Finally (4.12) and (4.10) together imply (4.I 1).

Now we determine the B- and 'y-duals of the matrix domains of E in the classical
sequence spaces. We write bu6: $pn, and bu* : (/oo)a.

We need the following

Lemma4.9 ([43, Lemma3.l]) Wehave(i) M((.@,co) : ci, Gi) M("o,cg) : (.@, (iii)
M(le,co) : l* (1 < p < oo), (iv) M(lo,[*) :/* (1 S p < oo) and (v) M(ro,l*) :
Ioo.

Proof. (i) We have M(l.oo,co) C M(l*,c) : co by Proposition 4.1 (i) and Example
4.2 (iii). To prove the converse inclusion, we assume a / co. Then there are a positive
constant c and a subsequence (orfll)Po of the sequence a such that lasgyl ) c for all
i. We define the sequence:L : ("r)Po by rt(il: sgn(a6g;) and r; : 0 for k + k(j)
(, :0,1,... ). Thenwehaver € /- and nk(ilah1): larg)l ) c ] 0forall j :0,1,...,
that is, ar / co and so a / M((.*,cs).

(ii) We have M(cs,cs) c M(cs,c) : (* by Proposition 4.1 (i) and Example 4.2 (i).
Conversely, if a e l,n, then ar € c0 for all z € cs, that is a e M(cs, co).

(iii) We have M($,.0) I M("0,c0) : {* by Proposition 4.1 (ii) and Part (ii).
To prove the converse inclusion, we assume that a / l*. Then there is a subsequence
(rrtil)Po of the sequence o such that lo,;,13y1 > (f * 1)2 for all j : 0,1,... . We define
the sequencerby rt1): a*-,lr, and x:k:0for k I k(j) (j:0,1,...). Then wehave
r e {.p (1 Sp < oo) and an(ilrn1): lforall j,that isar / c0,and soa/. M(lr,cs).

(iv) we have M($,1*) ) M(lp,co) : l,* for L < p < oo by proposition 4.r (i)
and Part (ii). obviously /* c M(L*,,1*). Conversely we assume a / l*.Then there
is a subsequence (a7r61)Eo of the sequence o such that 1a617;l > 2i for j :0,1,.... We
define the sequence r by rk1) : loo1l-'/' and rp : 0 for k * k(j) (, : 0, 1,... ).
Thenwehaver e (.oforL < p S oo,but laxg1x1,gt1: lak1)lr/z , 6/Di forall j,that
is, ar / (.*, and so a / IVt({.e,1.@).

(v) We have (.* C M(1,*,1*) C lul(cs,l*) C M(h,l*) : l*by proposition 4.1
(ii) and Part (iv),

Corollary 4.10 We have
(a) (i) bsq : bus : bu f) cs, (iil cs? : (css)P : bu,

(iii) (@p)ilp : buq.l* (l < p < oo; q: pl(p - L),
(iv) ((lr)ilP : bu,ni

(b) (i) bs1 - cs't - ("ro), : b1) , (ii) ((.r)il1 : b,t)*,
(iii) ((%)z), -- bun )/- (1 < p < oo; q : p/(p - t).

Proof. Since all the classical sequence spaces are normal, with the exception of c,
we can apply the identities in (4.10) and of Corollary 4.8 to determine the B and 7-duals,
respectively.

(a) (i) we obtain from the first parr of (4.10) and Lemma 4.9 (i) that bs7 : eL)^+ n
Iv[((.*,c6) : (11)6+ o c6 - buo.

(ii)weobtainfromfirsrparrof (4.10)andLemma4.9(ii)that (cs6)d : 1{yo*nl,I(cs,c0):(.6t o l* : bu ) (.oo. But if r e bu,then there is a constant lvl > 0 such that lrrl <
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D?=o lr* - *t-l S M for all n, thatis, r € /oo. Thus we have bu c loo, and conse-

quently (css)F :61).
Itfollowsfrom(4.9), Proposition4.l (i) andExample4.2(ii)thatcs1 I (cp)6+ nM(c,('*)
) bu)M(c,c): buf)c. But if r € buthen l*rr- r,l S Dl:^orl**-'l"-tl forall

n > n'Land so r e c. Thus we have bu C c, and consequently c"P ) bu. On the other hand

cs, C cs implies cs1 C (""0)6, and (cs6)P -- buby Part (ii). So we also have cs1 C bu.

(iii), (iv) We obtain from the first part of (4.10) that ((/p)5)F : 1l'fl)6+ n M(lp,c6)' If

L < p <oo then Qilo* : burandif p: lttren (/f ) - bu*. Furthermore it follows from

Lemma 4.9 (ii) that M(t,p,co) : l* for 1 ( p < oo.

(b) (i) It follows by the second part of (4'10) that bs1 : (/t)a* 
' 

M(('*,1-)' Fur-

thermore,sinceM(l*,1*):t*byl-emma4'9(iv),wehavebsl:bunl'*:btr'Italso
follows by Lemma4.9 (v) that bu : bs1 c (cs6)r : (cl)6+ )lul(cs,(*) : buf)L*: $p-

Finally csg c cs c bs implies bu : bs1 C cs1 C (css)'v : 62.

(ii), (iii) Since{ : (8 and I\[((.p,co): M(tp,lr)for7 < p l oo by Lemma4'9 (iii) and

(iv), the statements follow from the second part of (4.10) and Parts (a) (iv) and (iii).

Remark4.ll (a) The results in Corollary 4.10 (a) (i), (ii) and (b) (i) can be found in [70,

Theorem 7.3.7 (v), (vi) and (vii)].
(b) Let L < p < oo, q : pl@ - l). Then we neither have bun C l* nor ('* C bun' in

general.

Proof. (b) We have ((-l)k)Eo € l- \ bun.

To show the second part, we observe that an application of the mean value theorem yields

for0 < a < landallt > 0, (r+1)a -f < ato-L al,"-r. Weput s: (q.-l)l2o
and16: (/c+1)o. Thenwehave0 < a < land l*r,-rx+rl'< (k+1)(o-1)s:
(k + t;-(o+r)/2 forall k, and so n € bur, since g > 1. On the other hand we have r / l*,
since a > 0.

Now we reduce the characterisation of the classes (Xr, Y) to that of (X, Y) and the

multiplier M(X,cs).

Theorem 4.12 (143, Theorem 2.6 (a)l) Let X andY be subsets of u and X be normal'

Then we have A € (Xr, Y) if and onlY if

A" e M(X,cs) for all n : 0, 1, . . .

B e (X,Y) where Bn: L+ Anfor all n : 0,1,... i

(4.t4)

(4.rs)

(4.16)

furthermore tf A e (X2,Y), then

Anz : B^(Ez) for all z e Z : Xt,.

Proof. We write Z : Xz.
First we assume A e (Z,Y). Then it follows that An e ZP for all n, and so A,, €

M(X,cs) forallnby(4.10), thatis, (4.14)holds. Letr. e Xbegiven' Then z : L'r € Z,

fr : Ez, and we conclude from (4.11) that

Bnt,: Anzfor alln:0, 1,.r,., (4.17)
l
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and Az € Y implies Br € y. Thus we have B e (x,y),that is (4.15) hords.
Conversely, we assume that the conditions in (4.14) and (4.15) are satisfied. It follows from(4.15) that Bn : A+An e xa for all n, hence An € (xb)o* for all n. This and thecondition in (4.14) together rmpry An e za for att n uy ra.rofana again (4.r7) holds by(4.11). Therefore Az ey for all z e Z. This shows e e @,i1.

Now we apply Theorem 4.12 and corollary 4.10 to give the characterisations of matrix
transformations from the matrix domains of D in the Lhssical sequence spaces into the
classical sequence spaces.

Theorem 4.13 Letl <p:" ( *t q: pl@-l) ands: rl(r _L). Thenthenecessary
and sfficient conditions for A e (x,y) can be readfrom thefoilowing table:

where

1. (1.1), (1.2 )

'2.,3. (1.2)

l. (4.1), (4.2)

where (l.I) limx_+aantc:0for all n
(1.2) slp,-lpolo"o - an,k*tl < oo

where
(4.1) s:upn,xlanx _ ar,7r11l ( m
(4.2) s;.ryplonnl < afor all n

5. (4.2), (5.1) where
(5./) sup, DEolo* - ar,7r_p1lq ( oo

6. (1.1), (6.1) where
(6.1) limn*- DEolo, k - anJc+l:0

7. (1.2), (7.1) where
(7.1) limn-*(on* - an,k+l) :0for all k& (1.2), (s.1) where (s.t) li;')*inx:Tfor ail k9. H.t), (4.2), (7.1)

(4.1), (s.t), (7.1)

(t.1)) (I Lt), (I1.2) where
(11.1) Dpolr",t - an,k+l converges uniformly in n

(11.2) Jimr-*(a2 k - an,k+L) : a1, exists for a1 k
(t.2), (11.2)

11.

12.

From
To

bs cso CS (tr)z (tilz
loo 1. 2. 3. 4. 5.
c0 6. 7. 8. 9. 10.
c 11. 12. 13. 14. 15.
(1 16. 17. 18. 19. 20.
(, 21. 22. 23. 24. unknown

10.

I

I

I
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13.

14.

15.

16.

17,

18.

19.

2,0.

(1.2) (13.1) where
(13.1) limr-1* ank: ap exists for all k

(4.1), (4.2), (11.2)

(4.2), (5.1), (t 1.2)

(1.1), (16.1) where
(16.1) sup DPolD,,er,,(o,,,t - a,,,,7,11)l ( oo

NCDIo
N frnite

(16.1)

(16.1)

(4.2), (19.1) where
(19.1) supr DLo lonn - 0,,/,+rl ( oo

(4.2), (20.1) where

(20.1) sup

i,:"x3
21. (l.l), (21.1) where

(21.1) 
,.tlR" Di':o lDr.r ank - a*,k+t l' < -

22. (21.1)

23. (21.1)

U. (4.2), (23.1) where
(23.1) supr DLo lrrn - an,k+t l' < -

Proof. Since l-, co and lo $ S p < oo) are normal, we apply Theorem 4.12 and
Lemma 4.9 in all cases except for 3., 8., 13., 18. and 23, using the well-known results for
the characterisations of ((.oo,/o") and ("0,") in [70, Example 8.4.54,] or [65, (1.1) in l.],
of ((4,/*) in [70, Example 8.4.1A] or [65, (6.1) in 6.], of (%,1*) for 1 < p < oo in

[70, Example 8.4.5D] or [65, (5.1) in 5.], of ({*,co) in [70, Theorem 1.7.19] or [65, (21.1)

in 21.1, of (co,c6) in [70, Example 8.4.5A] or [65, (1.1), (11.2) in 23:], o[ (h,"o) in [70,
Example8.4.1Al or[65, (6.2), (11.2)in28.], of ({.e,co) for 1 < p < ooin [70, Example
8.4.5D1 or [65, (5.1), (l1.2) in 27.), of (l*,c) in [70, Theorem 1.17.8] or [65, (10.1), (10.4)

in 10.1, of (co,c) in [70, Example 8.4.5A] or [65, (1.1), (10.1) inl2], of (1.1,c) in [70, Ex-
ample 8.4.1A1 or [65, (6.1), (10.1)1, of (lp,c) for 1 < p < m in [70, Example 8.4.5D] or

[65, (5.1), (10.1) in 16.], of (/*, 1.1) and (co,h) in [70, Example 8.4.9A] or [65, (72.2) in
72.1, of (h, li in [70, Example 8.4.1D] or [65, (77 .l) in 77 .), of (to,lr) for 1 < p < oo

in [70, Example 8.4.88] or [65, (76.L) in 76.], of (/-, (,r) or (ro,{r) for 1 < r < oo in

[70, Example 8.4.8A] or [65, (63.1) in 63.], and finally of ((1,(.,) for 1 < r < oo in [70,
Example 8.4.1D, p. 1261or [65, (68.1) in 68.]. Condition (4.14) in Theorem 4.12 yields
(1.1) in 1.,6., 11., 16. and 27.by Lemma4.9 (i), and (4.1) in 4.,5.,9., 10., 14., 15., 19.,20.
and 24. by Lemma a.9 (iii); Condition (4.1) is redundant in 2.,7., 12., 17. and 22. because

of (1.2), (7.1), (I.2), (16.1) and (21.1), respectively.
The remaining conditions for the classes (Xx,Y) in those parts follow from (4.15) in The-
orcm4.l2 and the corresponding conditions for the classes (X,Y) with arr6 replaced by

IEol D,e,.,r(art - an,t+r)lq ( oo
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ank - an,k+1.

3. Since cs has AK by Example 1.1 (d), we apply [70, Theorem g.3.9] wirh x : cs,
x0 :bu by corollary 4.10 (a) (ii), z : lrand 7 : zg :/- to obtain A e (cs,/-) if
andonly if Ar e ((1,bu). Now(1.2)followsfrom(1.1)if wereplaceanlrbyank-,,n,k*l
by Theorem 3.1l; 8. and 13. follow from 3. and [70, 8.3.6].
18. We apply [70, Theorem 8.3.9] with X : cs, XP : bu, Z :cs and y : ZB : h.
Then (16.1) in 18. fbllows from [70,8.4.7A1andTheorem 3.11.
Similarly 24. follows by applying [70, Theorem 8.3.9] with x : cs, xB : bu, z : {." and
Y : ZB : l, fromfrom [70, 8.4.10] and Theorem 3.11.

Remark 4.14 Some of the results of Theorem 4.4 can be found in [70] and [65 ]. The char-
acterisations of Part l. of Theorem 4.13 are given in [70, Example s.4.5C] or [65, (2.1),
(2.2) in 2.1, of 2. in [65, (2.2) in a. ], of 3. in [70, Example 8.4.58] or [65, (3.2) in 3.],
of 6. in [70, Example 8.5.6E] or [65, (2.1), (24.1) in 24.], of 7. in [65, (2.2), (26.1) in
26.1, of f. in [70, Example 5.4.58] or [65, (2.2), (il.2) in25.], of tt. in [70, Example
8.4.6D1 or [65, (2.1), (13.1), (13.4) in 13.], of 12. in [65, (2.2), (13.t) in 15.], of 13. in
[70, Example 8-4.58] or [65, (2.2), (10.1), in 14.1, of 16. in [70, Exampre g.4.98, p. t32]
or [65, (2.2),(73.1) in73.], of 17. in [65, (73.1) in7s. ], of rB. in [70, Example g.5.5A]
or [65, (74.1) in 74.], of 21. in [70, Example 8.5.6c] or [65, (2.r), (64.1) in 64.], of 22. in
t65, (64.1), in 66.1, and oJ23. in [70, Example 8.5.54] or [65, (65.1) in 65].
A pair of alternative conditions in are also given [65, 3.] for the class (cs, too) namely (2.2)
which is (l.l ) in l. and

,u, 
| ,,,* o,,o | . -. (3.r )n ll;-+m I

The conditions for the class (bs,l.) in [65, 73.] are (2.2) which is ( t.l ) in l. and

,;.:^3,"* hE,* n-an,k+l)l ,-. (73.1)

Theconditionfortheclass(css,fi)is(73.1)in[65,7s.] andthatfor(cs,(,1)int65,7a.l
is

,,;:f",. lEEt* k-an,k-r) 
I ' * (74.1)

Remark 4-15 Applying Theorem 3.1 l, we obtain the characterisations of the classes (X5, yy)
for the classical sequence spaces by replacing ann b! ank - an_l,k in the corresponcling
conditions in Theorem 4.13. In particula4 we obtain

From

To
bs cso cs

bs 1. 2. 3.
cso 4. 5. 6.

cs 7. 8. 9.
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where

1

,1

4.,

5., 6.

8.

9.

( 1.1), (1.2) where
( l.I ) bmx-too ank : 0 for every k
(/.2) sup, lpol Di=o(oir - a7,*+r)l < co

( 1.2)

(1.1), (4.1) where
(4.1) l\mn,*Dff=ol DrT=o(oio - ai,rar)l : 0

(1.2), (5.1) where
(5.1) lisa"k:}for every k

( 1.1), (7.1), (7.2) where
(7.1) Dtr=olD?=o@ip - ai,*+r)l converges unifurmly inn
(7.2) lio@"a - an,k+l) coruerges for every k

(1.2), (7.2)

( 1.2), (9.1) where
(9.1) lisa"k converges for every k

Condition (1.1) would be expected to be limy-*fl=saik : O for all n, but it is clear

that this reduces to (1.1).

The resubs above can be found in [70] and t651. The characterisations of Part l' of

Theorem 4.13 are given in [70, Emmple 8.4.6C] or [65, (2.1)' (33.1) in 33.]' of2' in [65'
(33.1) in 35.1, of3. in [70, Example 8.4.68] or [65' (34.1) in 34.], of4. in [65, (55'1)in

ss.l, of s. in t65, (33.1), (s7.1) in 57.1, of 6. in [65, (33.1), (42.2) in 56.]' of1' in [70'

Exampl| 8.5.91, of8. in [65, (33.1), (44.4) in 46.], and of9. in [70, Example 8.4.68] or

t65, (34.2), (41.1) in 45.1.

Pairs of abemative conditions are given for thz class (cs, bs) in [65' 34.]' namely (33.1)

which is l, ( 1.2) and 
| , I

.,nl;ggf ,;ol. *. (34.r)
'l j=0 

I

the class (cso,cso) in t65,57.1, namely (3j.1) and

j=o

which clearly is equivalent to 5. (5.1), and an altemative condition is given for the class

(bs,cs) in [70, Example 8.5.9, p.1j6], rnmely

-r,-l
ri* ! l!(,;* -,i.r.*,)l :0.

" '* t-o 1i-n I

Renark 4.16 The results of this section can easily be extended by Cotollary 3.12 to the

characterisations of matrbc transfotTnations between spaces of generalised weighted means

given in [60, 67, 51,43, 48, 54, 56, 56, 57,25]

(57.1)
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Abstract

In this paper, we propose a method for computing the equilibrium structures and

various physical parameters of differentially rotating stars. The method utilizes the

averaging approach of Kippenhahn and Thomas and concepts of Roche-equipotential
to incorporate the effect of differential rotation on the rotationally distorted stellar
models. The inner structure and various physical parameters of differentially rotat-
ing polytropic models with the polytropic indices 2.0, 2.5,3.0 and 3.25 have been

computed for different polytropic models of a star.

1 Introduction

Observations show that many of the observed stars are known to be rotating stars. For
many of these rotating stars, rotation is not a solid body rotation but a differential rotation
in which different parts of the stars are rotating with different angular velocities (see, for
instance, Welty et al. [17]). In the case of a rotating star it is, but natural to expect that rota-
tion will distort its otherwise spherical-symmetric configuration. Rotational forces are also

expected to influence the inner structure and dynamical stability of such stars. However,

Keywords and phrases : Differential-rotation, Polytropes, Roche-equipotential, Equilibrium-structure,
Structure-parameters.

AMS Subject Classification : 70F99.
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the mathematical problem of determining the effects of rotation on the equilibrium struc-
ture and stability of realistic models of the stars is quite complex. Approximate methods
have, therefore, been often used in literature to study such problem. The structural proper-
ties of polytropic stals mainly depend on the density distribution in the star and the ratio of
specific heat of the material of star. The polytropic models for different indices 'N' afford
a convenient series of models for the study of equilibrium structural properties.

Initially the theory of distorted polytropes to study such problems was developed by
Chandrasekhar [1]. Since then several investigators such as Kopal [10] and Geroyannis
and Valvi [4] have addressed to this problem by studying the effecrs of solid body rotation
on the equilibrium structures of the polytropic models of the stars. Mohan et al. [14] as-

sumed these to be members of binary system and incorporated the effecis of tidal forces as

well. Authors such as Haris and Clement [6], Galli [3] and Mohan et al. [5,16] have also
discussed the problems of differentially rotating stars. Lal et al. [ 1, 12] have used this
approach to obtain the equilibrium structures of differentially rotating and tidally distorted
white dwarf stellar models as well as polytropic models of stars. Lal et al. [13] also studied
the effects of Coriolis force on the equilibrium structure of rotating stars and stars in binary
system. However, in all cases they have used some general laws of differential rotation;
therefore, the problem is still far from having been satisfactorily answered.

In this paper, we have tried to investigate the general problem of determining the equi-
librium structures of a class of differentially rotating polytropic models of stars, with a

specific law of differential rotation introduced by Clement [2]. The law has been assumed

of the type o(s) = (!9 , aie-bt"'1i , where cr(s) is the angular velocity of rotation, s is
a non-dimensional cylindrical coordinate and, a;,b; are some constants. Since then several
authors such as Geroyannis and Antonakopoulas [5] have used it to study the structural dis-
tonion of differentially rotating polytropic stars.

The present paper is organized as follows: In section 2, we present the modified Roche-
equipotential surfaces. The system of differential equations goveming the equilibrium
structures of differentially rotating polytropic models of a star has been given in section
3. The mathematical expression determining the equipotential surface, volume, surface
area, gravity etc, are also derived in this section. Finally, in section 4, numerical results
thus obtained have been analyzed to draw some conclusions of practical significance.

2 Roche-equipotential of differentially rotatingstars

In this section, we investigate the problems of equilibrium structure of a polytropic model
rotating differentially according to the law as explained in the introduction. This approach
uses the averaging technique of Kippenhahn and Thomas [8] to account for the distortional
effects caused by rotation and tidal forces. For computing the distortional effects. the ac-
tual equipotential surfaces of star are approximated by Roche-equipotentials and Kopal's
[9] results on the Roche-equipotentials are then used to express the problem in a convenient
form for numerical work. In order to introduce the concept of Roche equipotential, we as-
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sume a component of mass M and radius E, for rotating configuration. The total potential

Q of a fluid element is given by dQ : dV *1u2a1s21. (1)

This equation is known as the equation of hydrostatic equilibrium, O is the total poten-

tial of configuration while I/ is the gravitational potential. On using c..,2(s) : Dl:t aie-b;s2

equation (l) reduces to
3

,,1,: l*;,I ff{t-e-bir2(t-a2)}, (2)

where 4, : m is non-radial dimensional parameter.

Kopal [9] developed the Roche-equipotential assuming ry'=constant. On assuming this

approach of analysis, we develop the relation for co-ordinates (r,0,$) of an element of

Roche-equipotential as

r.,1,: rs}{r + 
}"+"3 - *u"t *'*rd * hr+ -

. (*" . #t)",'o + "'),
'#,d.(ffin-#") ",

where A: Dai, B: Donbn, C : Dlaiai,
i:l i=l i=l j:\

33333
9 :Dt I aiajak,'tt:Dlalblai, J :

,:1j:1 k:l i:r j=t

333 333D: Da1bl, T
:_ I

33
t D a,;biaibit
i:r j:r

: D D albiai,
i:l j=t

3 Equilibrium structures of differentially rotating polytropic
models of star

For a polytropic model, relations Pa : P"g0[+1 and O,i, : 0"r1,0ff give pressure and den-

sity at any arbitrary point, where P6r1, and Pct[ arc respectively the values of Prp and prp at

the centre and 0r1., being some average of d on the equipotential surface ry' : constant. In the

case of polytropic models, the following equations

# : anotp4t"&yr,\ 
(4)

* : -ffil'br,, J
which govern the hjdrostatic equilibrium structure of rotationally distorted gaseous spheres

can be combined together as:

t- d (dry-\ : -t r,ey . (5)
4 dn \h ari ) ()2 r L"t' 1

whereo,:Wandaisknownasthedimensionoflength,/1and/2aredistor-
tion pa+ameters, which are:

h: t+2Arfi-tfu"3 *Trd**rA-Trd- (r"'"-c) d+

(ffi". ffir) 1610 * ,

3
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r,:+*c",.-ftr"f-(#"- ffir) "s*(fia. *r) "Jo+ , (6)

The boundary conditions Pr1, and prp must be maximum at the centre and zero at the
free surface' We should therefore, have 0r1, maximum at the centre and zero at the free sur-
face. These lead to the conditions 0r1., : I and ffi: 0 at the centre and 0r1,: 0 at the freesurface' Thus the boundary conditions which iutirry the equation (5) are: At the centre:,j ; 0, 0* 

^ 7,* :0 and at the surface: To : Tos,Lrl, : g,rs, being the value of rs at
the free surface.

It may be noted that the approximation of the equipotential surfaces by Roche-equipotentials has not basically altered the structure of polytropic model because in the
absence ofany distortions (fi : fz: l), the equation 1i; reduces to the usual Lane-
Emden equation governing the equilibrium structure of an undistorted polyfopic model ofindex N in non-dimensional form and not to the equation governing the equilibrium struc-
ture of an undistorted model.

If we set rr1, : *6, then ( will be a non-dimensional variable defined for equitant
spherical model' It corresponds to the usual Emden variable ( of Lane-Emden equation for
an undistorted spherical polytropic model. But, if we set R': .,€u (where (, is the valueof ( at the outermost surface of the undistorted polytropic model) in equation (5), the dif-ferential equation governing the equilibrium structure of a differentially rotating polytropic
star can be written in non-dimensional form as

h loffi) : -q2,offrfia, (7)

*n"::: d [,- *r"S + fi-r,f . (#" - ffir) ",
- (*". #r) ,o'o * ' ,],

':,::2Arfi -#ud *'trd + fio,? -Trd- (#" -Tn),r
- (ffi'- ffir) 'o'o 

+ ,

where the terms up to fourth order of smallness in rotational parameters o,t,a2)a3 andb1,b2,b3 and up to order roio in T0 are retained.

with the help of (3) we can obtain volume and surface enclosed by a differentiallyrotating polytropic stellar model and given by:

ur : 
1",,)t;e")3 [:. i": ?u,X + c,g" + $o,1" - #r,:,. (i" - #r) *
* ( ,' " r6J )'J"' 

* '.J 
'

sn : 4rri"(::i'l' 
;3i* .^*r? 

+ ftc4, + fio,1". (#" - #r) ,,"

* (*' * ,tr )# * .J. (8)
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Also the polar and equatorial radius Ro and E" are given by

h: 'rr(o€u),
-iu,:,+f,cf,+ 1o,1"

(e)

R.:ro"(ote,l 
[r 

*f,,u|"

. (*". *r)

f 
r +..arl" * Br!" -f,r,:,

. (r".it),it * l

- F,t"(}" - *n),1
(10)

If we follow Geroyannis and Valvi [4], oblatness o and ellipticity e are used as mea-

sures of the departure of the shape of star from spherical symmetry, may be computed using

n:R"-Rnand6: R"=Ro. (ll)
"- Ro 

orrue - Rp

The value of gravitational force 9p atthe pole and g" atthe equator are given by

"#* ],

GMo9r: -A3
GMoe"---€

(r2)

-'rr,:"+1r4"- ilr,:,
( 13)

Following treland [7], the effective temperature at any point on the surface of the star,

(14)

-ffi);i ilr'-:temperarure. once temperature is known as the radiative flux, tr at

any point on the surface may be estimated using

L - -Pr, sradT, (15)
rpx

where X iltfr" opacity, ? is the gas temperature, a is the radiative constant and c is the

velocity of light.

4 Analysis of results and conclusion

The numerical solution of nonlinear differential equation (7) has been obtained in this sec-

tion. The values of rotational parameters have been taken from "Differential Rotation Pa-

rameters for the Polytropes", as given in Table-l. The value of rr" thus obtained may be

usecl in the above formulae to determine the volume, the surface area and the shape of

outermost equipotential surface of differentially rotating polytropes. Various models are

obtained by suitable combination of the parameters ai and b1. The values of rff for dif-

ferent polytropic indices of these models are given in Table-2. The equation (7) has been

integraiecl by fourth order Runge-Kutta method subjected to the boundary conditions for

the specified values of the parameters N and {.,. Since the centre and surface of the star

are singularities of (7), we develop the series solution near the centre for starting numerical

integration. Taking starting values from this series solution at 16 : 0.005 and step length

0.005, integration was continued till 94, first becomes zero. By this approach here we have

found the values of ro" for different differentially rotating polytropic model for different

polytropic indices. Relations (8) were then used to determine the volume and shape of the
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distorted polytropic model. In this computation, we use the value of a equal to one. The

values of V4,,54,,o,€,u)p1u)etT"lTp and L"f Lo for various polytropic indices and various

models are reported in Table-3, which represents volume, surface area, oblatness, ellipticity,
angular velocity at pole, angular velocity at an equator, ratio of temperature at an equator

and at pole and ratio of luminosity at an equator and at the pole. The results of d4, for dif-
ferent differentially rotating polytropic models and polytropic indices 2.0,2.5,3.0 and 3.25

are reported in Table-4.

In our analysis model-l is an undistorted model which gives least volume, surface, T.lTp
and L"f Lr, in comparison'of differentially rotating stars for every polytropic indices while

for solid body rotation oblatness, ellipticity, angular velocity at pole and angular velocity

at an equator are zero for each polytropic index. In case of differentially rotating models

for polytropic indices 2.0, model 2 gives largest volume which is 30Vo more than model l,
while model 9 gives lowest volume and surface which are l0.82%o and 9.4Vo more in com-

parison of model 1 respectively. Similarly, model-7 gives largest surface which is 18J2Vo

more than model 1. For polytropic index 2.0, the angular velocities at an equator of model

8 could not be calculated. For polytropic indices 2.5, 3.0 and 3.25, all stellar models give

similar behaviors as explained for polytropic index 2.0. This method approximates the ac-

tual equipotential surfaces of the star by Roche equipotential surfaces, and incorporate the

stellar structure equation the effects of rotational distortion up to fourth order of smallness.

I



N=2.00 N=2.50 N=3.00 N=3.25

31

?2

a3

b1

b2

b3

+0.546668

+0.544726

-0.091395

+0.117936

+0.387444

+0.714485

+0.263744

+0.720053

+0.016858

+0.097485

+0.290017

+0.021676

+0.095155

+0.555735

+0.350959

+0.051248

+0.203307

+0.594145

+0.048836

+0.400167

+0.550992

+0.037318

+0.153530

+0.490194

Table:1

Differential rotation parameters for various polytropes (Clement [2])'

Table: 2-

combinations ofthe parameters o1 and b1 for various differentially rotating pol)tropic models ofgaseous spheres

Parameters

Value ofr,"

No. N=2.0 N=2.5 N=3.0 N=3.25

1.000000 1.000000 1.000000 1.000000
1 0 0 0 0 U U

0.837921
2 0 a2 a3 b1 0 b3 0.919632 0.868607 0.843075

3 d1 0 d3 b1 0 b3 0.920587 o.962718 0.943344 0.914943

4 0 a2 a3 0 b2 b3 0.924434 0.870933 0.843764 0.838209

5 0 a7 03 b1 b2 0 0.926323 0.870929 0.842095 0.836611

6 0 d2 0 0 0 0 0.901911 0.8127a7 0.916681 0.952s78

7 a1 0 0 0 0 b 0.901493 0.942531 0.991502 o.992746

8 a1 0 0 b1 b2 b3 0.902705 0.965544 0.991556 o.996442

?1 a2 0 b1 b, 0 0.795111 0.8207s1 0.897055 0.943926



Table: 3-

Values ofvarious structue parameters and other physical quantity for differentially rotating polltropic models for different indices

Model+
Vr, X 10- 56 x 10-2 o t ap uc T./7,

N =2.0 N =2.5 N =2.0 N =2.5 N =2.0 N =2.5 N =2.0 N =2.5 N =2.0 N =2.5 N =2.0 N =2.5 N =2.0 N=2.5 N =2.O lV ,= 2.5
1 3.45474 6.43332 2.38101 3.50391 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
2 4.4914s 8.55679 2.82tO8 4.39t32 0.3101 o.4575 o.2367 0.3139 0.6733 0.8s84 0.7381 o.8522 0.8948 0.8s38 0.4893 0.3645
3 4.4L784 7.784L2 2.79953 4.09883 0.2880 0.1570 o.2236 0.143 1 0.6747 0.5292 0.1537 o.L241 0.9201 o.9672 0.5565 0.7s00
4 4.26607 8.20816 2.76975 4.32tO2 0.2439 0.3961 0.1961 o.2837 0.5733 0.8584 0.0058 0.0820 0.9642 0.91.L7 0.6948 0.,1950
5 4.21945 8.20884 2.76520 4.32tL6 o.2281 0.3962 0.1857 0.2838 0.6733 0.8584 0.1299 0.979t 0.9115 o.7484 o.4947
5 4.45403 8.61097 2.8263t 4.40368 0.3435 0.4509 0.2557 0.3108 0.7381 0.8485 0.7381 0.8486 0.8948 0.8561 0.4772 o.3702
7 4.45453 7.O84t6 2.82662 3.84041 o.3445 0.1506 0.2553 0.1309 0.7394 0.5130 o.7394 0.5130 o.8944 0.9548 o.4760 0. 753 1
8 4.38321 7.70932 2.80836 4.07135 o.3229 0.1555 O.2ML 0.1346 o.7394 0.s130 0.1s03 0.0900 0.9173 o.97L7 0.5351 0.4698
9 3.82841 7.70968 2.60493 4.15098 0.5029 o.49L6 0.3346 0.3295 L.0447 0.9915 o.L494 0.0632 0.8700 o.874L 0.3812 0.3914

N=3.0 lv = 3.25 N=3.0 N = 3.25 /V = 3.0 N :3.25 IV = 3.0 N : 3.25 N=3.0 N = 3.25 /V = 3.0 N = 3.25 iV = 3.0 N = 3.25 Ar = 3.0 N '= 3.25
L 1.374t7 2.15992 5.97738 8.08060 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
2 1.70835 2.60452 7.LO276 9.48465 o.4732 o.4677 o.32t2 o.3L87 o.9522 0.9753 o.7455 0.6326 o.8747 0.8848 0.3974 o.4776
3 r.7t827 2.7L955 7.74771 9.81530 o.2239 0.2957 0.1829 o.2282 o.6679 0.7745 0.0508 0.0409 0.9790 0.9508 0.7505 o.6577
4 1.60955 2.57069 7.04060 9.436L5 0.442L 0.4507 0.3066 0.3107 o.9522 0.9753 0.0005 0.0004 0.9021 0.8996 0.4591 0 4515
5 r.72870 2.70275 7.t7767 9.50519 o.4920 0.5191 0.3298 o.34L7 0.9522 0.9753 0.5924 o.7423 0.8596 0.8409 0.3559 o l)92
6 1.95484 2.99378 7.58551 10.0s00 0.3809 0.2782 0.2758 0.2176 0.7455 0.6325 0.7455 0.5325 0.8812 0 9189 o.4367 0.5577
7 1.48381 2.22232 6.28996 8.23503 0.0531 0.0256 0.0504 o.22LO 0.3085 o.2210 0.3085 0.9982 0.9933 0.9982 o.9245 0.9680
I 1.48064 2.24675 6.28242 8.29555 0.0515 0.0254 0.0490 o.0248 0.308s 0.22L0 0.0820 0.0631 0.9954 0.9989 0.9337 0.9709
9 1.8977L 2.98911 7.51098 10.1007 0.3946 0.2884 o.2829 0.2238 0.8068 0.670t 0.0458 0.0375 0.9015 0.9326 o.4737 0.5872

L./ L,



Table: 4:-

Values of 94,for certain differentially polytropes

TO

x
r^"

Model-l Model-2 Model-3 Model-4 Model-5 Model-6 Model-7 Model-8

N -- 2.0 N =2.5 N =2.0 N =2.5 N =2.0 N =2.5 N =2.0 N=2.5 N =2.0 N =2.5 N =2.0 N =2.5 N =2.0 N =2.5 N =2.0 N=2.5

0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

0.1 o.96922 0.95416 0.97390 0.96512 o.97384 0.95741 o.97362 0.96492 0.97350 0.96492 o.97487 0.96484 o.97489 0.95912 0.97483 0.95715

0.2 0.88284 0.83313 0.89971 0.86990 0.89951 o.84379 0.89871 0.86926 o.89832 0.85926 0.90329 0.86893 0.90338 0.84955 0.90313 0.84299

0.3 o.75804 0.67591 0.78983 0.73855 o.78944 0.59345 0.78790 o.73742 o.78714 0.73742 0.79675 o.73684 0.79691 0.70335 o.79643 0.6921

o.4 0.61548 o.5L776 0.55967 0.59508 0.65911 0.53858 0.55688 0.59460 0.55578 0.59460 0.55963 0.59383 0.56987 0.55135 o.569t7 u.55

0.5 o.4731r o.37846 o.s2370 0.46016 0.52302 0.39902 o.52034 0.45854 0.51901 o.45854 0.s3562 0.45768 0.53593 o.4L285 0.53s08 0.39735

0.6 o.34289 0.26409 o.39287 0.33965 o.392t7 o.28t76 0.38937 0.33813 0.38797 0.33813 0.40539 0.33722 0.40570 0.29555 0.40480 o.28027

o.7 0.23059 o.Lt325 o.27385 o.23682 o.27323 0.18584 o.27071 0.23558 o.26942 0.23558 0.28s53 o.23463 0.28582 0.19991 0.28502 0.18563

0.8 0.13733 0.10179 o.t6944 0.14985 o.16901 0.11097 0.16710 0.14903 0.16610 0.14903 0.17895 0-14807 0.17919 0.123 11 o.t7862

0.9 0.06143 0.04526 o.07927 0.07409 0.07908 0.05002 0.07804 o.ol37 4 o.o7746 o.o7374 o.08522 o.o7292 0.08537 0.06131 0.08509 0.04953

1.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

N=3.0 N = 3.25 N=3.0 N = 3.25 N=3.0 il = 3.25 IV = 3.0 N = 3.25 N=3.0 N = 3.25 N :3.0 N = 3.25 N=3.0 N = 3.25 N=J.U N = 3.25

0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

0.1 0.92U5 0.90350 0.94656 0.93021 0.93403 0.91791 o.94657 0.93020 0.94581 0.93050 0.93753 0.91166 o.92762 0.90477 0.9276r 0.90412

o.2 o.75344 o.69704 0.81250 o.76680 0.77489 0.73351 o.8L224 0.76659 0.81289 o.7674L 0.78501 0.7L730 0.75565 0.70014 o.75bbJ

0.3 0.56497 0.49860 0.65027 0.588s6 0.59450 0.54399 0.64987 0.s8839 o.55084 0.5893s 0.50915 o.52328 0.56925 o.50232 0.55923 I u.5uujb

0.4 0.40581 o.34729 0.49783 0.43656 o.43622 0.39083 0.49738 0.43637 o.49847 o.43735 0.45190 0.37044 0.41002 o.35077 0.40999

0.5 0.28388 0.23886 0.35993 0.31814 0.31085 o.27633 0.369s1 0.31795 0.370s6 0.31885 0.32552 0.25828 0.287 4L 0.24t79 o.z8t 36 u..a4uuv

0.5 0.19299 o.15104 0.26748 o.22793 0.21504 0.19169 0.267t2 0.22776 0.26803 0.22850 o.22775 0.L7646 0.19566 0.16341 0.19563 l-+
o.7 o.t249L 0.10385 0.18605 0.15845 0.14188 0.12805 0.18578 0.15829 0.18650 0.15885 0.15230 0.11559 0.72675 0.10573 o.L261 I U.lt:
0.8 o.o7295 0.05054 0.11985 0.10285 0.08500 o.07853 0.11969 0.10259 0.12018 0.10305 0.09294 0.05888 0.07408 0.05204 o.o140t U.UbU9U

0.9 0.03233 0.02578 0.06209 0.05437 o.03918 o.o3770 o.06204 0.05416 o.06229 0.05434 0.04409 0.03155 0.03286 o.o2796 0.03285 0.0269s

1.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 o.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.11010

0.69854

I U.54660

+-
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1.4

s

Behavior of square of angular velocity Yersus 's' for index 2.0
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Abstract

Let R: Dfx;o,6] be an Ore extension of D in an indeterminatex, where D is a

Noetherian integrally closed domain, o is an automorphism of D and 6 is a left o-
derivation of D. The aim of this paper is to describe explicitly rhe group of divisors of
R. This is done by pointing out all prime v-ideals of R.

1 Introduction

In this paper, D denotes a Noetherian integrally closed domain with quotient field K except

for Lemma I and R : Dlxl,o,6] denotes an Ore extension of D, where o is an automorphism

of D, and 6 is a left o-derivation of D. It is shown that prime v-ideals of R are either

p[x;o,6] or P by the Goodearl's classification of prime ideals, where p is a (o,6)-prime
v-ideal of D and P is a prime ideal of R with PnD: (0) and P * (0).We apply this result

to determine the group of divisors of R. We refer the readers to the book [5] for order theory

and Ore extensions (skew polynomial rings).

Keywords and phrases : Ore extension; Noetherian integrally closed domain; Divisor class group; Prime

v-ideal.
AMS Subject Classification : Primary 16536; Secondary 16D25.
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2 The group of divisors of an Ore extension

We use following notation. Let S be a ring with quotient ring Q(S), and let 1 (J) be a
fractional right (left) S-ideal. Then

(s:1)1 :{qeQlqIQS} and (S:"r),={seellse s},

which is a fractional left (right) S-ideal, and 1, : (S: (S : I)1), (,J: (S: (S: "/),)1) is a
right (left) S-ideal containing / (J). I (/) is called a right (left) v-ideal it I : Iv (J : yJ).
A fractional left arld right S-ideal A is said to be a v-ideal if *{ :A:A,.If a v-ideal A is
contained in ,S, then we say that A is a v-ideal of S. We denote by Spec(S) the set of prime
ideals of .i. In particular, Specs(R) : {P e Spec(R) lPnD: (0)}.

Let P be a prime ideal of R and p : POD. Then, in [3, Theorem 3.1], Goodearl proved
that there are two cases:

(a) p is a (o, 6)-prime ideal of D.

(b) p is a prime ideal of D and o(p) lp.
In the case @), P is not a minimal prime ideal by following Lemma.

Lemma 1 kt P be a prine ideal of R = D[x;o,6], where D is a commutative Noetherian
domain, and let p : P nD. Ilp is a pime i.deal of D with o (p) + p, then p is not a minimal
pime ideal of R.

Pmof. This follows implicitly from the proof of [3, proposition 3.5], but we give the
outline of the proof for reader's convenience by using Goodearl's notation: Let y be an
indeterminate and r : €[r,(plyl). Set D" = Db]Y -t and Ro = Rbly-l. Goodearl showed

ttrat R" : Dly]y-rk; o,6] : 2" 1r' ol, where r' :.r - D for some & e Do and po : pDo *
"r"R" is a prime ideal of Ro such that R"/P" is a commutative domain. Hence p" nR is a
prime ideal withp = P'OD and so, by uniqueness, P : P" n R. Put pi : r.Ro, a completely
prime ideal of R' with P" : Pi and so 4 : Pi nR is also a completely prime ideal of R
since R/P1 cR'1ry.ff Pt = P, then Pr ) p and soPi ) pD. +r"R": p., a contradiction.
Hence P is not a minimal prime ideal. D

Corollary 2 kt P be a prime ideal of Randp--pnD. IIp is in the case (b), then p is not
a pime v-ideal.

Proof. Since D is a Noetherian integlally closed domain, R is a maximal order by [],
Theorem 3.1.81. If P is a v-ideal, then p is a minimal prime ideal by [5, proposition 5.1.91,
which contradicts Lemma 1. Hence P is not a prime v-ideal. n

Set o' : o-l and 6r = -6o-1. Then o, is an automorphism of D and 6, is a right
or-derivation of D, and R = D[-ri6,,6t) = lf on+...+ ql a1e D].

Lemma 3 Let o be a fractional D-ideal. Then

(R : of"r;o,61)7 : (D: o)11.r; o',6r) ant (R: olx;ot,6,)), = (D: o),[.r; o, d].

In particula4 we have (o[x;o,6]), : o,[x;o,6] and u(ofx;o, ,6tl): ,,0 [x;o,,6,].
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Proof. Let Kbe the quotient field of Dand let q € (R:c[.r;o,6])1. Then qof.r;o,6] cR
and so

q e qKlxi o, 6l : qoKlxi o, 6) c RK!r; o, 6l : r[r; o, 5].

Hence q: {qn1... + qo for some 4, € K. Then qia C RflK: D and so qi € (D : 0),.

Thus q € (o: o)1[.r;o',6'] and we have (R: o{4o,6])7 c (D: o)1[.r;o',6']. The converse

inclusion is clear. Hence (R: o[x;o,6])1 : (O: o)7[.r;o/,6/]. The other statements are

proved similarly. !
It is clear that a maximal v-ideal of R is a prime v-ideal, and prime v-ideal is a minimal

prime ideal by [5, Proposition 5.1.9] because R is a maximal order Hence a prime v-ideal

implies a maximal v-ideal.

Proposition a {p[-r;o,6], P I p is a (o,5)-pime v-ideal of D and P e Speco(R) with P I
(0)\ is the set of prime v-ideals of R.

Pmof. LetI:Kk;o,6landlet6:D-{0}.ThenGis a regular Ore set of R such

that T : Re . Hence there is a one-to-one correspondence between Specs(R) and Spec(T)
(ci [2, Theorem 9.22]) given by P t+ F = PT and P/') P/nR, where P € Specq(R) and

P/e Spec(I).
LetPe Spec6(R) withPl (0). Then, since Ris Noetherian and T is a principal ideal

ring, we have

Pr : P : I : Q : Q : P)1), = (r : r(R : P)1), = (R : (R : P) 1),r - P,r,

and so P : P, foltows. Similarly we have P : ,,P and hence P is a prime v-ideal. Next let p

be a (o,6)-prime v-ideal of D. Then p[x; o,6] is a prime ideal by [3, Proposition 3.3] and

it is a v-ideal by Lemma 3.

Conversely, let P be a prime v-ideal ofR with p = PoD I (0). Then, by lemma 3,

p,k; o,6l : (pk; o,6]), e P, = P and so pu e PnO: p. Hence p is a v-ideal. Furthermore,

by Corollaly 2, p is a (o,6)-prime ideal, and so pl.r; o,6l is a prime ideal by [3, Proposition

3,31. Since P is minimal prime, P : p[r; o,6]. This completes the proof. !

Let S be a Noetherian prime ring which is a maximal order in B(S), and let G(S) :
{A I A is a v-ideal}. Then G(S) is an abelian $oup generated by prime v-ideals ofS with
multiplication A oB = (AB)v by [4, Theorem II,2,6] . G(S) is called the group ofdivisors of
S. Similarly, let Go,5(D) : {a I c is a (o,6)-v-ideal}. Then it is an abelian group generated

by (o,6)-prime v-ideals ofD. Hence, by Proposition 4, any v-ideal is of the form

(pr"' k;o,61...pr"*[x;o,61 pi,... 4,)",
where e; and nj are integers, p; is a (o,6)-prime v-ideal of D and P1 € Spec6(R) with
Pi I (0). Thus we have the following:

Pmposition 5 G(R) =Gd,6(D)eG(r).
The correspondence is given by

(p,", [.r : o, 6]... pfl k;o, 61 4' ... 4'), * ((p,"' ... pl),, 4^' .. - Pt''),

wherepiisa(o,6)-primev-idealofDfori:l,...,k,andP1€Specg(R)withPll(O)and
Pj: Pjr for j:1,...,t.
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Remark. Chamarie obtained a similar result of proposition 5 only when o or d is trivial
(cf. [. Theorems 3.2.6 and 3.3.4]).
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Abstract

In the present paper we discuss the angle of collision occurring in the study of
transport properties of the noble gases and their binary mixtures at low density in

terms of Riemann-Liouville and Sneddon fractional integral operators.

I Introduction

Transport properties viz. viscosity, thermal conductivity and diffusion coefficient play an

irnportant role in the dynamics of noble gases and their binary mixtures. Kestin et al. [3]

gave a set of expressions for the calculation of the thermodynamic and transport properties

of noble gases under various configurations. A detailed account of transport properties is

credited to Chapman and Cowling t1l. Taking into consideration the experimental difficul-

ties in measuring these properties near the ionization, Xiufeng et al. [8] used Tang-Toennies

potential model to evaluate the transport properties of the noble gases He, Ne and of their

binary mixtures over the whole range of ternperature from 50K to ionization. They have

asserted that the proposed method is capable of extrapolation of values beyond ionization

range. Xiufeng et al. [8], at a particular occasion, made a mention of the word approx-

imation while evaluating certain collision integral where the integral is approximated by

Keywords and phrases : Fractional Integral Operators, Transport Properties, Noble Gases.

AMS Subject Classification : Primary: 26A33; Secondary: 33B 15, 33899.



using 15 point Gauss-Laguerre quadrature. Further, they have used Gauss-Mehler quadra-
ture method for the evaluation of deflectionangle using approximation technique. In this
paper, we have discussed the angle of collision in terms of operators of fractional integra-
tion. in their compact forms. The significance of the use of fractional integral operators in
the study of important properties of noble gases at high temperature is shown, which jus-
tifies the physical significance of semi-derivatives. In what follows are the equations and
expressions that occur in the evaluations of transport properties using collision integral.

2 Equations and Expressions for Collision Integrals

Following Chapman and Cowling [1] the collision integral, which is Boltzman like averages
of transport cross-section, is given by

o'0,,)(") : l- "*r,-r, x"+te(t\(kTx) d,x (t)

where k is the Boltzman constant, ? is the absolute temperature, and 1 is dimensionless
quantity in tdrms of kinetic energy of collision E.
X = E /f:f : pu2 l2kT, where p is the reduced mass of the colliding partners. Also, the
term Q(r)1.; is given by

Q(')( ) : z, 
lo* {t - co"tolbdb, (2)

where b is the impact parameter and 0 is the classical angle of deflection expressed in terms
of the integral

o:*-2bl*
" [(, - 9) R, -b,)'/'

where .Ro is the distance of closest approach and is the largest root of the equation

t'-KP] Rz:b, (4)

Moreover, Xiufeng et al. [8] used the approximation method for the integral represented by

o =, - ! [' f@)a'
R. Jo 0-r2)t/2'

| , -,, 1"',u,= l;;G_+r)l

(3)

where

where they have used the series representation of the integral in the right hand side of (5)
given by

(s)

(6)

l"' i%'':;i'G-lryl) (7)
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for n : 30.

In order to interpret the deflection angle represented by (5) in terms of fractional integral

operators, we make a brief mention of the Riemann-Liouville fractional integral operator

and that due to Sneddon (see McBride and Roach [4], Ross [6]).

3 Fractional Integral Operators

Fractional calculus is the generalization of the classical calculus of n'h derivatives and n-
times iterated integrals. It deals with the integrals and differentials of non-integer order,

which may be real or complex. Erdilyi [2], Ross [6], Saigo [7], among others, may be

referred to for further details. The most commonly used op€rators of fractional integration

ofany arbitrary order real or complex E'[/(t)] is due to Riemann-Liouville, given by

n"t/(r)l : "D;"ll@l: * [- A - t)'-1IO)dt, w(ru) > 0. (8)" f(v) J" '

If u is replaced by -v in (8), this tums into fractional derivative sustaining the convergence

condition of the integral used therein. This is expressed as

R-'Lfft)l : "Dilf$)1: -\ [" {* - r1-"-, rrr) dr, s(z) > 0. (e)
L\-u) Jc

For v : 1/2, the special cases of (8) and (9) are called semi-integrals and semi-derivatives,

respectively, which are used in the analyasis of this paper. The symbolic representation for

these derivatives and integrals are

d1/2 .f d-t/2 Iffi *a ffi, (ro)

respectiely. A wider range of applications of semi-derivatives and semi-integrals has been

embodied in Oldham and Spanier [5] may be refened to in this context and their applica-

tions to the electrical networks.

The operators of fractional integration of any order due to Sneddon over the intervals (0, z)

and (2, m) are denoted by the symbol I\,"11(t)) and K,1,"ll (t)1, respectively, and defined

by

rr,"[,f(c)l ='# I"'rr2 -u2)a-tu2tt+'1g1 au, m(o) > 0 (11)

and

x r,"lf (x)l :'# 
l,* r' - 12 )a- 

1 u- 2.,- 21t+ t y 61 au, w (a) > 0,

respectively, for D(a) > -112.
Taking a = 712 andq: -1/2, Equation (11) assumes the following representation

( 12)

i-r,r[.f(r)] : h Ir' O' - u21i-t y 
1u1 au. (13)
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4 Interpretation of 0 in terms of Fractional Integral Operators

This section deals with the interpretations of classical angle of collision in terms of two
types of fractional integral operators discussed in (8) and (11) for special values of the

parameters involved.'
Rewriting the integral appearing in (5), by using the quadratic transformation t : 't tr2, we

have

o__ 2b [" fGfrn)dtu - tt - @a, lo ,,rqt - tldv2'
which upon simplification assumes the following form

(14)

(15)

The integral (15), with an appeal to the definition (8) for u : Ll2, has the following
fractional integral interpretation, which may further be evaluated by supplying the value
of the function involved

- 2b ' 1

o:r- dilffilrlvp1"1), (16)

I
where a--| is the semi-integral, defined in (10).

dt- 2
The transformation of the type t : 'utr shapes the integral (5) into following from:

(u2 -t211-1y1t1u1at. (17)

A part of (17) resembles with the fractional integral operators of crder half as defined in
(13), that is expressed as

2b fu 1r r
o : r - Gd J" @ - t1*-11-i y 1r/-t1"1at.

o : tr -u*r-f,;Velu)).

0:r-x1,"

( 18)

The evaluation of these semi-integrals can be carried out with the condition that the function

l(tl") is measurable in the interval (0,m), i.e., "f should be locally integrable along the

positive real line.

5 Discussion

In this paper, we have interpreted the integral that occur in describing the transport prop-
erties of the noble gases and their binary mixtures near ionization at low density configu-
rations. We note that when r -+ 0 for rBo -+ oo, i.e., the colliding atom is coming from
infinity, the integral has no meaning in the low density area. Specially when we consider
the potential to be exponentially decreasing with respect to .R, i.e., f (r) : Ae-bR and use

the substitution R : rRo and r : t/u, we write f (tld : Ae-4*',it becomes trivial in
regard to the use of semi-integrals, thus (17) implies

o: n -b4 L! lb-rytj,Ro -z'2 (le)
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where I is defined in (11). Further, if we invoke the expression for the rectangular potential,

given by
( a, forr<o

ft,) :{ e, o{r!a
( 0, r>a

then the use of semi-derivatives is justified.

(20)
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