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CONNECTION IN MATHEMATICS: LUCAS SEQUENCE VIA ARITHMETIC
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Bijendra Singh, *Manjeet Singh Teeth and **Sanjay Harne
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*Department of Mathematics, M.B. Khalsa College, Indore (M.P.), India
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Abstract. In this paper, we show the interpretation of the Lucas sequence as an arithmetic progression[1].

Lucas sequence is not an ordinary arithmetic progression. Thus we construct a new type of progression

which will include both the ordinary arithmetic progression and the Lucas sequence.

1. Introduction

Marchisotto [5] has given the idea about connection in mathematics. In this paper we show that Lucas
sequence [2] is related with arithmetic progression, because there is a relation between the way of generating
the Lucas sequence and the way of generating arithmetic progression.

2. A - Prgression for Lucas Numbers

Let f : N → R be a fixed function where N and R are the sets of the natural and real numbers and ’a’ be
a fixed real number.

The sequence

a, a+ L(1), a+ L(2) + · · ·+ a+ L(K) (1)

where, L(1), L(2) are N , is called A - progression for Lucas numbers, where, ak = a + L(K) and ak is the
kth member of A - progression, and

n∑

k=0

ak = (n+ 1)a+

n∑

k=0

L(K), when, L(K) = k.d

for the fixed real number d. We get the ordinary arithmetic progression from (1). When a = 0 and L is the
function defined by L(1) = 2, L(2) = 1, L(K + 2) = L(K + 1) + L(K), for K ≥ 1,

We get the ordinary Lucas sequence from (1). Therefore, the ordinary Lucas sequence can be represented
by an A - progression.

3. Some Generalization

We shall show that some of the generalization of this sequence can be represented by an A - progression too.

Keywords and phrases : Lucas sequence, Arithmatic progression.
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(a) When a and b are fixed real numbers and L is a function defined by

L(1) = b− a, L(2) = b, L(K + 2) = L(K + 1) + L(K) + a

We obtain from (1) the generalized Lucas sequence [2] a, b, a+ b, a+ 2b, 2a+ 3b, · · · , a0 = bo

ak = bk −

k∑

k=1

(n+ 1−K)aI

where, ai are the members of {αi}
∞

i=0.

Now we define a function L, such that L(a) = b, which relates the sequence {αi}
∞

i=0 and the sequence
{βi}

∞

i=0. If all members of the sequence b are members of sequence a, after a finite member of initial
members, then we say that b is a sequence autogenerated by a.

(b) When a, b and c are fixed real number and L is a function defined by -

L(1) = b− a, L(2) = c− a, L(3) = b+ c

L(K + 3) = L(K + 2) + L(K + 1) + L(K) + 2a

we get generalized Lucas sequence from (1),

a, b, c, a+ b+ c, a+ 2b+ 2c, 2a+ 3b+ 4c, · · · .

This sequence is also known as Tribonace sequence ([3]).

4. Lucas Numbers in Different Mathematical Areas

Let {αi}
∞

i=0 be a sequence of real numbers. We construct a new sequence {βi}
∞

i=0 related to the first one,
which is analogy of the arithmetic progression

bo = ao

bk = bk−1 +
K∑

i=1

ai




 (2)

If a0 = 0, a1 = a2 = · · · = 1, we obtain the sequence b0 = 0, b1 = 1, b2 = 3, · · · bk.

Let, Sn =

n∑

k=1

bk where, ai are members of {αi}
∞

i=0 and bi are members of {βi}
∞

i=0.

Now by mathematical induction, we get the following theorem

Theorem. For every natural number n,

(a) bn = a0

n∑

k=1

(n+ 1− k)ak

(b) sn = n · a0 +

n∑

k=1

tn+1−k ak

We have

dk = bk − bk−1 =

k∑

i=1

ai and dk = dk−1 = ak

When a sequence {βi}
∞

i=0 is given we can construct the sequence {αi}
∞

i=0 from the formulae (2), in which
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a0 = b0

ak = bk

K∑

i=1

(n+ 1− k)ai

where, ai are the members of {αi}
∞

i=1
.

Now, we define a function L, such that L(a) = b, which relates the sequence {αi}
∞

i=1
and the sequence

{βi}
∞

i=1
. If all members of the sequence b are members of sequence a, after a finite member of initial mem-

bers, then we say that b is a sequence autogenerated by a.
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Abstract. The propagation of diverging cylindrical shock waves in a low conducting gas under the

influence of a spatially variable axial magnetic induction, is investigated. The initial density of the

medium is assumed either to be uniform or to obey a power law. Also, the initial magnetic induction is

taken to vary as some power of the distance from the axis of symmetry. The total energy of the flow-field

behind the shock is not constant, but assumed to be increasing due to time dependent energy input.

The effects of variation of initial density on the propagation of the shock and the flow-field behind it are

investigated.

1. Introduction

Lin [8] has extended the Taylor’s [12] analysis of the intense spherical explosion to the cylindrical case. The
law of variation of the radius of a strong cylindrical shock wave produced by a sudden release of a finite
amount of energy was obtained. Applying the results of this analysis to the case of hypersonic flight, it was
shown that the shock envelope behind a meteor or a high-speed missile is approximately a paraboloid.

Since at high temperatures that prevail in the problems associated with shock waves a gas is inonized,
electromagnetic effects may also be significant. A complete analysis of such a problem should therefore
consist of the study of the gasdynamic flow and the electromagnetic field simultaneously. The study of the
propagation of cylindrical shock waves in a conducting gas in presence of an axial or azimuthal magnetic
induction is relevant to the experiments on pinch effect, exploding wires, and so forth. This problem both
in the uniform or non-uniform ideal gas was undertaken by many investigators, for example, Pai [9], Cole
and Greifinger [3], Sakurai [11], Bhutani [1], Christer and Helliwell [2], Deb Ray [4] and Vishwakarma and
Yadav [15]. One of the basic assumptions of these works is that the shock wave is propagated in a gaseous
medium as a result of an instantaneous release of energy along a line.

While the assumption of instantaneous energy input is considered adequate for most problems, there are
processes in which the energy input, though very rapid, can be considered to be time dependent. Examples
of time dependent energy input are the arc discharges, exploding wire phenomena and chemical energy
release (as might occur in two phase detonations). Freeman [6] has considered the propagation of shock
waves resulting from variable energy input. He has paid special attention to the case of cylindrical symmetry
in view of its particular application to the problem of cylindrical spark channel formation from exploding
wires Freeman and Craggs [7].

In the present work, we have studied the propagation of diverging cylindrical shock waves in a low
conducting and uniform or non-uniform gas as a result of time dependent energy input, under the influence
of a spatially variable axial magnetic induction. The medium ahead and behind the shock front are assumed
to be an inviscid one and to behave as a thermally perfect gas. The initial density of the gas is assumed
to be uniform or to vary as some power of distance. The total energy of the flow-field behind the shock is
not constant, but increasing due to time dependent energy input. The gas ahead of the shock is assumed

Keywords and phrases : Shock wave, Self-similar flow, Variable initial density, Variable initial magnetic induction,

Variable energy input, Low electrical conductivity.

AMS Subject Classification : 76L05.



6 J.P. Vishwakarma and Arvind K. Singh

to be at rest. Effects of viscosity, heat-conduction, radiation and gravitation are not taken into account.
Distribution of the flow variables between the shock front and the inner expanding surface are obtained,
and the effects of the variation of initial density are investigated.

2. Fundamental Equations and Boundary Conditions

The basic equations governing the unsteady and cylindrically symmetric motion of a low conducting gas are
given by Tyl [13], Sakurai [11], and Vishwakarma [14]

∂ρ

∂t
+ u
∂ρ

∂r
+ ρ
∂u

∂r
+
ρu

r
= 0 (2.1)

ρ

[
∂u

∂t
+ u
∂u

∂r

]
+
∂p

∂r
= −σB20u (2.2)

[
∂p

∂t
+ u
∂p

∂r

]
− a2

[
∂ρ

∂t
+ u
∂ρ

∂r

]
= (γ − 1)σB20u

2 (2.3)

∂B

∂r
= µσB0u (2.4)

where ρ, u, p,B are the density, velocity, pressure and axial magnetic induction, respectively, at distance r
from the axis of symmetry and at the time t, B0, is the initial magnetic induction, γ, the ratio of specific
heats, µ, the magnetic permeability, σ, the electrical conductivity, and “a” the speed of sound given by

a2 =
γp

p

The internal energy per unit mass of the gas e is given by

e =
p

ρ(γ − 1)
(2.5)

It is assumed that, due to explosion along the axis of symmetry, a cylindrical shock is produced and
propagates into the low conducting gas of density ρ0 in presence of the axial magnetic induction B0.

The density and the magnetic induction of the gas ahead of the shock are assumed to be varying and
obeying the laws:

ρ0 = ARa (2.6)

and
B0 = SR−m (2.7)

where R is the shock radius and A,α, S and m are constants.
In order to estimate the effects of a variable axial magnetic induction B0 on the propagation of the

cylindrical shock wave, the azimuthal magnetic induction is assumed to be zero.
Since σ is small, the magnetic induction may be taken continuous across the shock front Sakurai [11].

Neglecting the counter pressure, the shock conditions may be written as

us =
2

γ + 1
V

ρs =
γ + 1

γ − 1
ρ0

ps =
2

γ + 1
ρ0V

2

Bs = B0

(2.8)
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where the subscript “s” denotes conditions immediately behind the shock front and V =
dR

dt
denotes the

velocity of the shock.

3. Similarity Transformations

To obtain similar solutions, we write the unknown variables in the following form Vishwakarma and Yadav
[15]

u = V f(x)

ρ = ρ0D(x)

p = ρ0V
2P (x)

B =
√
ρ0µV b(x)

(3.1)

where f,D, P and b are the functions of the non-dimensional variable x =
r

R(t)
only. The shock front is

represented by x = 1.
The total energy of the flow-field behind the shock is not constant, but assumed to be time dependent

and varying as (cf., [5], [6] and [10])

E = E0t
k (3.2)

where E0 and k are constants. The positive values of k correspond to the class in which the total energy
increases with time. Since the flow is adiabatic and the shock is strong, this increase can only be achieved
by the pressure exerted on the fluid by an expanding surface (a contact surface or a piston). The situation
very much of the same kind may prevail in the formation of cylindrical spark channel from exploding wires.
In addition, in usual cases of spark breakdown, time dependent energy input is a more realistic assumption
than instantaneous energy input ([6]).

The total energy of the flow between the shock front and the inner expanding surface (piston) is therefore
expressed as

E0t
k = 2π

R∫

rp

[
p

γ − 1
+

1

2
ρu2 +

B2

2µ

]
rdr (3.3)

where rp is the radius of the inner surface.
Applying the similarity transformations (3.1) in the relation (3.3), we find that the motion of the shock

front is given by the equation

V =
dR

dt
=

[
E0

2πAJ

] 1
2

t
k
2R

1

2
(α+2) (3.4)

where

J =

l∫

xp

[
P

γ − 1
+

1

2
Df2 +

b2

2

]
xdx

and xp being the value of x at the inner expanding surface.
Equation (3.4), on integration, yields

R =

[
α+ 4

k + 2

] 2

α+4
[
E0

2πAJ

] 1

α+4

t
k+2
α+4 (3.5)
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and therefore

V =

[
k + 2

α+ 4

]
R

t
(3.6)

After using the similarity transformations, the equations (2.1) to (2.4) change into the following set of
ordinary differential equations

(f − x)
dD

dx
+D

df

dx
+
Df

x
+ αD = 0 (3.7)

(f − x)
df

dx
+

1

D

dP

dx
+

[
k − α− 2

k + 2

]
f = −

Rmf

M2
AD

(3.8)

(f − x)
dP

dx
− γ(f − x)

P

D

dD

dx
− αP (γ − 1) + 2P

[
k − α− 2

k + 2

]
= (γ − 1)f2

Rm

M2
A

(3.9)

db

dx
= f
Rm

MA
, (3.10)

where Rm and MA are, respectively, the magnetic Reynolds number and Alfven-Mach number, and they are
given by

Rm = σµV R and MA =

[
µρ0V

2

B20

] 1
2

Using the self-similarity transformations (3.1), the boundary conditions (2.8) can be written as

f(1) =
2

γ + 1

D(1) =
γ + 1

γ − 1

P (1) =
2

γ + 1

b(1) =
1

MA

(3.11)

For the existence of similarity solutions magnetic Reynolds number Rm and Alfven-Mach number MA

should be constants, therefore

k =
α

2
and m =

2− α
2

(3.12)

where 0 ≤ α ≤ 2.

By solving equations (3.7)-(3.9) for
dD

dx
,
dP

dx
,
df

dx
and using equation (3.12) we get

dD

dx
= −

D

f − x

[
df

dx
+
f

x
+ α

]
(3.13)

dP

dx
= −D(f − x)

df

dx
+ fD −

Rm

M2
A

f (3.14)

df

dx
=

f

γP −D(f − x)2

[
(γf − x)

Rm

M2
A

−
P

f

(
γf

x
+ α− 2

)
−D(f − x)

]
(3.15)
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The condition to be satisfied at the inner expanding surface is that the velocity of the fluid is equal to
the velocity of the surface itself. This kinematic condition, can be written as

f(xp) = xp (3.16)

For exhibiting the numerical solutions it is convenient to write the field variables in the following form,

u

us
=
f (x)

f(1)
,
ρ

ρs
=
D(x)

D(1)
,
p

ps
=
P (x)

P (1)
,
B

Bs
=
b(x)

b(1)
(3.17)

The shock-boundary conditions in terms of these variables are

u

us
= 1,

ρ

ρs
= 1,

p

ps
= 1,

B

Bs
= 1 (3.18)

Now, the differential equations (3.10) and (3.13) to (3.15) may be numerically integrated, with the
boundary conditions (3.11) to obtain the flow-field between the shock front and the inner expanding surface.

4. Results and Discussion

The reduced flow variables u
us
, ρ
ρs
, p
ps

and B
Bs

are obtained by numerical integration of the differential
equations (3.10) and (3.13) to (3.15) with the boundary conditions (3.11). For the purpose of numerical
integration, the values of the constant parameters are taken as γ = 1.4; M−2

A = 0.01; Rm = 0.001;
α = 0.25, 0.50, 0.75, 1, 1.5, 2. The value α = 0 corresponds to the case of uniform initial density.

Figures 1-4 show the variation of the flow variables u
us
, ρ
ρs
, p
ps

and B
Bs

with x at various values of the
parameter α. It is shown that, as we move inward from the shock front towards the inner expanding surface,
the reduced fluid velocity u

us
decreases for lower values of α(= 0, 0.25, 0.50, 0.75, 1), but it increases for

comparatively higher values of α(= 1.5, 2); and the reduced density ρ
ρs

, reduced pressure p
ps

and reduced

axial magnetic induction B
Bs

decrease for all acceptable values of α. Table 1 shows the dimensionless position
of the inner expanding surface xp at different values of α.

The effects of an increase in the density variation index are (from Figures 1-4)

(i) to increase the velocity u
us

and the pressure p
ps

;

(ii) to decrease the density ρ
ρs

and the axial magnetic induction B
Bs

;

(iii) to decrease the slop of profiles of velocity and pressure, and to increase that of the profiles of the
density and axial magnetic induction; and

(iv) to decrease the distance (1 − xp) of the inner expanding surface from the shock front (see Table 1).
This means that the ratio of the velocity of inner expanding surface to that of the shock front increases
by an increase in α.

Table 1. Position of the inner expanding surface xp at different values of α for γ = 1.4, M−2
A = 0.01 and

Rm = 0.001

α 0 0.25 0.50 0.75 1.0 1.5 2.0

xp 0.520 0.580 0.711 0.780 0.822 0.872 0.90
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Abstract. In this paper, some results of Artinian Γ-rings are studied. If M is a semi-prime Γ-ring with

minimum condition and e is an idempotent element of M, then we have proved that MΓ is a minimal left

ideal if and only if eMΓe is a division ring.

1. Introduction

The notion of a Γ-ring was first introduced by Nobusawa [7] which is presently known as a Γ-ring in the
sense of Nobusawa. He obtained an analogue of the Wedderburn Theorem for simple Γ-ring with minimum
condition on one-sided ideals. Afterwards it was generalized by Barnes [1] in a board sense that served now a
days to call it as a Γ-ring. He obtained many importent basic properties of prime Γ-rings and prime radicals.
Luh [5] worked on primitive Γ-rings with minimal one-sided ideals and he obtained some characterizations of
these Γ-rings as certain Γ-rings of continuous semi-linear transformations. Kyuno [4] studied the structure
of a Γ-ring with minimum condition. He obtained various properties on the semi-prime Γ-rings. Gray [3]
discussed some properties of Artinian matrix rings. She also proved the Wedderbern-Artin Theorem for
classical rings. Bhattacharya, Jain and Nagpaul [2] studied Artinian rings, Artinian matrix rings and the
Wedderburn-Artin Theorem for rings. In this paper, we have generalized some results of Gray [3] in gamma
rings. At last a characterization of a semi-prime Γ-ring with minimum condition taking an independent
element has been developed here.

2. Preliminaries

Gamma Rings. Let M and Γ be two additive abelian groups. Suppose that there is a mapping
M × Γ×M →M(sending (x, α, y) into xαy) such that
(i)(x+ y)αz = xαz + yαz
x(α+ β)z = xαz + xβz
xα(y + z) = xαy + xαz
(ii)(xαy)βz = xα(yβz),
where x, y, z ∈ M and Γ. Then M is called a Γ-ring. This definition is due to Barnes [1]. The examples of
Γ-rings are given in [6].

Γ-ring with minimum condition. A Γ-ring M with identity element 1 is called a Γ-ring with minimum
condition if the ideals of M satisfy the descending chain condition or equivalently if in every non-empty set
of left ideals of M , there exists a left ideal which does not properly contain any other ideal in the set.

Artinian gamma ring. A Γ-ring with minimum condition is called an Artinian Γ-ring.

Keywords and phrases : Artinian rings, Nilpotent ideals.
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Examples of Artinian Γ-rings.
(i) Every division Γ-ring is a left Artinian Γ-ring
(ii) Every finite Γ-ring is a left and right Artinian Γ-ring.

Idempotent element. Let M be a Γ-ring. An element e of M is called idempotent if eγe = e �= 0 for
some γ ∈ Γ.

Orthogonal idempotent elements. Let M be a Γ-ring. A set of elements ei of M is called orthogonal
idempotent if eiγej = 0 for i �= j and eiγei �= 0 for some γ ∈ Γ.

Primitive idempotent. Let M be a Γ-ring. An idempotent e of M is called primitive if it is impossible
to express as the sum of two orthogonal idempotent elements.

Radical of a Γ-ring. Let M be a Γ-ring with minimum condition. The two-sided ideal which is the sum
of all nilpotent left ideals of M is called the radical of M and is denoted by rad M .

Semi-simple Γ-ring. A Γ-ring M is called semi-simple if rad M = 0.

Simple Γ-ring. A Γ-ring M is called a simple Γ-ring if MΓM �= 0 and its ideals are 0 and M.

Annihilator of a subset of a Γ-ring. Let M be a Γ-ring. Let S be a subset of M . Then the left
annihilatorl(S) of Sis defined by the set of all elements m ∈ M such that mΓS = 0, whereas the right
annihilator r(S) of S is defined by the set of all elements m ∈M such that SΓm = 0.

Semi-prime Γ-ring. A Γ-ring M is called semi-prime if and only if aΓMΓa = 0, with a ∈M implies that
a = 0.

For the other terminologies and notations we refer to Barnes [1]

3. Nilpotent Ideals and the Radical

Theorem 3.1. (Hopkin’s Theorem). If M is a left Artinian Γ-ring then every nil left ideal is nilpotent.

Proof. Let A be a non-nilpotent left ideal in M. Since M is left Artinian, the family of all non-nilpotent
left ideals of M contained in A has a minimal element, say A1. We have A1ΓA1 ⊂ A, but since A1 is
non-nilpotent, A1ΓA1 is non-nilpotent. Thus by the minimality oa A1, A1ΓA1 = A1.
Now we let C be the family of all left ideals B of M such that A1ΓB �= 0 and B ⊂ A1. C is non-empty,
since A1 ∈ C. Hence C has a minimal element, say B1. Let x ∈ B1 such that A1Γx �= 0. A1Γx is a left ideal
in M, A1Γ(A1Γx) = (A1ΓA1)Γx = A1Γx �= 0 and A1Γx ⊂ A1. Hence A1Γx ∈ C and since A1Γx ⊂ B1,

A1Γx = B1.
Let a ∈ A1 be such that aγx = x for some γ ∈ Γ. Then for any positive integer n,

(aγ)na = (aγ)n−1a = ......... = aγx = x.

Hence (aγ)na �= 0 for all positive integers n, that is, a is not nilpotent. But a ∈ A1 ⊂ A. Hence A is not nil.
Thus the theorem is proved.

Theorem 3.2. (Brauer’s Theorem). If M is a left Artinian Γ-ring then any non-nilpotent left ideal in M
has a non-zero idempotent element.

Proof. As in Theorem 3.1 (Hopkin’s Theorem), we let A1 be a minimal element of the family of all non-
nilpotent (and hence non-nil) left ideals of M which are contained in a given non-nilpotent left ideal A.
Let a be given non-nilpotent element of A1. Then MΓa ⊂ A1 and is non-nilpotent since aγa ∈ MΓa for
some γ ∈ Γ. Thus MΓa = A1 by minimality. Similarly MΓ(aγa) = A1. Thus there is an a1 ∈ MΓa
such that a = a1γa. Then (a1γa1)γa = a1γ(a1γa) = a1γa = a so a1γa − (a1γa1)γa = 0 implies that
(a1 − a1γa1)γa = 0 and hence (a1 − a1γa1) ∈ L(a) ∩MΓa, where L(a) is the set of left annihilator of a.
Now we let a2 = a+ a1 − aγa1 so that a2 = (a+ a1 − aγa1)γa = a.

Also (a1 − a1γa1)γa2 = (a1 − a1γa1)γ(a + a1 − aγa1) = a1γa1 − (a1γ)
2a1. Since a2γa = a, a2 is not

nilpotent. Hence MΓa2 =MΓa = A1 and L(a2) ∩MΓa ⊂ L(a) ∩MΓa.
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Either a1γa1 = (a1γ)
2a1 or a1γa1 �= (a1γ)

2a1. If a1γa1 = (a1γ)
2a1, then (a1γa1)γ(a1γa1) = (a1γ)

2a1γa1 =
a1γa1, so a1γa1 is idempotent and we are finished.

On the other hand, if a1γa1 �= (a1γ)
2a1, then (a−a1γa1)γa2 �= 0 and (a1 − a1γa1) �∈ L(a2) ∩MΓa.

Therefore L(a2) ∩MΓa ⊆ L(a) ∩MΓa.

We can now repeat the process with a2 playing the role of a. We obtain elements a3, a4 ∈ A1 such
that either a3γa3 = (a3γ)

2a3 or a3γa3 �= (a3γ)
2a3 and L(a4) ∩MΓa ⊂ L(a2) ∩MΓa. If a3γa3 = (a3γ)

2a3,

then a3γa3 is our desired idempotent. If a3γa3 �= (a3γ)
2a3, then the containment is strict. Thus if an

idempotent is not obtained after a finite number of steps, we have an infinite descending chain of left ideals,
contradicting the fact that M is left Artinian. Hence the theorem is proved.

If all the non-zero ideals of an Artinian Γ-ring are non-nilpotent, we can strengthen the above result as
follow:

Theorem 3.3. Any non-zero left ideal in a semi-simple Γ-ring M has an idempotent generator.

Proof. Let A be a non-zero left ideal of M. Since M is semisi-mple, A is non-nilpotent and by Brauer’s
Theorem (Theorem 3.2), A has a non-zero idempotent element. Using the minimality condition, we chose a
non-zero idempotent e ∈ A such that L(e) ∩ A is as small as possible.

Suppose L(e) ∩ A �= 0. Then L(e) ∩ A is non-nilpotent and thus contains a non-zero idempotent e1.
Let e2 = e + e1 − eγe1 for some γ ∈ Γ. We note that e2 �= 0. Then e2 ∈ A and since e1γe = 0, we have
e2γe2 = (e+ e1 − eγe1)γ(e+ e1 − eγe1) = e2.

Moreover, L(e2) ∩ A ⊂ L(e) ∩ A, since e2γe = e + e1γe + eγe1γe = e and so if xγe2 = 0, we have
xγe = xγe2γe = 0. But e1γe = 0 so that e1 ∈ L(e)∩A and e1γe2 = e1γe+ e1− e1γeγe1 = e1 �= 0 and hence
e1 �∈ L(e2) ∩ A.

Thus, L(e2) ∩ A ⊆ L(e) ∩ A, which is a contradiction. Hence we must have L(e) ∩ A = 0.

Now we let x ∈ A. Then (x− xγe)γe = xγe− xγeγe = xγe− xγe = 0, so x− xγe ∈ L(e) ∩ A = 0 and
therefore xγe = x. Thus A =MΓe and eγe = e. Hence the theorem is proved.

In general the generator of Theorem 3.3 is not unique, but we do have:

Theorem 3.4. Any non-zero ideal A in a semi-simple Γ-ring M has a unique idempotent generator.

Proof. Let A =MΓe, e is anon-zero idempotent. Clearly Ar = R(e) and (A ∩ Ar)Γ(A ∩ Ar) ⊂ ArΓA = 0.
A ∩ Ar is a right ideal in M and since M is semi-simple, it has no non-zero nilpotent right ideals. Hence
A ∩ Ar = 0.

For each x ∈ A, eγ(x− eγx) = 0 so x− eγx ∈ R(e)∩A = Ar ∩A = 0. Thus x = eγx for all x ∈ A. Also
for any x ∈ A, x ∈ RΓe, that is, x = mγe for some m ∈ M, so that xγe = (mγe)γe = mγ(eγe) = mγe = x.
Hence e is a two-sided identity in the Γ-ring A and as such is unique.

4. Direct Sum Decomposition

Let M be a Γ-ring and M1, M2, ... ... ..., Mn be sub-Γ-rings of M, M is the direct sum(internal) of M1,
M2, ... ... ..., Mn, written as M = M1 ⊕M2 ⊕ ......... ⊕Mn, if M = M1 +M2 + ......... +Mn and for each
i = 1, 2, ........., n, Mi ∩ (M1 +M2 + ...Mi−1 +Mi+1 + .........+Mn) = 0, where the caret indicates omission.
This is equivalent to saying that each m ∈M can be written uniquely in the form m1 +m2 + .........+mn,

mi ∈Mi.

We now establish a series of theorems giving us the structure of a semi-simple Γ-ring in terms of its
minimal ideals.

Theorem 4.1. Let A be an ideal in a semi-simple Γ-ring M. Then A⊕As =M and this decomposition is
unique in the sense that if M = A⊕K for an ideal K in M, then K = As.

Proof. We first show that As = Ar.We have AsΓA = 0, (AΓAs)Γ(AΓAs) = AΓ(AsΓA)ΓAs = AΓ0ΓAs = 0
and AΓAs = 0 by semi-simplicity. Hence As ⊂ Ar. But similarly Ar ⊂ As. Hence As = Ar.
Let A = MΓe, e is idempotent. Then Ar = R(e) so that eγx = 0 for some γ ∈ Γ and x = x − eγx =
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(1 − e)γx ∈ (1 − e)ΓR. Furthermore, if x ∈ (1 − e)ΓM, that is, x = m − eγm for some m ∈ M, then
eγx = eγ(m − eγm) = eγm − eγeγm = eγm − eγm = 0. Hence x ∈ R(e.) Therefore As = Ar = R(e) =
(1− e)ΓM =MΓ(1− e).

Now we let x ∈M. Then x = eγx+x−eγx = eγx+xγ(1−e) so x ∈ A+As and M = A+As. Suppose
y ∈ A∩As =MΓe∩MΓ(1− e). Then y = qγe = p− pγe for some p, q ∈M. Hence yγe = qγeγe = qγe = y
and yγe = (p− pγe)γe = pγe− pγeγe = pγe− pγe = 0. Therefore y = 0 and A∩As = 0. Thus M = A⊕As.

Now let M = A⊕K, where K is an ideal of M. Then KΓA ⊂ A∩K = 0. Thus K ⊂ As. On the other
hand, let x ∈ A. Then x = p + k, where p ∈ A, k ∈ K are unique. Then x − k = p ∈ A ∩ As = 0. Hence
x = k ∈ K. Thus As ⊂ K. Hence As = K.

Theorem 4.2. A semi-simple Γ-ring has only a finite number of minimal ideals and is their direct sum.
Moreover, each minimal ideal is a simple Γ-ring.

Proof. We first show thatM is the direct sum of minimal ideals. Let C be the family of all ideals ofM of the
formM1⊕M2⊕.........⊕Ms, where theMi are minimal ideals ofM. C is not empty, sinceM has minimal ideals.
Since M has maximal condition for right ideals, C has a maximal element say S =M1⊕M2⊕ .........⊕Mn.

Suppose S �= M. By Theorem 4.1, M = S ⊕ St and St �= 0. St must contain a minimal ideal, say Mn+1 of
M. Then S ⊕Mn+1 ∈ C and S is not maximal. Hence S = M. Now let M0 be any minimal ideal of M.
Then M0 =M0ΓM =MΓ(M1⊕M2⊕ .........⊕Mn) ⊂M0ΓM1⊕M0ΓM2⊕ .........⊕M0ΓMn. Since M0 �= 0,
we have M0ΓMi �= 0 for some i. However M0ΓMi ⊂ M0 and M0ΓMi ⊂ Mi. Therefore M0 = M0ΓMi =Mi.

Thus any minimal ideal of M is one of the ideals in the direct sum representation.

We note that minimal ideals in semi-simple Γ-rings must always be idempotent, since they can not be
nilpotent. Now let A be an ideal in M1, M1 is a minimal ideal of M. Since the algebraic structure of M is
determined by those of its direct summands, A is an ideal of M. Thus A = 0 or A = M1 and M1 is simple
Γ-ring.

We restate the above result:

Fundamental Theorem of Semi-simple Γ-rings: Every semi-simple Γ-ring is the direct sum of a finite
number of simple Γ-rings.

Next we shall consider the structure of left ideals in semi-simple Γ-rings. As usual, analogous results
can be obtained if the definitions are made in terms of conditions on right ideals.

Lemma 4.3. Let A be a left ideal in a semi-simple Γ-ring M and B1 a left ideal of M such that B1 ⊂ A.
Then there exists a left ideal B2 of M such that B2 ⊂ A and S = B1 ⊕B2.

Proof. If B1 = 0, B2 = A, so we assume that B1 �= 0. We let A = MΓe, B1 = MΓe1, e and e1 are
idempotents and let B2, the set of all x− xγe such that x ∈ A and γ ∈ Γ. B2 is clearly a left ideal of A. If
x ∈ A, we may write x = xγe1 + (x− xγe1); thus A = B1 +B2.

We now let z ∈ B1 ∩B2. Then as in the proof of Theorem 4.1, z = xγe1 = y − yγe1 for some x, y ∈ A
and so z = xγe1 = xγe1γe1 = zγe1 = (y − yγe1)γe1 = yγe1 − yγe1γe1 = yγe1 − yγe1 = 0. Therefore
B1 ∩B2 = 0 and A = B1 ⊕B2.

We still need that B2 is a left ideal of M. We let x − xγe1 ∈ B2 and m ∈ M. Then mγx ∈ A and so
mγ(x− xγe1) = mγx−mγ(xγe1) ∈ B2, giving the desired result.

Lemma 4.4. In a semi-simple Γ-ring M, an idempotent e is primitive if and only if MΓe is a minimal left
ideal of M.

Proof. We know that if A = MΓe is not minimal, it has a non-trivial direct sum decomposition as in
Lemma 4.3. We show that B1 and B2, where A = B1 ⊕ B2, have orthogonal idempotent generators. Let
B1 = MΓe1, B2, the set of all x − xγe1 such that x ∈ A and γ ∈ Γ as above and let e′1 = eγe1 and
e′2 = e − eγe1. Then e

′

1 and e′2 are idempotents and e′1γe
′

2 = e′2γe
′

1 = 0. Since e1 ∈ MΓe, e1γe = e1 and
so e1 = eγe1 = e1γeγe1 = e1γe

′

1. Since e
′

1 ∈ B1, MΓe′1 ⊂ B1 and for x ∈ B1, x = mγe1, m ∈ M and
thus x = e1γeγe

′

1, which is in MΓe′1. If x ∈ A, then x = mγe, m ∈ M. Hence, B2, the set of all x − xγe1
such that x ∈ A = the set of all mγe −mγeγe1 such that m ∈ M = the set of all mγ(e − eγe1) such that
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m ∈ M = the set of all mγe′2 such that m ∈ M = MΓe′2. Therefore, e = e′1 + e
′

2, where e
′

1 and e′2 are
orthogonal idempotents and MΓe =MΓe′1⊕MΓe′2. On the other hand, if A =MΓe and e = e1+ e2, where
e1 and e2 are non-zero idempotents and e1γe2 = e2γe1 = 0, then 0 ⊂ MΓe1 ⊂ A. For if e2 ∈ MΓe1, then
0 = e2γe1 = xγe1γe1 = xγe1 = e2, x ∈M, a contradiction. Hence A is not minimal.

Lemma 4.5. Any idempotent e in a semi-simple Γ-ringM can be written as the sum of mutually orthogonal
primitive idempotents.

Proof. Let A =MΓe, where e is a non-zero idempotent. If A is minimal, e is primitive and we are finished.
If A is not minimal, there exists a minimal left ideal B1 of M such that B1 ⊂ A. Then by Lemma 4.3, there
exists an ideal B′1 such that B′1 �= 0 and A = B1⊕B

′

1 and by Lemma 4.4, there exist orthogonal idempotents
e1 and e

′

1 such that B1 =MΓe1, B
′

1 =MΓe′1 and e = e1 + e
′

1. Since B1 is minimal, e1 is primitive. If B′1 is
minimal, then e′1 is primitive and we are finished.

If B′1 is not minimal, we decompose it as B′1 = B2⊕B
′

2 as above, e2 and e
′

2 are orthogonal idempotent
generators of B2 and B

′

2 respectively. Since B2 is minimal, e2 is primitive and e = e1 + e2+ e
′

2. Now e1 and
e2 are orthogonal, since e1γe

′

1 = 0 and thus e1γe2 + e1γe
′

2 = 0 while e′2γe2 = 0.
0 = (e1γe2 + e1γe

′

2)γe2 = e1γe2γe2 + e1γe
′

2γe2 = e1γe2 + 0 = e1γe2 and similarly e2γe1 = 0.
After n steps we obtain A = B1 ⊕ B2 ⊕ .........⊕ Bn ⊕B

′

n, Bi = MΓei, i = 1, 2, ........., n, B′n = MΓe′n,
e1, e2, ... ... ...,en are mutually orthogonal and primitive and e = e1+ e2+ .........+ en+ e

′

n. But this process
must terminate in a finite number of steps, since MΓe′1 ⊇MΓe′2 ⊇MΓe′3...... and M is left Artinian. Hence
the lemma is proved.

Theorem 4.6. If M is a semi-prime Γ-ring and e an idempotent, then MΓe is a minimal left ideal if and
only if eΓMΓe is a division Γ-ring.

Proof. We first observe that eΓMΓe is a sub-Γ-ring of M with e as its identity. Suppose MΓe is minimal
and a ∈ eΓMΓe, a �= 0. Then a ∈ MΓe and so MΓa ⊂ MΓe. Hence MΓa = MΓe or MΓa = 0. But
a = eγa ∈ MΓa, so that MΓa �= 0. Therefore MΓa = MΓe. Hence e ∈ MΓa, that is , there is an x ∈ M
such that e = xγa. Then eγxγe is a left inverse in eΓMΓe for a. This, together with associativity and the
identity, gives the existence of a left inverse and the necessary uniqueness.

Conversely, suppose eΓMΓe is a division Γ-ring and that A is a left ideal of M with A ⊂ MΓe. Then
eΓA is a left ideal in the division Γ-ring eΓMΓe. Hence either eΓA = 0 or eΓA = eΓMΓe. If eΓA = 0,
then AΓA ⊂ MΓeΓA = MΓ0 = 0 and A = 0, since M is semi-prime. Now suppose that eΓA = eΓMΓe.
Then there is an x ∈ A such that eγx ∈ eΓMΓe and eγx �= 0. Also, eγxγe = eγx, since e is the iden-
tity for eΓMΓe. Moreover eγx has an inverse in eΓMΓe, say eγyγe. Then (eγyγe)γ(eγxγe) = e and
e ∈ M(eγxγe) = MΓ(eγx) ⊂ A. Then MΓe ⊂ A and A = MΓe, so that MΓe is a minimal left ideal
of M.
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Abstract. A combinatorial method has been applied to compute the Fischer matrices for SmWSn.

1. Introduction

Fischer [3] has presented a method for calculating the irreducible characters of an extension H of a group
N by a group G under certain conditions. This essentially reduces the calculation to knowledge about
the character table of the group G and it’s subgroups and also the determination of a certain matrix for
each conjugacy class of G. These matrices are called Fisher Matrices. List and Mahmoud [6] have ap-
plied this to the wreath product N � Sn. In [1] we give a combinatorial method for computing the Fischer
matrices of the generalized symmetric group Znm�Sn. In this article I apply the method to the case SmWSn.

2. Background

Let Z+ be the set of non-negative integers and let N be the set of natural numbers, then the set of all weak
m-compositions of n is denoted by A(n,m) ([1,7])

A(n,m) = {a = (a1, . . . , am)ai ∈ Z
+, 1 ≤ i ≤ m,

m∑

i=1

ai = n}

and

N(n,m) =

(
n+m− 1

m− 1

)

Now, let a = (a1, . . . , am), k = (k1, . . . , km) ∈ A(n,m) then

Ra = {R = (rij) ∈Mm(Z
+)|ri = (ri1, . . . , rim) ∈ A(ai, m), 1 ≤ i ≤ m}

Gk = {R(rij) ∈Mm(z
+)|cj = (r1j , . . . , rmj) ∈ A(kj ,m) 1 ≤ j ≤ m}

and
Ra,k = Ra ∩ Gk

If
ai = (ai1, . . . , ain), ki = (ki1, . . . , kin), 1 ≤ i ≤ m

where (aij, . . . , amj), (kij, . . . , kmj) ∈ A(nj ,m), 1 ≤ j ≤ n. Let

Ra,nl = {R = (rlij ∈Mm(Z
+)|rli = (rli1, . . . , r

l
im) ∈ A(ail, m), 1 ≤ i ≤ m}

and
Gk,nl = {R = (rlij) ∈Mm(Z

+)|Clj = (rlij, · · · , r
l
mj) ∈ A(kjl, m) 1 ≤ i ≤ m}

Keywords and phrases : Fischer matrices, generalized symmetric group, combinatorial method.
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and
Ra,k,nl = Ra,nl ∩ Gk,nl where 1 ≤ l ≤ n

Let H be the group extension of the group N by the group G, and let θ be an irreducible character of
N, then the action of H on irr(N) is defined by

θh(n) = θ(hnh−1, for h ∈ H, n ∈ N

The inertia group of θ is
Iθ = {h ∈ H |θh = θ}

and the inertia factor group of Iθ is Īθ = Iθ/N.
A character θ ∈ irr(N)is said to be extended to a character θ̃ ∈ irr(Īθ) if θ̃ = θ. Fisher [1] has presented

a method for determining the irreducible characters of H if each θ ∈ irr(N) can be extended to a θ̃ ∈ irr(Īθ)
, the method involves the constraction of a matrix for each conjugacy class of G, this matrix is called Fischer
matrix.

Let C be a class of a conjugate elements of G and let

C1, C2, ..., Ct

be the classes of H which map onto the class C under the homomorphism.

H → G ∼= H/N.

Let �1, �2, ..., �r be the classes of Īθ which fuse to C. Let θ̃ ∈ irr(Īθ) be an extension of θ to Iθ. Then by
Clifford’s t Theorem [2,4], every irreducible character of H is of the form (θ̃ · β)H .)H , where β ∈ irr(Iθ) is
such that N ⊆ Kerβ. The evaluation of (θ̃ · β)H on an element h ∈ H which maps onto an element in the
class C involves a matrix F cθ , which is called the Fischer matrix of θ at the class C. If h ∈ H is mapped onto
an element into the class C,let Li ∈ �β, 1 ≤ i ≤ r, let �ji, 1 ≤ j ≤ s be the clases of Iθ which map to �i under
the homomorphism Iθ → Īθ and let lji ∈ �ji, then:

(θ̃.β)H(h) =

r∑

i=1

s∑

k=1

|CH(h)|

|CIθ(lki)|
(θ̃.β)(lki)

=
r∑

i=1

(
s∑

k=1

|CH(h)|

|CIθ(lki)|
θ̃(lki)

)

β(li)

Since β(lki) = β(li) as N ⊆ Ker(β).
Then the Fischer sub matrix F Cθ corresponding to θ is r×t matrix with element in the ith row corresponding
to the class Cj, given by. (

s∑

k=1

|CH(h)|

|CIθ(lki)|
θ̃(lki)

)

Let θ1, θ2, ..., θp be representatives of the orbits of H acting on irr(N) such that Īθk contains a conjugate
of h, 1 ≤ k ≤ p. Then the Fischer matrix F C is the Matrix

F C =






F Cθ1

F Cθ2
...
F Cθp






Then the characters of H at the clases C1, C2, .., Ct are given by the matrix TkF
C
θk

where Tk is the frag-

ment of the character table of Īθk consisting of the columns corresponding to the classes that fuse to the C.
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3.The group SmWSn

Let Nn = {1, 2, ..., n} and Sm the symmetric group on m letters, and let

Snm = {f |f : Nn → Sm}

then the group SmWSn can be defined by

Snm × Sn = {(f ;π)|f ∈ Nn → Sm, π ∈ Sn}

where for f ∈ Snm and π ∈ Sn
fπ(i) = f(π−1(i)), i ∈ Nn,

(fπ)π′ = fππ′

and

(ff ′)(i) = f(i)f ′(i),

where

(f(i).f ′(i))(j) = f(i)(f ′(i)(j)), 1 ≤ j ≤ m

and

(f ;π)(f ′;π′) = (ff ′π;ππ
′).

The identity element in SmWSn is (e; 1Sm) where e(i) = 1Sm and the inverse of (f ;π) is (f−1
π−1

;π−1) where

f−1
π−1

= (fπ−1)
−1 = (f−1)π−1 .

The order of SmWSn is (m!)
nn!.

Let π ∈ Sn and has a cycle type (a1, a2, . . . , an) and let k1, k2, . . . , kak be the k-cycles of π, if 1 ≤ i ≤ ak,
then

ki = (ri1, r
i
2, . . . , r

i
k)

and let

bris = {(r
i
s − 1)m+ 1, (ris − 1)m+ 2, . . . , rism}, 1 ≤ s ≤ k

and denote
⋃k
s=1 bris by k̂i, then: Two elements (f ; π) and (f ′; π′) are conjugate iff π is conjugate to π′ and

the restrection of (f ;π) and (f ; π′) to k̂i are permatation isomorphic in some order for 1 ≤ k ≤ n. The
number of the conjugacy classes of SmWSn is

∑∏
p(ni)

where the sumation is taken over all p(m) tuples (n1, n2, . . . , np(m)) such that

∑

i

ni = n, 1 ≤ i ≤ p(m), ni ≥ 0.

For example the number of the conjugacy classes of S3WS5 is 108.

Any element p ∈ SmWSn may be wrtten uniquely as a product of disjoint cycles

P = θ1θ2 . . . , θr

for som r where

θi =

(
bi1 bi2 . . . biλi
ξki1bi1 ξki2bi2 . . . ξ

kiλi biλi

)
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For any θi let F (θi) =

λi∑

j=1

kij and let apq be the number of cycles of p of length q such that F (θi) ≡ p − 1

(mod) m) for 1 ≤ p ≤ m, 1 ≤ q ≤ n. Hence there is an m × n matrix (apq) which is corresponds to an
element p which is said to have type

[1a11 2a12 . . . na1n ; . . . , 1am1 2am2 . . . namn ] .

Two emements of SmWSn are conjugate if they are of the same type. The order of the conjugacy class of
SmWSn of type corresponding to the matrix (apq) is

(m!)nn!
∏

p,q

apq!(qm)apq

4. Fisher Matrices for SmWSn

If q is the number of partions of m then the irrdeducible characters of Sm are

irr(Sm) = {φ1, φ2, . . . , φq}.

Let {χ1, χ2, . . . , χt} be representitive of the orbits of G = SmWSn acting on irreducible characters of

N∗ = Sm × Sm × . . .× Sm (n copies) where χi = φk11 φ
k2
2 . . . φ

kq
q , such that (ki ≥ 0,

q∑

i=1
ki = n) and

Ii = G1 ×G2 × . . .×Gq where Gs = SswSks , s = {1, . . . , q}

and
Īi = Sk1 × Sk2 × . . .× Skq .

let x̂i be the extension of χi to Ii.We constract a matrix for each conjugacy class [σ] of Sn, then the character
table of SmWSn can be calculated using these matrices and the character tables of the inertia factor groups.
If σ of type (1n1 2n2 . . .), then

F (Sm;σ) = F (Sm; 1
n1 2n2 . . .)

I denote the entry of F (Sm; 1
n) by fn((a1, a2, . . . , aq), (k1, k2, . . . , kq)) where the column indexed by

(a1, a2, . . . , aq) denotes the conjugacy class (1a1 , 1a2 , . . . , 1aq) of SmWSn which map to the class (1n) of

Sn such that
q∑

i=1
ai = n and the row indexed by (k1, k2, . . . , kq) corresponding to the inertia group of the

character χ of Sm × . . .× Sm (n times) where χ = χk11 χ
k2
2 . . . χ

kq
q such that

q∑

j=1
kj = n.

4.1 The Fisher matrix F(Sm; 1
n)

Theorem 4.1. An entry of F (Sm; 1
n) is given by

fn((a1, a2, . . . , aq), (k1, k2, . . . , k2)) =
∑

Ra,k

(
q∏

i=1

(
ai
Rai

))





∏

1≤i≤q
1≤j≤q

(χij)
rij






Proof. Let σ ∈ Sn corresponding to the partion 1n, and let q be the number of partions of m and
χ1, χ2, . . . , χq be a complete set of irreducible charaters of Sm.

Let χ = χk11 χ
k2 . . . χ

kq
q be an irreducible character of Smn , where

q∑

j=1
kj = n, then the inertia group of χ is

Iχ = (SmwSk1)× (SmWSk2)× . . .× (SmWSkq)
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and the inertia factor group is

Īχ = Sk1 × Sk2 × . . .× Skq .

Let bk be a conjugate class of SmwSn which map to the class [σ], then bk corresponds to the partion

(1a1; 1a2; . . . ; 1aq) where
q∑

i=1
ai = n. Let Lj be a class of Īχ which fuse to [σ] in Sn then Lj corresponds to

the partion (1k1 ; 1k2 ; . . . ; 1kq) where
q∑

j=1
kj = n.

Hence, the conjugacy classes of Iχ which map to the class Lj of Īχ and conjugate to the class bk are
the classes blj which corresponding to the partion

((1r11; 1r21 ; . . . 1rq1); . . . ; (1r1q ; 1r2q ; . . . ; 1rqq))

where
q∑

i=1
rij = kj,

q∑

j=1
rij = ai.

Then by [6] the entry of F (Sm; 1
n) is given by

fn((a1, a2, . . . , aq), (k1, k2, . . . , kq)) =
∑

l

|CSmWSn(bk)|

|CIχ(blj |
χ̂(blj).

By computing the order of the centralizers and by 3.2 in[6] we get

fn(a, k) =
∑

q∑

j=1

rij=ai

q∑

i=1

rij=kj

(a1!)(a2!) . . . (aq!)

(r11!)(r21!) . . . (rqq)!




∏

1≤i,j≤q

(χij)
rij





=
∑

R=(rij)∈Ra,k

(
q∏

i=1

(
ai
Rai

)) ∏

1≤i,j≤q

(χij)
rij

=
∑

Ra,k

(
q∏

i=1

(
ai
Rai

))


∏

1≤i,j≤q

(χij)
rij





Theorem 4.2. The entry fn((a1, a2, . . . , aq), (k1, k2, . . . , kq)) of the Fisher matrix F (Sm; 1
n) is the cofficient

of xk11 x
k2
2 . . . x

kq
q in

q∏

i=1

(

q∑

j=1

χijxj)
ai

Proof. We have

q∏

i=1

(

q∑

j=1

χijxj)
ai =

q∏

i=1






∑

∑q
j=1 rij=ai

(
ai

ri1, ri2, . . . riq

)


q∏

j=1

(χjixj)
rij










=
∑

Rai




q∏

i=1

(
ai
Rai

)


q∏

j=1

(χji )
rij








q∏

j=1

x
rij
j









=
∑

Rkj




∑

Rai

(
q∏

i=1

(
ai
Rai

))


q∏

i,j=1

(χji )
rij












q∏

j=1

x
rij
j



 .

By Theorem 4.1, the result follows.

Example 4.1. The elements in column indexed by (142) in the Fisher matrix F (S4; 1
3) are the cofficients

in
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5∏

i=1




5∑

j=1

χijxj




ai

= (χ11x1 + χ12x2 + χ13x3 + χ14x4 + χ15x5)

(χ41x1 + χ42x2 + χ44x3 + χ44x4 + χ45x5)
2

= (x1 + 3x2 + 2x3 + 3x4 + x5)(x1 − x3 + x5)
2

= x31 + 3x21x2 + 3x21x4 + 3x21x5 − 6x1x2x3 + 6x1x2x5 − 3x1x
2
3

−6x1x3x4 + 6x1x4x5 + 3x1x
2
5 + 3x2x

2
3 − 6x2x3x5 + 3x2x

2
5 + 2x33

+3x23x4 − 3x23x5 − 6x3x4x5 + 3x4x
2
5 + x35.

Theorem 4.3. The entry of the Fisher matrix F (Sm; 1
n) is

fn((a1, . . . , aq), (k1, . . . , k2)) =

q∑

v=1

χuvfn−1((a1, . . . , au − 1, . . . , aq),

(k1, . . . , kv − 1, . . . , kq))

where fn−1(a1, . . . , au−1, . . . , aq), (k1, . . . , kv−1, . . . , kq) is the entry of F (Sm; 1
n−1) which is in the column

indexed by (1a1 , . . . , uau−1, . . . , qaq) and the row indexed by (1k1 . . . vkv−1 . . . qkq).
Proof. We have

q∑

v=1

χuvfn−1 ((a1, . . . , au − 1, . . . , aq), (k1, . . . , kv − 1, . . . , kq))

=

q∑

v=1

χuv
[ ∑

Rai ,i�=u
Rkj ,j �=v





∏

i
i�=u

(
ai
Rai

)









∏

i,j
i�=v

(χij)
rij






(
au − 1

Rau − 1

)





∏

j
j �=v

(χuj )
ruj




 (χuv)

ruv−1
]

=
∑

Rai ,i�=u
Rkj ,j �=v





∏

i,i�=u

(
ai
Rai

)




∏

i,j
i�=u

(χij)
rij









q∑

v=1

(
au − 1

Rau − 1

)


∏

j

χuj




ruj









=
∑

Rai,Rkj

(
∏

i

(
ai
Rai

))


∏

i,j

(χij)
rij





= fn((a1, . . . , aq), (k1, . . . , kq))

Example 4.2. In the Fisher matrix F (S4; 1
3) the value of f3((1, 0, 0, 2, 0), (1, 1, 1, 0, 0)) can be computed

from the Fisher matrix F (S4; 1
2) as follows

f3((1, 0, 0, 2, 0), (1, 1, 1, 0, 0)) = χ41((1, 0, 0, 1, 0), (0, 1, 1, 0, 0))
+χ42((1, 0, 0, 1, 0), (1, 0, 1, 0, 0)) + χ43((1, 0, 0, 1, 0), (1, 1, 0, 0, 0)
= (1)(−3) + (0)(1) + (−1)(3) = −6

4.2 The Fisher matrix F(Sm, 1
n12n2 . . . pnp)

The columns and rows of the Fisher matrix F (Sm; 1
n12n2 . . . pnp) are indexed by 1a12a2 . . . qaq and 1k12k2 . . . qkq

respectively, where
ai = (ai1, ai2, . . . , aip), 1 ≤ i ≤ q,

kj = (kj1 , kj2 , . . . , kjp), 1 ≤ j ≤ q

such that
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ai =

p∑

l=1

lail, kj =

p∑

l=1

lkjl

Let σ ∈ Sn correspond to the partion (1n12n2 . . . pnp), then the conjugacy class of SmWSn which map to
the class [σ] corresponds to the partion

(1a112a12 . . . pa1p ; . . . ; 1aq12aq2 . . . paqp)

such that

q∑

i=1

ail = nl, l = 1, 2, . . . , p

Let χ = χk11 χ
k2
2 . . . χ

kq
q be an irreducible character of SmWSn where χ1, χ2, . . . , χq are distinct character

of Sm, then
Iχ = (SmWSk1)× . . .× (SmWSkq)

and
Īχ = Sk1 × . . .× Skq .

Thus the conjugacy classes of Īχ which fase to [σ] correspond to the partion

(1k112k12 . . . pk1p ; . . . ; 1kq12kq2 . . . pkqp)

such that

q∑

j=1

kjl = nl, l = 1, 2, . . . , p.

Therefore the conjugacy classes of Iχ which map to the class Ls of Īχ and conjugate to the class bk of
SmWSn are bgs and correspond to the partion

((1r
1

112r
2

11 . . . pr
p
11); . . . ; (1r

1

q12r
2

q1 . . . pr
p
q1)) : . . . : (1r

1

1q2r
p
1q · · · pr

p
1q , . . . , 1r

1
qq2r

2
qq . . . pr

p
qq))

such that
q∑

j=1

rlij = ail, (i = 1, 2, · · · , q), (l = 1, 2, . . . , p)

q∑

i=1

rlij = kjl, (j = 1, 2, · · · , q), (l = 1, 2, . . . , p)

but the entry of the Fisher matrix F (Sm; 1
n12n2 . . . pnp) which is in the column indexed by 1a12a2 . . . qaq and

in the row in closed by 1k12k2 . . . qkq is given by

f(n1,n2,...,np)((a1, a2, . . . , aq), (k1, k2, . . . , k2)) =
|CSmWSn(bk)|

|CIχ(bgs|
χ̂bgs

where the summation is taken over g such that bgs is mapped to Ls and conjugate to bk, hence:

f(n1,...,np)((a1, . . . , aq), (k1, . . . , kq)) =
∑

Ra,k,n




∏

i,l

(
ail
Ra,nl

)






∏

i,j

(χij)

∑

l

rlij





Thus we have proved the following theorem:

Theorem 4.4. The entry of the Fisher matrix F (Sm; 1
n12n2 . . . pnp) which is in the column indexed by

1a12a2 . . . qaq and the row mindexed by 1k12k2 . . . qkq is given by

f(n1,...,np)((a1, . . . , aq), (k1, . . . , kq)) =
∑

Ra,k,n




∏

i,l

(
ail
Ra,nl

)






∏

i,j

(χij)

∑

l

rlij
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Example 4.3. In the Fisher matrix F (S3, 1
32) of S3WS5 the entry

f(3,1) ((1, 2, 2), (0, 3, 2)) = f(3,1)(((1, 0), (2, 0), (0, 1)), ((0, 0), (1, 1), (2, 0)))

=

(
1

0, 1, 0

)(
2

0, 0, 2

)(
1

0, 1, 0

)
χ12(χ

2
3)
2χ32

+

(
1

0, 0, 1

)(
2

0, 1, 1

)(
1

0, 1, 0

)
χ13χ

2
2χ
2
3χ
3
3

= (2)(1)(−1) + (2)(1)(0)(−1)(1) = −2.

Corollary 4.1. F (Sm; p
n) = F (Sm; 1

n), p, n ≥ 1.

It is clear by computing the entry of the Fisher matrix F (Sm; p
n) it will be

∑

Ra,k




∏

1≤i≤q

(
ai
Rai

)






∏

1≤i,j≤q

(χij)
rij





Corollary 4.2. F (Sm;n) is the character table of Sm.

Proof. If σ corresponds to the partion n, then ai = 0 for all i except i = u, au = 1 and kj = 0 for all j
except j = v kv = 1 and rij = 0 for all i, j except ruv = 1, thus the entry

f(ai, kj) = χij.

Hence F (Sm;n) is the character table of Sm.

Corollary 4.3. The entry of the Fisher matrix F (Sm; σ) where σ corresponds to distincit partions is given
by

∏

i,j

(χij)

p∑

l=1

rlij

Proof. Let σ corresponds to the portion (1n12n2 . . . pnp) where nl = 0, 1, l = 1, 2, . . . , p, then in the proof of
Theorem 4.4, ail = 0 for all i except i = u, aul = 1 and kjl = 0 for all j except j = u, kul = 1. Hence rij = 0
for all i, j except rluv = 1, thus the result is follows.

Example 4.4. In the Fisher matrix F (S4; 12) the entry

f(1,1,0)(13
2, 232) = f(1,1,0)((1, 0), (0, 0), (0, 1), (0, 0), (0, 0); (0, 0),

(1, 0), (0, 1), (0, 0), (0, 0))
= χ12χ

3
3 = (3)(2) = 6

Example 4.5. We consider S4WS3 as an example, S3 has 3 classes (13), (12) and (3) and the Fisher ma-
trices for each one off these classes are

1-F (S4; 3) = The character table of S4

type 13 23 33 43 53

13 1 1 1 1 1
23 3 1 -1 0 -1
33 2 0 2 -1 0
43 3 -1 -1 0 1
53 1 -1 -1 0 1
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2-F (S4; 12) =

type 13 122 123 124 125 122 23 223 224 225 132 232 33 324 325

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
122 3 1 -1 0 -1 3 1 -1 0 -1 3 1 -1 0 -1
123 2 0 2 -1 0 2 0 2 -1 0 2 0 2 -1 0
124 3 -1 -1 0 1 3 -1 -1 0 1 3 -1 -1 0 1
125 1 -1 1 1 -1 1 -1 1 1 -1 1 -1 1 1 -1
122 3 3 3 3 3 1 1 1 1 1 -1 -1 -1 -1 -1
23 9 3 -3 0 -3 3 1 -1 0 0 -3 -1 1 0 1
223 6 0 6 -3 0 2 0 2 -1 0 -2 0 -2 1 0
224 9 -3 -3 0 3 3 -1 -1 0 1 -3 1 1 0 -1
225 3 -3 3 3 -3 1 -1 1 1 -1 -1 1 -1 -1 1
132 2 2 2 2 2 0 0 0 0 0 2 2 2 2 2
232 6 2 -2 0 -2 0 0 0 0 0 6 2 -2 0 -2
33 4 0 4 -2 0 0 0 0 0 0 4 0 4 -2 0
324 6 -2 -2 0 2 0 0 0 0 0 6 -2 -2 0 2
325 2 -2 2 2 -2 0 0 0 0 0 2 -2 2 2 -2
142 3 3 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
242 9 3 -3 0 -3 -3 -1 1 0 1 -3 -1 1 0 1
342 6 0 6 -3 0 -2 0 -2 1 0 -2 0 -2 1 0
43 9 -3 -3 0 3 -3 1 1 0 -1 -3 1 1 0 -1
425 3 -3 3 3 -3 -1 1 -1 -1 1 -1 1 -1 -1 1
152 1 1 1 1 1 -1 -1 -1 -1 -1 1 1 1 1 1
252 3 1 -1 0 -1 -3 -1 1 0 1 3 1 -1 0 -1
352 2 0 2 -1 0 -2 0 -2 1 0 2 0 2 -1 0
452 3 -1 -1 0 1 -3 1 1 0 -1 3 -1 -1 0 1
53 1 -1 1 1 -1 -1 1 -1 -1 1 1 -1 1 1 -1
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type 142 242 342 43 425 152 252 352 452 53

13 1 1 1 1 1 1 1 1 1 1
122 3 1 -1 0 -1 3 1 -1 0 -1
123 2 0 2 -1 0 2 0 2 -1 0
124 3 -1 -1 0 1 3 -1 -1 0 1
125 1 -1 1 1 -1 1 -1 1 1 -1
122 0 0 0 0 0 -1 -1 -1 -1 -1
23 0 0 0 0 0 -3 -1 1 0 1
223 0 0 0 0 0 -2 0 -2 1 0
224 0 0 0 0 0 -3 1 1 0 -1
225 0 0 0 0 0 -1 1 -1 -1 1
132 -1 -1 -1 -1 -1 0 0 0 0 0
232 -3 -1 1 0 1 0 0 0 0 0
33 -2 0 -2 1 0 0 0 0 0 0
324 -3 1 1 0 -1 0 0 0 0 0
325 -1 1 -1 -1 1 0 0 0 0 0
142 0 0 0 0 0 1 1 1 1 1
242 0 0 0 0 0 3 1 -1 0 -1
342 0 0 0 0 0 2 0 2 -1 0
43 0 0 0 0 0 3 -1 -1 0 1
425 0 0 0 0 0 1 -1 1 1 -1
152 1 1 1 1 1 -1 -1 -1 -1 -1
252 3 1 -1 0 -1 -3 -1 1 0 1
352 2 0 2 -1 0 -2 0 -2 1 0
452 3 -1 -1 0 1 -3 1 1 0 -1
53 1 -1 1 1 -1 -1 1 -1 -1 1
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3-F (S4; 1
3) =

type 13 122 123 124 125 122 123 124 125 132 134 135

13 1 1 1 1 1 1 1 1 1 1 1 1
122 10 7 5 6 5 5 3 4 3 1 2 1
123 6 5 6 3 4 2 4 1 2 6 3 4
124 9 5 5 6 7 1 1 2 3 1 2 3
125 3 3 3 3 1 -1 1 1 -1 3 3 1
122 27 15 3 9 3 7 -1 3 -1 -5 -3 -5
123 36 16 20 6 8 4 8 -2 0 4 2 0
124 54 18 6 18 18 -2 -6 0 2 -10 -6 -6
125 18 2 10 12 -2 -6 2 2 -6 2 4 -2
132 12 4 12 0 4 0 4 -2 0 12 0 4
134 36 8 20 6 16 -4 0 -4 0 4 2 8
135 12 0 12 6 0 -4 0 0 -4 12 6 0
142 27 3 3 9 15 -1 -5 -3 -1 -5 -3 -1
145 18 -2 10 12 2 -6 -2 -2 -6 2 4 2
152 3 -1 3 3 -1 -1 -1 -1 -1 3 3 -1
23 27 9 -9 0 -9 3 -3 0 -3 3 0 3
223 54 12 -6 -9 -12 2 4 -3 -2 -10 3 -4
224 81 9 -27 0 -9 3 -3 0 3 9 0 3
225 27 -3 3 9 -15 -5 5 3 -1 -5 -3 1
232 36 4 20 -12 -4 0 4 -2 0 4 -4 -4
234 108 0 12 -18 0 -4 0 0 4 -20 6 0
235 36 -8 20 6 -16 -4 0 4 0 4 2 -8
242 81 -9 -27 0 9 -3 3 0 3 9 0 -3
245 54 -18 6 18 -18 -2 6 0 2 -10 -6 6
252 9 -5 5 6 -7 1 -1 -2 3 1 2 -3
33 8 0 8 -4 0 0 0 0 0 8 -4 0
323 36 -4 20 -12 4 0 -4 2 0 4 -4 4
325 12 -4 12 0 -4 0 -4 2 0 12 0 -4
342 54 -12 6 -9 12 2 -4 3 -2 -10 3 4
345 36 -16 20 6 -8 4 -8 2 0 4 2 0
352 6 -4 6 3 -4 2 -4 -1 2 6 3 -4
43 27 -9 -9 0 9 3 3 0 -3 3 0 -3
425 27 -15 3 9 -3 7 1 -3 -1 -5 -3 5
452 9 -7 5 6 -5 5 -3 -4 3 1 2 -1
53 1 -1 1 1 -1 1 -1 -1 1 1 1 -1
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type 142 145 152 23 223 224 225 232 234 235 242 245

13 1 1 1 1 1 1 1 1 1 1 1 1
122 3 2 1 3 1 2 1 -1 0 -1 1 0
123 0 1 2 0 2 -1 0 4 1 2 -2 -1
124 3 4 5 -3 -3 -2 -1 -3 -2 -1 -1 0
125 3 1 -1 -3 -1 -1 -3 1 1 -1 1 -1
122 0 -3 -5 3 -1 1 -1 -1 -1 -1 0 -1
123 -6 -4 -4 0 4 -2 0 0 2 0 -2 0
124 0 0 -2 -6 -2 -2 2 2 0 2 0 2
125 6 -2 -6 -6 2 0 -2 2 2 2 2 0
132 -3 -2 0 0 0 0 0 4 -2 0 1 0
134 -6 -2 4 0 -4 2 0 -8 0 0 2 0
135 0 -2 -4 0 -4 2 -2 0 0 -4 0 2
142 0 3 7 3 3 1 -1 3 1 -1 0 -1
145 6 2 -6 6 2 0 2 -2 -2 2 -2 0
152 3 -1 -1 3 -1 -1 3 -1 -1 -1 -1 -1
23 0 0 3 1 -1 0 -1 1 0 1 0 0
223 0 3 2 0 2 -1 0 -4 1 -2 0 1
224 0 0 -3 -3 1 0 3 1 0 -1 0 0
225 0 -3 7 -3 3 1 1 -3 -1 -1 0 -1
232 3 2 0 0 0 0 0 4 -2 0 1 0
234 0 0 -4 0 -4 2 0 0 0 4 0 -2
235 -6 2 4 0 -4 2 0 8 0 0 -2 0
242 0 0 -3 3 1 0 -3 -1 0 -1 0 0
245 0 0 -2 6 -2 -2 -2 -2 0 2 0 2
252 3 -4 5 3 -3 -2 1 3 2 -1 1 0
33 2 0 0 0 0 0 0 0 0 0 0 0
323 3 -2 0 0 0 0 0 -4 2 0 -1 0
325 -3 2 0 0 0 0 0 -4 2 0 -1 0
342 0 -3 2 0 2 -1 0 4 0 -2 0 1
345 -6 4 -4 0 4 -2 0 0 -2 0 2 0
352 0 -1 2 0 2 -1 0 -4 -1 2 2 -1
43 0 0 3 -1 -1 0 1 -1 0 1 0 0
425 0 3 -5 -3 -1 1 1 1 1 -1 0 -1
452 3 -2 1 -3 1 2 -1 1 0 -1 -1 0
53 1 -1 1 -1 1 1 -1 -1 -1 1 -1 1
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type 252 33 324 325 342 345 352 43 425 452 53

13 1 1 1 1 1 1 1 1 1 1 1
122 -1 -3 -2 -3 -1 -2 -3 0 -1 -2 -3
123 0 6 3 4 0 1 2 -3 -2 -1 0
124 1 -3 -2 -1 -1 0 1 0 1 2 3
125 -3 3 3 1 3 1 -1 3 1 -1 -3
122 -1 3 1 3 0 1 3 0 0 1 3
123 0 -12 -2 -8 2 0 -4 0 2 2 0
124 2 6 2 2 0 0 -2 0 0 -2 -6
125 2 -6 -4 -2 -2 -2 2 0 -2 0 6
132 0 12 0 4 -3 -2 0 3 1 0 0
134 0 -12 -2 0 2 2 4 0 -2 -2 0
135 0 12 6 0 0 0 -4 -6 0 2 0
142 -1 -3 1 -1 0 -1 -1 0 0 1 3
145 -2 -6 -4 2 -2 2 2 0 2 0 -6
152 3 3 3 -1 3 -1 -1 3 -1 -1 3
23 1 -1 0 -1 0 0 -1 0 0 0 -1
223 0 6 -1 4 0 -1 2 0 0 0 0
224 -3 -3 0 -1 0 0 1 0 0 0 3
225 1 3 1 1 0 1 -1 0 0 0 -3
232 0 -12 4 -4 -1 2 0 0 -1 0 0
234 0 12 -2 0 0 0 -4 0 0 2 0
235 0 -12 -2 0 2 -2 4 0 2 -2 0
242 3 -3 0 1 0 0 1 0 0 0 -3
245 -2 6 2 -2 0 0 -2 0 0 -2 6
252 -1 -3 -2 1 -1 0 1 0 -1 2 -3
33 0 8 -4 0 2 0 0 -1 0 0 0
323 0 -12 4 4 -1 -2 0 0 1 0 0
325 0 12 0 -4 -3 2 0 3 -1 0 0
342 0 6 -1 -4 0 1 2 0 0 -1 0
345 0 -12 -2 8 2 0 -4 0 -2 2 0
352 0 6 3 -4 0 -1 2 -3 2 -1 0
43 -1 -1 0 1 0 0 -1 0 0 0 1
425 1 3 1 -3 0 -1 3 0 0 1 -3
452 1 -3 -2 3 -1 2 -3 0 1 -2 3
53 -1 1 1 -1 1 -1 1 1 -1 1 -1
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From F (S4; 1
3)S4WS3 has 35 orbits on the characters of S4×S4×S4 and the corresponding intertia fac-

tors are S3, S2, S2, S2, S2, S1, S1, S1, S2, S1, S1, S2, S1, S2, S3, S2, S2, S2, S2, S1, S1, S2, S1, S2, S3, S2, S2, S2, S1, S2,
S3, S2, S2 and S3.

Character table of S3

(13) (21) (3)

[3] 1 1 1
[21] 2 0 -1
[13] 1 -1 1

Charactertable of S2

(12) (2)

[2] 1 1
[12] 1 -1

Character of S1

(1)

[1] 1

We can get the character table of S4wS3 by multiplying the columns under the identity elements in
the character tables of S3, S2, S1 by the rows of the Fisher matrix F (S4; 1

3) and the columns 21,2 in the
character tables of 3 and S2 by the rows of F (S4, 12) and the column 3 in the character table of S3 by the
rows of F (S4; 3).
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Abstract. The completeness of any n-dimensional manifold of class C∞ is vitally important aspect for

the modern study of differential geometry as it involves the concept of sequences, their converging nature

in such manifolds. Moreover, the completeness of manifolds is predicted by the nature of convergence

of all cauchy’s sequences defined in the manifolds under consideration. At present, there are only three

techniques to check out whether the manifolds under consideration are complete or not, but among them,

the technique involving the ideas of converging nature of Cauchy’s sequences seem to be quite lucid and

convenient. The present paper includes a brief look over the complete Hermitian submanifolds Hc

n
in

Riemannian manifold along with fiew definitions on completeness of Hc

n
manifolds, isometry-conformality

of completeHc

n
manifolds and complex sequences in such manifolds etc. Also, some theorems on conformal

transformations admitted by complete Hc

n
manifolds have been discussed.

1. Introduction

A Hermitian metric [6] is the inner product defined over a real vector space V with the complex structure
tensor J , such that J.J ≡ J2 = −1, as in terms of local components, the almost complex structure J ≡ F hi ,
satisfies the following identity

F hi F
i
j = −δ

h
j = −1

where δhj being the components of unit tensor field I defined as:

δhj =






1, if h = j

0, if h �= j

Furthermore, we can also say that a Hermitian metric of an almost complex manifold M is a
Riemannian metric gij , which is invariant with respect to the almost complex structure tensor J . Thus
the manifold equipped with such metric is called an almost Hermitian manifold.

Let us assume that there be a self-conjugate positive definite metric of the class C∞ given by

ds2 = gijdz
idzj (for every i, j vary from 1 to n) (1)

in the complex manifold Cn of dimension n and of class C∞. If the fundamental metric tensor gij is hybrid,
then a manifold with such a metric is called a Hermitian manifold [4], the lower dimension of this manifold
is called a Hermitian submanifold, which here and hereafter will be symbolized as Hc

n and we shall always
assume the self adjointness of the indices.

Now, since the fundamental metric tensor gij is hybrid, therefore its components must satisfy the fol-
lowing relation

gij =

[
0 gij̄

gīj 0

]
, or F ihF

j
k g
kh = gij (2)
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where F ih is an almost complex structure, satisfying the condition

F ih =

[
δ
µ
λ 0

0 −δµ̄
λ̄

]
, or F ijF

j
h = −δih (3)

This relation is due to the purity of almost complex structure.

Definition (1.1). A complex sequence in Z (a non-null subset of the whole complex set C) is a function
from C into Z and is usually symbolized by {zn} or < zn >. The image zn is called the nth term of the
sequence.

Definition (1.2). Suppose < zn > and < z∗n > be any two sequences in Z (where Z being any non-null
subset of C), then < z∗n > is said to be complex sub-sequence of {zn} if ∃ a mapping ψ:C→C, such that
(i) < z∗n > = < zn > ◦ ψ

(ii) for each n ∈ C,∃ an m ∈ C, such that ψ(i) ≥ n, for every i ≥ m in C such that z∗
1
< z∗

2
< ....z∗n, ....,

then < zz∗
n
> is called a sub-sequence of < zn >.

Definition (1.3). A convergent complex sequence < zn > is one that has a limit c, written as
Limn→∞ < zn >= c, or simply zn → c. By usual definition of limit, this means that ∀ ε > 0, we can
find an N, such that |zn − c| < ε, ∀ n > N ; geometrically, all < zn > with n > N lie in the open disc of
radius ε and centre c.

Definition (1.4). A sequence < zn > is said to be a Cauchy’s sequence if ∀ ε > 0 (no matter how small),
we can find c1 ∈ C (which depend on ε in genral) such that |zm − zn| < ε, ∀m,n > c1.

2. Some definitions on complete Hermitian and conformality

Completeness of Hc
n manifolds: A Hermitian manifold (H, ds), or (H, gijdz

idzj) is said to be complete,
if and only if every Cauchy’s sequence in H converges to a point of H.

In more generalized pattern, we suppose that there are given two points z1 and z2 in a connected Her-
mitian submanifold (H, ds). If we define d(z1, z2) as the greatest lower bound of the lengths of all piecewise
differentiable curves joining z1 and z2. Then, it can be shown that d(z1, z2) ≥ 0, the equality holds if and
only if z1 coincides with z2.

d(z1, z2) = d(z2, z1) and d(z1, z2) + d(z2, z3) ≥ d(z1, z3)

then ′d′ is a metric on Hc
n. If this

′d′ is complete, that is all Cauchy’s sequences converge, we say that the
Hermitian metric ds2 = gijdz

idzj, or the Hermitian submanifold is complete.

Isometry and Conformality of complete Hc
n: When a differentiable manifold Hc

n is endowed with a
metric ds2 = gijdz

idzj , we denote this kind of manifold by (H, ds). Now, let (H, ds) and (H∗, ds∗) be any
two complete Hermitian submanifolds. Then if ∃ a one-one differentiable mapping: (H, ds)→ (H∗, ds∗), such
that the length of any arc in Hc

n remain invariant as measured by ds∗, we say that the complete Hermitian
submanifold Hc

n is isometric with H∗c
n .

Complex sequences in complete Hc
n manifolds: A complex sequence < zn > is a complete Hermitian

submanifold (H, ds) is a function from the set C of all complex numbers into H, where H is any non-null
complex subset of C. The point zn ∈ H is thus called the nth term of the sequence.

Complex subsequences in complete Hc
n manifolds: Let < zn > be a complex sequence in complete

Hermitian submanifold (H, ds) and let < z∗n > be any other complex sequence of complex numbers such
that z∗

1
< z∗

2
< z∗

3
< ... < then < zz∗

n
> is called a complex subsequence of < zn >.
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Convergence of a complex sequence in complete Hc
n manifolds: A sequence < zn > in a complete

Hermitian manifold (H, ds) is said to converge to a point z0 ∈ H, if and only if for each ε > 0 (no matter
how small), ∃ a positive integer nε, such that n ≥ nε ⇒ d(zn, z0) < ε. Equivalently, a sequence < zn >

converges to z0 if and only if each open circular disc or open sphere Sε(z0) ≡ [
∑n
i=1(z

i − zi
0
)2]

1

2 < ε centred
at z0 contains all the points of the sequence from some place on. If the sequence < zn > converges to z0,
then we write zn → z0 or d(zn, z0)→ 0 or Limn→∞zn = z0.

Cauchy’s complex sequence in a Hermitian manifold: A seqence < zn > in a Hermitian submanifold
(H, ds)≡ Hc

n is called a Cauchy’s complex sequence if and only if for each ε > 0 (whatever small), ∃ a
positive integer C such that m, n ≥ nε ⇒ d(zm, zn) < ε.

3. Complete Hermitian submanifolds in conformal transformation

Let us consider a point transformation π : P → P ◦ in complete Hc
n manifold, or in local coordinate system

π : xh → xh
◦

= fh(x)◦. Suppose that we have a geometric object field Ω(P ) and we bring back the object
Ω(P ◦) at P ◦ to P by differential of the transformation inverse to π; then we have a geometric object Ω(P ◦)
at P . We call the difference Ω(P ◦) − Ω(P ), the Lie difference of Ω with respect to point transformation
under assumption.

If we have a one parameter group of transformations xh
◦

= fh(x, t) generated by a vector field V , we
define

L
v
Ω = Lim

t→0

1

t
[Ω(P )◦ − Ω(P )] (4)

as the Lie derivative of the object Ω with with respect to V , t being the so called canonical parameter. If
a point transformation in a complete Hermitian manifold with symmetric affine connection ∇ carries an
arbitrary vector field parallel along any arbitrary curve into a vector field parallel along the transformed
curve, we shall say the transformation does not change the connection and call the transformation an affine
motion or affine collineation. In order that a 1-parameter group of transformations generated by a vector
field V be a group of affine motion, it is necessary and sufficient that satisfy

L
v
∇ = 0, or L

v
Γhji = ∇j∇iV

h +RhkjiV
h = 0 (5)

A vector field satisfying this equation is called an affine Killing vector field.

Finally, if the point transformation in a complete Hermitian submanifold does not change the angle
between any two arbitrary vectors of the complete Hc

n manifold, it is called a conformal transformation. In
order that a 1-parameter group of transformation generated by a field V be a group of conformal tranafor-
mation, it is necessary and sufficient that V satisfy:

L
v
gij = ∇jVi +∇iVj = 2ρgij (6)

where ρ being a function. A vector field in complete Hc
n manifold, satisfying this equation is called a

conformal Killing vector field. In view of the above definition, we shall now proceed as follows:

In equation (6), ρ is assumed to be some function of complete Hc
n manifold and L

v
denote the Lie-

derivative with respect to a vector field V h and Vj = gjaV
a. Thus the function ρ must be defined as

ρ = − 1

n
∇aV

a. If ρ in (6) becomes a constant, the transformation would be called isometric. Also, here and
hereafter we shall denote the gradient of ρ by ρj = ∇jρ.

Let us now put

Gji = Rji −
R

n
gji (7)

and

Zhkji = Rhkji −
R

n(n− 1)
(δhkgji − δhj gki) (8)
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or, in covariant form equation (8) reduces to

Zkjih = Rkjih −
R

n(n− 1)
(gkhgji − gjhgki) (9)

The tensor Gji measures the deviation of complete Hc
n manifold from an Einstein manifold and the tensor

Zhkji that from a manifold of constant curvature. We, thus, observe that

Gjig
ji = 0;Zaaji −Gji. (10)

Also,

|Gji|
2 = |Rji|

2 −
R2

n
(11)

|Zhkij|
2 = |Rhkij |

2 −
2R2

n(n− 1)
(12)

and

∇jGji = −
n− 2

2n
∇R (13)

Thus for a manifold with constant scalar curvature R, we have

∇jGji = 0 (14)

It is also known that

L
v
Γhji = δhj ρi + δhi ρj − ρhgji = 0 (15)

where ρj = ∇jρ. Hence, from the formula

L
v
Rhkji = ∇k[L

v
Γhji]−∇j [L

v
Γhki]

we have

L
v
Rhkji = −δ

h
k∇jρi + δhj∇kρi −∇kρ

hgji +∇jρ
hgki (16)

From this by contracting with respect to k and h, we have

L
v
Rji = −(n− 2)∇jρi + (∆ρ)gji (17)

Further,

L
v
R = L

v
(Rji)g

ji +Rji(L
v
gji) = L

v
(Rji)g

ji − 2ρR (18)

Thus from equations (6),(16),(17) and (18), we can easily get

L
v
Gji = −(n− 2)(∇jρi +

1

n
∆ρgji) (19)

and

L
v
Zhkji = −δ

h
k∇jρi + δhj∇kρi −∇kρ

hgji +∇jρ
hgki −

2

n
∆ρ(δhkgji − δhj gki) (20)

Yano and Sawaki [8] introduced the covariant tensor field

Wkjih = aZkjih + b(gkhGji − gjhGki +Gkhgji −
Gjhgki

n− 2
) (21)

where a and b being constants, not both zero. It can be easily seen that

Wkjihg
kh = (a+ b)Gji.
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Here and hereafter, we shall use the notions as f = GjiG
ji, z = ZkjihZ

kjih, w = WkjihW
kjih. Yano and

Sawaki [8], proved the following theorems:

Theorem (I). Suppose that a compact orientable Riemannian space Mn with constant scalar curvature
field R and of dimension > 2 satisfies

α0f + β0z − α1∆f − β1∆z = constant

where α0, α1, β0 and β1 are non-negative constants, not all zero, such that if n > 6

8R(n− 1)−1α1 ≥ (n− 6)α0 ≥ 0, 8R(n− 1)−1β1 ≥ (n− 6)β0 ≥ 0 (22)

If Mn admits an infinitesimal non-isometric conformal transformation: V h : L
v
gji = 2ρgji,

ρ �= 0, then Mn is isometric to a sphere.

Theorem (II). If a compact orientable Riemannian space Mn with constant curvature field R and of
dimension > 2 admits an infinitesimal non-isometric transformation: V h : L

v
gji = 2ρgji,

ρ �= 0, such that L
v
L
v
(α0f + β0z + α1∆f + β1∆z) ≤ 0,

where α0, α1, β0 and β1 are non-negative constants, not all zero, such that

4(n− 1)R−1α0 ≥ (n+ 6)α1 ≥ 0, 4(n− 1)R−1β0 ≥ (n+ 6)β1 ≥ 0 (23)

then Mn is isometric to a sphere.

Theorem (III). Suppose that a compact orientable Riemannian space Mn with constant scalar curvature
field R and of dimension > 2 admits an infinitesimal non-isometric conformal transformation:
V h : L

v
gji = 2ρgji, ρ �= 0. If L

v
L
v
w = 0, a and b being constants such that a+ b �= 0, then Mn is isometric to

a sphere.

Remark.(Hiramatu, [5]) If a complete orientable Hermitian submanifold Hc
n in Riemannian manifold with

constant curvature field R and of dimension > 2 admits an infinitesimal non-isometric transformation:

V h : L
v
gji = 2ρgji, ρ �= 0

then for any function F on Hc
n, we have

∫

Hc
n

ρFdv = −
1

n

∫

Hc
n

L
v
Fdv (24)

∫

Hc
n

ρ(∇jρi)Gjidv = −

∫

Hc
n

Gjiρ
jρidv (25)

∫

Hc
n

L
v
L
v
fdv = −2n(n− 2)

∫

Hc
n

Gjiρ
jρidv + 4n

∫

Hc
n

ρ2fdv (26)

∫

Hc
n

L
v
L
v
wdv = −8n(a+ b)2

∫

Hc
n

Gjiρ
jρidv + 4n

∫

Hc
n

ρ2wdv (27)

∫

Hc
n

L
v
L
v
∇Fdv = −

R

n− 1

∫

Hc
n

L
v
L
v
∇Fdv +

n(n+ 2)

2

∫

Hc
n

ρ2∇Fdv (28)

∫

Hc
n

L
v
L
v
zdv = −8n

∫

Hc
n

Gjiρ
jρidv + 4n

∫

Hc
n

ρ2zdv (29)

and

∫

Hc
n

Gjiρ
jρidv ≤ 0 (Yano [9]) (30)
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We, now, study the following useful theorem:

Theorem (3.1). If a complete orientable Hermitian submanifold Hc
n in Riemannian manifold with constant

curvature field R and of dimension > 2 admits an infinitesimal non-isometric transformation:

V h : L
v
gji = 2ρgji, ρ �= 0

then ∫

Hc
n

L
v
L
v
(α0f + β0z − α1∆f − β1∆z)dv ≥ 0 (31)

holds, where dv denote the volume element of Hc
n and α0, α1, β0 and β1 are non-negative constant, not all

zero, such that if n > 6, the equality in (31) holds if and only if the complete Hc
n is isometric to a sphere.

Proof. Making use of equation (26) and (28), we get

∫

Hc
n

L
v
L
v
(α0f + β0z − α1∆f − β1∆z)dv −

n(n+ 2)

2

∫

Hc
n

ρ2(α0f + β0z − α1∆f − β1∆z)dv

=

∫

Hc
n

L
v
L
v
(α0z − β0z)dv −

R

(n− 1)

∫

Hc
n

L
v
L
v
(−α1z − β1z)dv +

n(n+ 2)

2

∫

Hc
n

L
v
ρ2(−α1∆f − β1∆z)dv

−

∫

Hc
n

ρ2(α0f + β0z − α1∆f − β1∆z)dv

= (α0 +
R

(n− 1)
α1)

∫

Hc
n

L
v
L
v
fdv + (β0 +

R

(n− 1)
β1)

∫

Hc
n

L
v
L
v
zdv −

n(n+ 2)

2

∫

Hc
n

ρ2(α0f − β0z)dv

= −[2n(n− 2)(α0 +
R

(n− 1)
α1) + 8n(β0 +

R

(n− 1)
β1)]

∫

Hc
n

Gjiρ
jρidv + n(

4R

(n− 1)
α1 −

(n− 6)

2
α0)

∫

Hc
n

ρ2fdv + n(
4R

(n− 1)
β1 −

(n− 6)

2
β0)

∫

Hc
n

ρ2zdv

From equation (30) and our assumption, we can see that the right hand side of the above relation is non-
negative and consequently (31) holds. If the equality in (31) holds, then from our assumption, we have∫
Hc
n

Gjiρ
jρidv = 0, and the complete Hc

n is isometric to a sphere, by virtue of (30). conversely, if the

complete Hc
n is isometric to a sphere, we get Gji = 0, Zkjih = 0 and the equality in (31) holds.

Theorem (3.2): If a complete orientable Hermitian submanifold Hc
n in Riemannian manifold with constant

curvature field R and of dimension > 2 admits an infinitesimal non-isometric transformation:

V h : L
v
gji = 2ρgji, ρ �= 0

then ∫

Hc
n

L
v
L
v
(α0f + β0z + α1∆f + β1∆z)dv ≥ 0 (32)

holds, where α0, α1, β0 and β1 are non-negative constant, not all zero, such that (23) holds, the equality in
(32) holds if and only if the complete Hc

n is isometric to a sphere.

Proof. The proof of this theorem is similar as above.



Complete Hermitian submanifolds in Riemannian manifold 41

Theorem (3.3). If a complete orientable Hermitian submanifold Hc
n in Riemannian manifold with constant

curvature field R and of dimension > 2 admits an infinitesimal non-isometric conformal transformation:

V h : L
v
gji = 2ρgji, ρ �= 0

then ∫

Hc
n

L
v
L
v
(α0w − α0∆w)dv ≥ 0

n(n+ 2)

2

∫

Hc
n

ρ2(α0w − α1∆w)dv (33)

holds, where α0 and α1 are non-negative constants, not all zero, such that if n > 6 the first inequality in
(22) holds, the equality in (33) holds if and only if the complete Hc

n is isometric to a sphere.

Proof. Similarly, as in the proof of the theorem (3.1), by using (27), (28) and (30), we get

∫

Hc
n

L
v
L
v
(α0w − α1∆w)dv −

n(n+ 2)

2

∫

Hc
n

ρ2(α0w − α1∆w)dv

= (α0 +
R

(n− 1)
α1)

∫

Hc
n

L
v
L
v
wdv − (

n(n+ 2)

2
α0)

∫

Hc
n

ρ2wdv

= −8n(a+ b)2(α0 +
R

(n− 1)
α1)

∫

Hc
n

Gjiρ
jρidv + n(

4R

(n− 1)
α1 −

(n− 6)

2
α0)

∫

Hc
n

ρ2wdv ≥ 0

which proves (33). It is easily proved from (30) and our assumption that the equality (33) holds if and only
if the complete Hc

n is isometric to a sphere.

Theorem (3.4). If a complete orientable Hermitian submanifold Hc
n in Riemannian manifold with constant

curvature field R and of dimension > 2 admits an infinitesimal non-isometric conformal transformation:

V h : L
v
gji = 2ρgji, ρ �= 0

then ∫

Hc
n

L
v
L
v
(α0w − α1∆w)dv ≥ 0 (34)

holds, where α0 and α1 are non-negative constants, not all zero, such that the first inequality in (23) holds,
the equality in (34) holds if and only if the complete Hc

n is isometric to a sphere.

Proof. Similarly, as in the proof of the theorem (3.2), by using equations (27), (28) and (30), we have

∫

Hc
n

L
v
L
v
(α0w + α1∆w)dv = −8n(a+ b)2(α0 +

R

(n− 1)
α1)

∫

Hc
n

Gjiρ
jρidv

+n(n+ 2)α1

∫

Hc
n

ρjρiwdv + n[4α0 −
(n+ 6)

(n− 1)
Rα1]

∫

Hc
n

ρ2wdv ≥ 0

which proves (34). It is easily proved from (30) and our assumption that the equality in (34) holds if and
only if the complete Hc

n is isometric to a sphere.
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Abstract. The present problem is concerned with heat and mass transfer in MHD free convective flow of

a visco-elastic (Walter Model-B) dusty fluid through a porous medium induced by the motion of a semi

infinite flat plate moving with velocity decreasing exponentially with time. The expressions for velocity

distribution of the dusty fluid, dust particles, temperature and concentration distribution are obtained.

The effect of various parameters on velocity distribution of dusty fluid and dust particles, temperature

and concentration are discussed graphically.

1. Introduction

The problems of fluid mechanical involving fluid particle mixture arise in many processes of practical impor-
tance. One of the earliest problems is that of the heat and mass transfer in the mist-flow region of a boiler
tube. The liquid rocket is another example, usually the oxidizer vaporized much more rapidly than the
fuel spray and combustion occurs heterogeneously around each droplet. The length of combustion chamber
and stability of the flow of acoustic or shock waves are practical two-phase flow problem. The study of the
flow of dusty fluids which has gained increased attention recently, has wide applications in environmental
sciences. One finds in the literature an amazing number of derivations of equations for the flow of a fluid -
particle mixture. The equations have been developed by several authors for various special problems under
various assumptions. A few derivations, primarily for the gas particle mixture, are listed here; Saffman [11],
Marble [4], Soo [14].

Using the formulation of Saffman [11], several authors gave exact solution of various dusty fluid
problems. Michael and Norey [5], Sambasina Rao [9], Verma and Mathur [15], Singh [12],
Rukmangadachari [10], Mitra [7] studied the problem of circular cylinders under various conditions, Gupta[1]
considered the unsteady flow of a dusty gas in a channel whose cross section is an annular sector. Regarding
the plate problems, Liu [2], Michael and Miller [6], Liu [3], Vimala [16] studied the problem of infinite flat
plate under various conditions. Mitra [8] has studied the flow of a dusty gas induced by the motion of
a semi - infinite flat plate moving with velocity decreasing exponentially with time. Singh [13] has study
MHD flow of a dusty gas through a porous medium induced by the motion of a semi - infinite flat plate
moving with velocity decreasing exponentially with time. Singh and Gupta [17] have discussed MHD free
convective flow of dusty gas through porous medium induced by the motion of a semi-infinite flat plate
moving with velocity decreasing exponentially with time. Varshney and Prakash [18] have discussed MHD
free convective flow of a visco-elastic (Kuvshinski type) dusty gas through a porous medium induced by
the motion of a semi-infinite flat plate moving with velocity decreasing exponentially with time. Recently,
Varshney and Singh [19] have studied MHD free convective flow of a visco-elastic (Walter model-B) dusty
gas through a porous medium induced by the motion of a semi-infinite flat plate moving with velocity
decreasing exponentially with time.

Keywords and phrases : Heat and mass transfer, MHD, free convective, porosity, dusty visco-elastic.

AMS Subject Classification : 76A10, 76R10, 76S05.
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The aim of the present paper is to investigate heat and mass transfer in MHD free convective flow of a
visco-elastic (Walter model-B) dusty fluid through a porous medium induced by the motion of a semi-infinite
flat plate moving with velocity decreasing exponentially with time.

2. Formulation and solution of the problem

We assume the dusty fluid to be confined in the space y > 0 and the flow is produced by the motion of
the semi-infinite flat plate moving with a velocity ve−λ

2t in x - direction. Axis of x is taken along the
plate and y is measured normal to it. Since the plate is semi-infinite, all the physical quantities will be
functions of y and t only. According to Saffman [11], the equations of motion by applying the magnetic
field, porous medium and visco-elastic (Walter Model-B) dusty fluid and the dust particles along the x-axis
are, respectively, given by

∂u

∂t
= ν

∂2u

∂y2
+
K0N0

ρ
(v − u)−

[
σB2

0

ρ
+
ν

K

]
u+ gβθ + gβ∗φ− k

∂3u

∂t∂y2
(1)

∂v

∂t
=
K0

m
(u− v) (2)

∂T

∂t
=
KT

ρCp

∂2T

∂y2
(3)

∂C

∂t
= D

∂2C

∂y2
(4)

where θ = (T − T∞), φ = (C − C∞), u and v denote, respectively, the fluid and particle velocity; ν is the
kinematics coefficient of viscosity of the fluid, K0 is the Stoke’s resistance coefficient, N0 is the number
density of the dust particles which is taken to be constant, ρ is the density of the fluid and m is the mass
of a dust particle. KT is the thermal conductivity, Cp is the specific heat at constant pressure and k is the
coefficient of elasticity.

The boundary conditions are:

θ = νe−λ
2t, φ = νe−λ

2t, u = v = νe−λ
2t at y = 0

θ → 0, φ→ 0, u→ 0 as y →∞





(5)

Let us introduce the non-dimensional variables

y∗ =
y

(ντ)1/2
, u∗ =

u

ν
, v∗ =

v

ν
, t∗ =

t

τ
, τ =

m

K0
, θ∗ =

θ

ν
, φ∗ =

φ

ν

then omitting the stars, the dimensionless forms of equations (1)-(4), respectively, are

∂u

∂t
=
∂2u

∂y2
+ (v − u)f −

[
M +

1

K1

]
u+ β1θ + β2φ− k1

∂3u

∂t∂y2
(6)

∂v

∂t
= (u− v) (7)

∂θ

∂t
=

1

Pr

∂2θ

∂y2
(8)

∂φ

∂t
=

1

Sc

∂2φ

∂y2
(9)
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where f is the mass-concentration of dust particles, M is the magnetic parameter, α1 is the visco-elastic
parameter, Pr is Prandtl number, K1 is the permeability parameter, k1 is the elasticity parameter and β1
and β2 are the volumetric expansion parameters. These are given as

f = mN0
ρ , M =

mσB2
0

K0ρ
, α1 = α

τ , Pr = ρνCP
KT

,

SC = ν
D ,

1

K1
= ντ

K , β1 = gβτ, β2 = gβ∗τ

The boundary conditions (5) are reduced to

θ = e−λ
2t, φ = e−λ

2t, u = v = e−λ
2t at y = 0

θ → 0, φ→ 0, u→ 0 as y →∞





(10)

Let us choose the solution of (6)-(9), respectively, as

u = F (y)e−λ
2t (11)

v = G(y)e−λ
2t (12)

θ = H(y)e−λ
2t (13)

φ = N(y)e−λ
2t (14)

The boundary conditions (10) are transformed to

H = 1, N = 1, F = 1 at y = 0

H → 0, N → 0 F → 0, as y →∞





(15)

By virtue of equations (11)-(14), the equations (6)-(9), respectively, transform to

(1 + λ2k1)
d2F

dy2
+ fG+ F

[
λ2 − f −M −

1

K1

]
= β1H − β2N (16)

G(1− λ2) = F (17)

d2H

dy2
+ λ2Pr H = 0 (18)

d2N

dy2
+ λ2ScN = 0 (19)

Eliminating G from (16) and (17), we get

(1 + λ2k1)
d2F

dy2
+

f

(1− λ2)
F + F

[
λ2 − f −M −

1

K1

]
= β1H − β2N (20)

Equation (16) can be rewritten as

d2F

dy2
+ n2 F = β∗1H − β∗2N (21)

where

n2 =

[
λ4 − λ2(1 + f +M +K−1

1
) +M +K−1

1

(λ2 − 1)(1 + λ2k1

]
,
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β∗1 =
β1

(1 + λ2k1)
, β∗2 =

β2

(1 + λ2k1)

From equation (18) and (19), we get

H = e−isy (22)

N = e−iry (23)

where s = λ
√
Pr, r = λ

√
Sc

By the boundary conditions (15), the solution of (21) is obtained as

F = e−iny +
β∗
1

n2 − s2
(e−iny − e−isy) +

β∗
2

n2 − r2
(e−iny − e−iry) (24)

From equation (17), we get

G =
1

(1− λ2)

[
e−iny +

β∗
1

(n2 − s2)
(e−iny − e−isy) +

β∗
2

(n2 − r2)
(e−iny − e−iry)

]
(25)

Then from (11), we get velocity of dusty fluid

u =

[
e−iny +

β∗
1

(n2 − s2)
(e−iny − e−isy) +

β∗
2

(n2 − r2)
(e−iny − e−iry)

]
e−λ

2t (26)

Real part of u is given by

u =

[
cosny +

β∗
1

(n2 − s2)
(cosny − cos sy) +

β∗
2

(n2 − r2)
(cosny − cos ry)

]
e−λ

2t (27)

Similarly, the real part of velocity of the dust particle is obtained as

u =
1

(1− λ2)

[
cosny +

β∗
1

(n2 − s2)
(cosny − cos sy) +

β∗
2

(n2 − r2)
(cosny − cos ry)

]
e−λ

2t (28)

and temperature and concentration distribution are given by

θ = e−isy e−λ
2t (29)

φ = e−iry e−λ
2t (30)

Real part of θ and φ are given by

θ = cos sy e−λ
2t (31)

φ = cos ry e−λ
2t (32)

3. Results and discussion

The velocity profiles for visco-elastic (Walter Model - B) dusty fluid and dust particles is plotted in Figs. 1
and 2 having Graph I to VI for λ = 0.5, f = 0.2, Pr = 0.71, Sc = 0.24, t = 1 and following different values
of M,K1, β1, β2 and k1.
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M K1 k1 β1 β2

For Graph-I 0.01 4 0.1 2 3

For Graph-II 0.05 4 0.1 2 3

For Graph-III 0.01 6 0.1 2 3

For Graph-IV 0.01 4 0.2 2 3

For Graph-V 0.01 4 0.1 3 3

For Graph-VI 0.01 4 0.1 2 4

From Figs. 1 and 2 it is noticed that

(i) velocity of visco-elastic dusty fluid and dust particles decrease with the increase in y.

(ii) these velocity increases with the increase in porosity parameter (K1) and visco-elastic parameter (k1)
but decrease with the increase in M, β1 and β2.

(iii) velocity of dust particles is greater than velocity of dusty fluid.

The temperature profile for visco-elastic (Walter Model - B) dusty fluid is plotted in Fig. - (3), having
Graph I to IV for λ = 0.5, f = 0.2, Sc = 0.24, M = 0.01, K1 = 4, β1 = 2, β2 = 3 and different values of
Pr and t. It is observed that the temperature decreases continuously with increasing y. It is concluded the
fluid temperature decreases with increasing Prandtl number Pr and time t.

The concentration profile for visco-elastic (Walter Model - B) dusty fluid is plotted in Fig. - (4), having
Graph I to IV for λ = 0.5, f = 0.2, Pr = 0.71, M = 0.01, K1 = 4, β1 = 2, β2 = 3 and different values of
Sc and t. It is observed that the temperature decreases continuously with increasing y. It is concluded the
fluid temperature decreases with increasing Schmidt number Sc and time t.
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Fig.- I, The velocity profile ofdusty fluid.

Fig.-2, The velocity profile of dust particle.
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Fig.-3, The temperature profi.le for different value of Pr and t.
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Fig.-4, The concentration profile fbr dift'erent value of Sc and t.
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Abstract. In the present paper we work out main scalars H, I, J in three-dimensional Finsler space with

(α, β)-metric, and some special (α, β)-metric.

1. Introduction

The concept of (α, β)-metric was proposed by the M. Matsumoto in 1972 ([4], [3]) by generalizing the
Renders metric and, soon after, two-dimensional spaces with (α, β)-metric was investigated in details [1].
The (α, β)-metric is a Finsler metric which is constructed from a Riemannian metric α and a differential
one-form β, and has been sometimes treated in theoretical physics [5]. In 1995, M. Kitayama, M. Azuma
and M. Matsumoto [2] found out the main scalars with (α, β)-metric.

The purpose of the present paper is to find out main scalars H, I, J in three-dimensional Finsler space
with (α, β)-metric. Some special (α, β)-metric has also been dealt.

2. Preliminaries

A Finsler metric L is called an (α, β)-metric, when L is a (1)p-homogeneous of two variables

α(x, y) =
√

aij(x)yiyj and β = bi(x)y
i

where aij = aji and det(aij) does not vanish.

Throughout the present paper, following notations are adopted:-

Yi = aijy
j and bi = aijbj

where, aij is the inverse matrix of aij . Further, subscripts α, β denote partial differentiations by α, β
respectively.

As for an (α, β)-metric L(α, β) ([4]), we have

yi = gijy
j = L(∂̇iL) = pYi + LLβbi (1)

Keywords and phrases : Finsler space with (α, β) -Metric, Kropina Metric, Randers Metric, Matsumoto Metric.
AMS Subject Classification : 53B40, 53C60.
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The angular metric tensor hij is,

hij = gij − lilj = L(∂̇i∂̇jL)

hij = paij + q0bibj + q−1(biYj + bjYi) + q−2YiYj (2)

where, p = LLα
α

, q0 = LLββ , q−1 =
LLαβ
α

, q−2 =
L
α2
(Lαα −

Lα
α
)

Owing to homogeneity, we have

p+ q−1β + q−2α
2 = 0, q0β + q−1α

2 = 0 (3)

Remark. In (2) the subscripts of coefficients q0, q−1, q−2 are used to indicate respective degrees of homo-
geneity in α, β and without subscripts coefficients p is (0)p-homogeneous.

From (1) and (2), the fundamental tensor gij is given by

gij = paij + p0bibj + p−1(biYj + bjYi) + p−2YiYj (4)

where 




p0 = q0 + LβLβ = LLββ + LβLβ

p−1 = q−1 +
LαLβ
α

= 1
α
(LLαβ + LαLβ)

p−2 = q−2 +
L2α
α2

= 1
α2
(L2α + LLαα −

LLα
α

)

(5)

From (3), we get
p0β + p−1α

2 = LLβ, p−1β + p−2α
2 = 0 (6)

The inverse matrix gij of gij is given by

gij =
1

p
aij − s0b

ibj − s−1(b
iyj + bjyi)− s−2y

iyj (7)

where 




s0 =
1
τp
[pp0 + (p0p−2 − (p−1)

2)a2]

s−1 =
1
τp
[pp−1 + (p0p−2 − (p−1)

2)β]

s−2 =
1
τp
[pp−2 + (p0p−2 − (p−1)

2)b2]

τ = p(p+ p0b
2 + p−1β) + (p0p−2−

(p−1)
2)(α2b2 − β2), b2 = aijbibj

(8)

Now, differentiating (4) by yk and paying attention to ∂̇iYj = aij, h(hv)-torsion tensor of the Cartan
connection CΓ Cijk is written as

2pCijk = r−1bibjbk + π(ijk)[hijPk + r−2bibjYk + r−3biYjYk] + r−4YiYjYk (9)

where 




Pk = p−1bk + p−2Yk

r−1 = pp0β − 3p−1q0

r−2 = pp−1β − p−2q0 − 2p−1q−1

r−3 = pp−2β − p−1q−2 − 2p−2q−1

r−4 =
1
α
pp−2α − 3p−2q−2

(10)

and π(ijk) denote the cyclic sum of the terms obtained by cyclic permutation of i,j,k. Using (3) and (6), we
have

r−µβ + r−µ−1α
2 = 0, µ = 1, 2, 3 (11)
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From (6) and (11), we have

p−2 = γp−1 r−µ−1 = γµr−1, µ = 1, 2, 3

where, γ = − β
α2
. Then, (9) may be written as

2pCijk = π(ijk)(HijPk) (12)

where, Hij = hij +
r−1
3p3
−1

PiPj .

Further, we obtain an expression of Ci = Cijkg
jk from (7) and (9) as

Ci = c−1bi + c−2Yi

It is not necessary to write explicit forms of the coefficients c−1, c−2. From Ciy
i = 0, we have

c−1β + c−2α
2 = 0, which implies

Ci =
c−1
p−1

Pi (13)

It is noted that we may assume here p−1 �= 0, p−1 = 0 implies L2 = uα2+ vβ2 with some constants u, v
and this L2 is essentially Riemannian.

3. Main scalars of three-dimensional Finsler spaces with (α, β)-metric

In three-dimensional Finsler space, the Moors frame (li, mi, ni) plays important role. The first vector in the
frame is nothing but normalized element of support given by li = ∂̇iL. The second vector mi is the unit
vector along torsion vector Ci. Then mi =

Ci
C
, where C2 = gijCiCj. The third vector ni in the frame is

taken such that gijninj = 1, gijnimj = 0, gijnilj = 0. Every tensor in three-dimensional Finsler space F 3,
may be expressed in terms of the frame. Thus

hij = mimj + ninj (14)

LCijk = Hmimjmk − Jπ(ijk)(mimjnk) + Iπ(ijk)(minjnk) + Jninjnk (15)

where, H, I and J are scalars, called main scalars of F 3.

Since Ci = Cmi from (13) it follows that

Pi =
p−1C

c−1
mi (16)

And therefore from (14), it follows that Hij may be written as

Hij = (1 +
C2r−1
3c2
−1p−1

)mimj + ninj (17)

Using equations (16) and (17) in (12) it follows that the h(hv)-torsion tensor Cijk may be written as

Cijk =

[
C(3p−1c

2
−1 + r−1C

2)

2pc3
−1

]
mimjmk +

Cp−1
2pc−1

π(ijk)(minjnk) (18)

Comparing (15) and (18), we have

H =
LC(3p−1c

2
−1 + r−1C

2)

2pc3
−1

, I =
LCp−1
2pc−1

, J = 0 (19)
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Thus, we have

Theorem 1. The main scalars H, I, J of three-dimensional Finsler space with (α, β)-metric are given by
(19).

Although we may find c−1 in terms of L and its derivatives from (7) and (9) in n-dimensional Finsler
space, but in three-dimensional Finsler space it can be obtained from Theorem-1. Since H + I = LC, from
(19), we have

2pc3
−1 = 4p−1c

2
−1 + r−1C

2 (20)

The quantities p, p−1, r−1 and C2 are derived from metric function L so c−1 can be derived from L by
using (20).

Remarks:

1. Randers Metric. The Randers Metric is given by L = α + β ([6]). Writing L = α + β in the
coefficients, we have

p−1 = 1
α
(LLαβ + LαLβ) = 1

α
, p = L

α
Lα = L

α
, q0 = LLββ = 0, p0 = LLββ + L2β = 1, p0β = 0,

r−1 = pp0β − 3p−1q0 = 0
Then from (20) and (19), gives, c−1 = 2/L and

H = 3LC/4, I = LC/4, J = 0 (21)

Thus, The main scalars of a three-dimensional Finsler space with Randers metric, are given above.

2. Kropina Metric. The Kropina Metric is given by L = α2

β
([8]). Writing L = α2

β
in the coefficients,

we have

p−1 = 1
α
(LLαβ + LαLβ) = −4L

β2
, p = L

α
Lα = 2L

β
, q0 = LLββ = 2L2

β2
, p0 = LLββ + L2β = 3L2

β2
,

p0β =
−12L2

β3
, r−1 = pp0β − 3p−1q0 = 0

Then from (20) and (19), we have c−1 = −4/β and

H = 3LC/4, I = LC/4, J = 0 (22)

Thus, The main scalars of a three-dimensional Finsler space with Kropina metric, are given above.

3. Generalized Kropina Metric. The generalized Kropina Metric is given by L = αtβ1−t ([1]). Writing
L = αtβ1−t in the coefficients, we have

p−1 =
1
α
(LLαβ + LαLβ) = 2t(t− 1)αt−1β1−2t, p = L

α
Lα = tαt−1β1−2t,

q0 = LLββ = −t(t− 1)α2tβ−2t, p0 = LLββ + L2β = (1− t)(1− 2t)α2tβ−2t, p0β = (1− t)(1− 2t)α2tβ−2t−1,

r−1 = pp0β − 3p−1q0 = t2(1− t)(1− 2t)α3t−1β1−4t

Then from (20) and (19), we have c3
−1 = 4(1− t)β−1c2

−1 + C2t(1− t)(2− t)α2tβ−1−2t and





H =

LC(3(1−t)β−1c2
−1
+C2t(1−t)(2−t)α2tβ−1−2t)

c3
−1

I = LC((1−t)β−1)
c−1

, J = 0
(23)

Thus, The main scalars of a three-dimensional Finsler space with gemeralized Kropina metric, are given
above.
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4. Matsumoto Metric. The Matsumoto Metric is given by L = α2

α−β
([7]). Writing L = α2

α−β
in the

coefficients, we have

p−1 =
1
α
(LLαβ + LαLβ) =

L(α−4β)
(α−β)3

, p = L
α
Lα =

L(α−2β)
(α−β)2

, q0 = LLββ =
2L2

(α−β)2
,

p0 = LLββ + L2β =
3L2

(α−β)2
, p0β =

6L2(1+α−β)
(α−β)4

, r−1 = pp0β − 3p−1q0 =
6L3(α+2αβ−2β−2β2)

(α−β)6

Then from (20) and (19), we have (α−β)4(α−2β)c3
−1 = 2(α−β)3(α−4β)c2

−1+3L
2C2(α+2αβ−2β−2β2)

and 



H =

LC(3(α−β)3(α−4β)c2
−1
+3L2C2(α+2αβ−2β−2β2))

2(α−β)4(α−2β)c3
−1

I = LC(α−4β)
2(α−β)(α−2β)c−1

, J = 0
(24)

Thus, The main scalars of a three-dimensional Finsler space with Matsumoto metric, are given above.

Special Cases:- I. I = 0
When I = 0, then from (19), we have p−1 = 0 which gives L2 = uα2 + vβ2 where some u and v are some
constants. Thus F 3 is a Riemannian space.

Since, we have considered non-Riemannian Finsler space therefore, we have the following:-

Theorem 2. If the main scalar I in a three-dimensional Finsler space with (α, β)-metric vanishes, then the
space reduces to Riemannian space.
II. H = 0

When H = 0, then H + I = LC gives I = LC. Thus from (19), we have, 3p−1c
2
−1 + r−1C

2 = 0 and
c−1 = p−1/2p. Eliminating c−1 and putting values of p, p−1, r−1 we get

3(LLαβ + LαLβ)
3 + 4L4C2L2α(LαLβββ − 3LαβLββ) = 0 (25)

and we have

Theorem 3. If the main scalar H vanishes in a three-dimensional Finsler space with (α, β)-metric, then
the metric function L satisfy the differential equation (25).
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Abstract. By introducing the relation between the Fourier and Mellin transform, the conditional

theorems are proved for Mellin transform for Boehmians on tours. A space of Boehmians on the torus

β(T d) contains the space of distributions as well as the space of hyperfunction on the torus. We study

the convergence structure of δ-convergence on β(T d), and an inversion theorem is proved.

1. Introduction

The space β(Γ) of Boehmians, which is quite general in nature, on the unit circle has been studied in
[4,5]. Nemzer [6] constructs a space of Boehmians which contains the space of periodic hyperfunctions and
investigated a subspace β(T d) of a space of tempered Boehmians βJ . The space β(T d) is considered as the
space of Boehmians on the torus. In the present paper, we consider β(T d) as the subspace of Boehmian
on the torus for the Mellin transform of tempered Boehmians [2]. Space of tempered Boehmians for Mellin
transform can be defined as ([2]) : A complex - valued infinitely differentiable function f on Rd is called
slowly increasing if there is a polynomial p on Rd such that | f(x) |≤ p(x) for all x ∈ Rd. The space of all
slowly increasing continuous function on Rd is denoted by J .

A complex - valued infinitely differentiable function f on Rd is called rapidly decreasing if

sup
‖α‖≤m

sup
x∈Rd

(1 + x21 + · · ·+ x2d)
m | Dαf(x) |<∞ (1)

for every non-negative integer m, where x = (x1, · · ·xN ), α = (α1, · · ·αN ), αn’s are non negative integer,
| α |= α1 + · · ·+ αN , and

Dα =
∂|α|

∂xα
=

∂|α|

∂xα1
1
· · · ∂xαdd

(2)

The space of all rapidly decreasing function on Rd is denoted by S(Rd). Elements of the dual space S′(Rd)
of S(Rd) are called tempered distributions.

A sequence φn ∈ S(Rd) is called a delta sequence if it satisfies the following conditions :

(i)
∫
φn = 1, for all n ∈ N

(ii)
∫
| φn |≤M , for some constant M and all n ∈ N

(iii) lim
n→∞

∫

‖x‖≥ε

‖x‖k | φn(e
x) | dx = 0, ∀ k ∈ N and ε > 0.

A pair of sequence (fn, φn) is called quotient of sequence if fn ∈ J for n ∈ N, {φn} is a delta sequence,
and fk ∗φn = fn ∗φk for all k, n ∈ N , where ∗ denotes convolution. By the convolution f ∗g of two functions
f and g we mean the function
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(f ∗ g)(x) =

∫

Rd

f(u)g(x− u)du (3)

whenever the integral exists. Two quotients of sequences (fk, φk) and (gm, ψm) are said to be equivalent
if fk ∗ ψm = gm ∗ φk for all k,m ∈ N , which is an equivalence relation. The equivalence classes are called
tempered Boehmians. The space of all tempered Boehmians will be denoted by βJ and an element of βJ will
be written as F = (fn/φn). βJ is a vector space with addition, multiplication by scalar, and differentiation
which are defined as follows :

[
fn
φn

]
+

[
gn
ψn

]
=

[
fn ∗ ψn + gn ∗ φn

φn ∗ ψn

]
(4)

λ

[
fn
φn

]
=

[
λfn
φn

]
, λ ∈ C (5)

Dα

[
fn
φn

]
=

[
fn ∗D

α ∗ φn
φn ∗ φn

]
(6)

A function f ∈ J can be identified with the Boehmian [(f ∗ φn)/φn], where {φn} is any delta sequence.
It can be shown that this identification is independent of the choice of the delta sequence {φn}. In Section 2,
we study the space of Boehmians on the torus β(T d), the relation between the Fourier and Mellin transform,
Parseval’s equation and investigate the Mellin transform for Boehmians on torus. In Section 3, we study
the convergence structure of δ-convergence on β(T d). An inversion formula for the Mellin transform is also
proved.

2. Mellin Transform for Boehmians on Torus

Mellin transform is defined by

M{f (x); s} =

∞∫

0

f(x)xs−1ds (7)

and the relation between the Mellin and the Fourier transform [2] is given by

M{f(x); s} = F{f(ex); is} (8)

The Mellin transform, in the form of Fourier transform of f ∈ S, is denoted by f̃, i.e.,

f̃(is) =

∞∫

0

f (ex)esxdx (9)

If we consider {φn} to be a delta sequence, then φ̃n → 1 uniformly on compact subsets of Rd as n → ∞.
The inverse Mellin transform is given by

f(ex) = F−1{f̃ (is)} =
1

2π

∞∫

−∞

f̃(is)e−sxds (10)

where f̃ denotes the Mellin transform of f . The Mellin transform of tempered Boehmian is a Schwartz
distribution. The space of test functions with the compact support in Rd is denoted by D, and the space of
distributions is denoted by D′. The Mellin transform f̃ (is) of slowly increasing function f is the distribution,
given by
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〈
f̃(is), φ̃(is)

〉
= 2π

〈
f(ex), φ(ex)

〉
(11)

The space of Boehmians on the torus is given by ([5])

T d = {(eix1 , · · · eixd) : xj real} (12)

A function on T d and on Rd will be treated same, which is 2π-periodic in each variable. For f ∈ J ( the
space of all slowly increasing continuous functions on Rd) define T2πf (x) = f(x1 + 2π, · · · , xd + 2π). The
translation operator T2π can be extended to βj by putting T2πF = [T2πfn/φn] for F = [fn/φn], which,
indeed, shows that T2πF is a tempered Boehmian. The space of Boehmians on the torus β(T d) is defined
by

β(T d) = {F ∈ βj : T2πF = F} (13)

Lemma 1. Let F =

[
fn
φn

]
∈ βj . Then F ∈ (T d) if and only if for all n ∈ N , fn is 2π-periodic in each

variable.
The proof being routine, we avoid details.

Further, the Mellin coefficients for a locally integrable function f on T d are given by

ck(f(ik)) =
1

(2π)d

∫

Td

f(ex)ekxdx, k ∈ Zd (14)

Lemma 2. Let F =

[
fn
φn

]
∈ βj(T

d). For each k, the sequence {ck(fn(ik))}
∞
n=1 converges.

Proof. Let k ∈ Zd. Since {φp(ik)}
∞
p=1 is a delta sequence, there exists a p ∈ N such that φ̃p(ik) �= 0. Now,

ck(fn(ik)) = ck(fn(ik))
φ̃p(ik)

φ̃p(ik)

=
ck(fn ∗ φp)(ik)

φ̃p(ik)

=
ck(fp ∗ φp)(ik)

φ̃p(ik)

=
ck(fp(ik))

φ̃p(ik)
· φ̃p(ik)→

ck(fp(ik))

φ̃p(ik)
, as n→∞.

This proves the Lemma.

Definition 1. Let F =

[
fn
φn

]
∈ β(T d). Then the k-th Mellin coefficient of F is defined as

ckF (ik)) = lim
n→∞

ck(fn(ik)) (15)

Let δ ∈ D′(Rd) denote the Dirac measure on Rd. Thus, 〈δ(x− k), φ〉 for δ ∈ D(Rd) and k ∈ Zd.

Theorem 1. Let F ∈ βj(T
d). Then F̃ (ik) =

∑

k∈Zd

ckF (ik))δ(x− k).

Proof. Let F =

[
fn
φn

]
∈ β(T d). Then, for each n

∑

|k|≤m

ck(fn(ik))e
−kx → fn(e

x) in S′(Rd), as m→∞.
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By the continuity of the Mellin transform on S′(Rd), we obtain

∑

|k|≤m

ck(fn(ik))δ(x− k)→ f̃n(ik) in S′(Rd), as m→∞.

Thus

f̃n(ik) =
∑

k∈Zd

ck(fn(ik))δ(x− k), n ∈ N.

Now
∑

k∈Zd
ck(fn(ik))δ(x − k) →

∑

k∈Zd
ck(F (ik))δ(x − k) is in D′(Rd) as n → ∞ and by the definition,

f̃n(ik) = F̃n(ik) is in D
′(Rd), as n→∞.

Therefore,

F̃n(ik) =
∑

k∈Zd

ck(F (ik))δ(x− k) (16)

This completes the proof of the theorem.

Theorem 2. The Mellin transform is a bijection from β(T d) on to D′δ(R
d), which is the collection of all

distributions of the form
∑

k∈Zd
αkδ(x− k), αk ∈ C.

Proof. Let {αk}k∈Zd be a matrix of complex numbers. Let {φn(ik)}
∞
n=1 be a delta sequence such that

supp φ̃n(ik) is compact. Put

fn(e
x) =

∑

k∈Zd

αkφ̃n(ik)e
−kx (17)

for n = 1, 2, · · · , and if F =

[
fn
φn

]
∈ β(T d). Moreover, for each k ∈ Zd,

ck(F (ik)) = lim
n→∞

ck(fn(ik)) = lim
n→∞

αkφ̃n(ik) = αk (18)

Thus,

F̃ (ik) =
∑

k∈Zd

αkδ(x− k)

Therefore, the Mellin transform maps β(T d) on to Dδ(R
d). Now, we have to show that the Mellin transform

is an injection. Let F =

[
fn
φn

]
∈ β(T d). It is easy to show that ck(fp(ik)) = ck(F (ik))φ̃p(ik) for all k ∈ Zd

and p ∈ N . Suppose that F̃ (ik) = 0. Then ck(F (ik)) = 0, for all k ∈ Zd. Therefore, ck(F (ik)) = 0 for all
k ∈ Zd and p ∈ N , which justifies that F = 0. This proves the theorem.

3. Convergence

Let U be a class of sequence on a space χ. We say that xn
u
−→ x if (x, x1, x2, · · · , ) is in U , which is called

topological if there exists a topology T for χ such that xn
u
−→ x if and only if xn

T
−→ x. The space β(Γ)

of Boehmians on the unit circle with a convergence structure is known as ∆- convergence is topological. In
this section, we introduce a convergence structure known as δ - convergence. For the space β(T d), the δ -
convergence is equivalent to ∆ - convergence.

Definition 2. [5] : A sequence of function fn ∈ J is said to be convergent to f ∈ J if there exists a
polynomial p such that (fn − f)/p→ 0 uniformly on Rd as n→∞.



Mellin transform for Boehmians on torus 61

Define the map L : T → βJ by

L(f) =

[
f ∗ φn
φn

]

where {φn}
∞
n=1 is any fixed delta sequence.

It is not difficult to show that the mapping L is an injection which preserves the algebraic properties

of J . Thus, J can be identified with a proper subspace of βJ . For ψ ∈ S(Rd) and F =

[
fn
φn

]
∈ β(T d), F ∗ψ

is defined as F ∗ ψ =

[
fn ∗ ψ

φn

]
. It is straight forward to verify that F ∗ ψ ∈ β(T d). Moreover by a routine

calculation we see that ck(F ∗ ψ) = ck(F )ψ̃(k) for all k ∈ Zd.

Definition 3 ([2]) : A sequence of tempered Boehmians {Fn}
∞
n=1 is said to be a tempered Boehmian F ,

denoted by δ = lim
n→∞

Fn = F , if there exists a delta sequence {φn}
∞
n=1 such that Fn ∗ φk, Fn ∗ φk ∈ J for all

k, n ∈ N , and for each k ∈ N,Fn ∗ φk → Fn ∗ φk in J as n→∞.

Theorem 3. Suppose Fn, F ∈ βJ for n = 1, 2, · · · and δ − lim
n→∞

Fn = F . Then lim
n→∞

F̃n(ik) = F̃n(ik), where

the limit is taken in D′(Rd).

Proof. The proof may be referred to [2].

Theorem 4 (Inversion) : Let F = βJ(T
d). Then

F (ek) = δ − lim
n→∞

∑

|k|≤n

ck(F (ik))e−kx (19)

Proof. Let F =

[
fn
φn

]
∈ β(T d) and fn ∈ C∞(T d) for all n ∈ N . For if not, replace fn by fn ∗ φn, then

F =

[
fn ∗ φn
φn ∗ φn

]
and fn ∗ φn ∈ C∞(T d) for n ∈ N . Let

Fn(e
x) =

∑

|k|≤n

ck(F (ik))e−kx, for n = 1, 2, · · ·

Then for each p,

Fn ∗ φp =
∑

|k|≤n

ck(F (ik))φ̃p(ik)e
−kx

=
∑

|k|≤n

ck(F ∗ φp(ik))e
−kx ∈ J, for n = 1, 2, · · ·

Also, for each p, F ∗ φn = fp ∈ J . Since for each p, F ∗ φp ∈ C∞(T d),
∑

|k|≤n

ck(F ∗ φp(ik))e
−kx → F ∗ φp

uniformly on Rd, as n → ∞. This implies that for each p, Fn ∗ φp → F ∗ φp in J as n → ∞. Hence

δ − lim
n→∞

Fn = F . This completes the proof of the theorem.
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Abstract. The notions of curvature collineations and various kinds of motions in a Tachibana recurrent

space have been studied. The necessary and sufficient conditions for curvature collineations in such a

space have been investigated, and relations between curvature collineations and other symmetries are

established.

1. Introduction

Consider with a 2n-dimensional space with an almost complex structure F hi

F ijF
h
i = −Ahj (1.1)

and with a Riemannian metric gji satisfying

F tjF
s
i gts = gji (1.2)

from which

Fji = −Fji (1.3)

where

Fji = F
t
j gti (1.4)

and, finally, has the property that the skew-symmetric tensor Fih is a killing tensor

Fih,j + Fjh,i = 0 (1.5)

from which

F hi,j + F
h
j,i = 0 (1.6)

and

Fi = −F
j
i,j (1.7)

If the space satisfies the condition ([2])

F hi,j = 0 (1.8)

Then the almost Tachibana space is said to be a Tachibana space is denoted by T cn. The comma(, ) followed
by an index denotes the operator of covairant differentiation with respect to the symmetric connection Γhij.

The Riemannian curvature tensor is defined by

Keywords and phrases : Lie derivative, Tachibana space.
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Rhijk = ∂jΓ
h
ik − ∂kΓ

h
ij + ΓlikΓ

h
lj − ΓlijΓ

h
lk

where ∂i =
∂

∂xi
. The Ricci tensor and scalar curvature are, respectively, given by

Rij = R
a
ija and R = gijRij

A Tachibana space T cn is said to be Tachibana recurrent space ([1]), if its curvature tensor field satisfies the
condition

Rhijk,a = λaR
h
ijk (1.9)

where λa is a non-zero vector and is known as recurrence vector field. We shall call such a space ∗T cn - space.
The following relations follows immediately from (1.9)

Rij,a = λaRij (1.10)

Multiplying (1.10) by gij , we have

R,a = λaR

Curvature collineations (CC). A ∗T cn - space is said to admit a CC, if there exists an infinitesimal
transformation x̄i = Xi + vi(X)δt for which

$vR
h
ijk = 0 (1.11)

where $v denotes the Lie derivative with respect to vector vi ([3]).

Throughout this paper, we need to refer to the equations describing motions, Affine motions, affine collineations,
Projective collineations, homothetic collineations, cofnromal motions and conformal collineations. We there-
fore, give symmetry of these well known space time symmetries.

Motion (M). A ∗T cn - space is said to admits a M , if there exists a (Killing) vector vi such that

lij = $vgij = vij + vj,i = 0 (1.12)

Affine collineations (AC). A ∗T cn - space is said to admits an AC, if there exists a vector vi such that

$vΓ
k
ij = v

k
,ji + v

mRkjmi = 0 (1.13)

where Γkij is the Christoffel symbol of the second kind. The necessary and sufficient condition (1.13) for an
affine collineations (AC) may also be expressed as

lij,k = 0 (1.14)

Obviously, every motion (M) is an AC. We use the terminology proper AC (pro. AC) to denote those AC,
which are not M .
Projective Collineations (PC). A ∗T cn - space is said to admits a PC, if there exists a vector vi such
that

$vπ
i
jk = 0 (1.15)

where the projective connection

πijk = Γijk − (n+ 1)−1[δijΓ
l
lk + δ

i
kΓ
l
lj]

Alternatively, we may express (1.15) in the form

$vΓ
i
jk = δ

i
jφ,k + δ

i
kφ,j (1.16)
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where

φ,j = (n+ 1)−1vm,mj (1.17)

It follows from (1.16) that for a PC, we get

lij,k = 2gijφ,k + gikφ,j + gikφ,i (1.18)

In addition, we find that for every PC, we have

$vW
i
jkh = 0 (1.19)

where W i
jkh is Weyl projective curvature tensor defined as follows

W i
jkh = R

i
jkh −

1

(n+ 1)
(Rjkδ

i
h −Rjhδ

i
k) (1.20)

Clearly, every AC is a PC (i.e., a PC with φ,k = 0). We use the termionology proper PC (Prop. PC) to
denote those PC, which are not AC.
Cofnromal Motion (Conf. M). A ∗T cn - space is said to admits a Conf. M , if there exists a vector such
that

$v(g
−
1

n gij) = 0 (1.21)

where g ≡| gij |. Equivalently, we have

lij = 2σgij (1.22)

where σ is a scalar expressible in the form

σ =
1

n
Uk,k (1.23)

It follows that every conf. M must satisfy

$vΓ
i
jk = δ

i
jσ,k + δ

i
kσ,j − gjkg

imσ,m (1.24)

It can also be shown that conf. M satisfies

$vK
i
jk = 0

where the conformal connection Ki
jk is formed with the relative tensor (g−

1

n gij) in the same manner as the

Christoffel symbol Γijk is constructed with the metric tensor gij. Alternatively, K
i
jk may be expressed in the

form

Ki
jk = Γijk −

1

n
(δijΓ

m
mk + δ

i
kΓ
m
mj − gjkg

imΓlim)

We use the motions proper Conf. M with σ �= constant.

Homothetic Motion (HM). A ∗T cn - space is said to admit HM , if there exists a vector vi such that
(1.22) holds with σ a non-zero constant.

Conformal Collineations (CC). A ∗T cn - space is said to admit a Conf. C, if there exists a vector for
which (1.24) holds. It follows that every Conf. M is a Conf. C, but the converse is not necessarily true.
It can be shown that the necessary and sufficient condition (1.24) for a Conf. C may be expressed in the
equivalent form

lij,k = 2σ,kgij (1.25)

and that every Conf. C must satisfy
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$vC
h
ijk = 0 (1.26)

where the Conformal curvature tensor Chijk is defined by

Chijk = R
h
ijk +

1

(n− 2)
(Rikδ

h
j −Rijδ

h
k + gikR

h
j − gijR

h
k) +

R

(n− 1)(n− 2)
(gijδ

h
k − gikδ

h
j ) (1.27)

2. Necessary and Sufficient condition for curvature collineations in a ∗T cn - space

The infinitesimal transformation

x̄i = Xi + vi(X)δt (2.1)

where δt is positive infinitesimal, defines a curvature coliineations (CC), if the curvature tensor of ∗T cn -
space admits a vector field vi(x) such that

$vR
k
jhi = 0 (2.2)

In general, the solution of (2.2) consists of a set of vectors vi(α);α = 1, 2, 3, · · · , r, which defines an r-parameter
invariance group. However, in this paper, we shall not investigate the group property of CC.
From definition of Lie differentiation, we have

$vR
k
jhi = R

k
jhi,mv

m +Rkmhiv
m
,j +R

k
jmiv

m
,h +R

k
jhmv

m
,i −R

m
jhiv

k
,m (2.3)

If we use the Bianchi identity and Ricci identity and use of (1.13), we find that (2.3) can be expressed in
the form

$vR
k
jhi = ($vΓ

k
ij),h − ($vΓ

k
hi),i (2.4)

and

$vR
k
jhi =

1

2
gkm[(lim,j + lmj,i − lij,m),h − (lhm,j + lmj,h − lhj,m),i] (2.5)

By the substitution of $vR
k
jhi as given by (2.5) into (2.2) and multiplying the resulting equation by gki to

lower the index k, we get the following
Theorem 2.1. A necessary and sufficient condition for a ∗T cn - space to admit a CC is that there exists a
transformation of the form (2.1) such that the vector vi satisfies

(lim,j + lmj,i − lij,m),h − (lhm,j + lmj,h − lhj,m),i = 0 (2.6)

where

lij = vi,j + vj,i

We may express (2.6) in an equivalent but simpler form returning to (2.2) and substituting (2.4) into (2.2)
and using the first expression for $vΓ

i
jk given by (1.13) along with the Ricci identity to obtain

(vi,mj + vm,ji − vi,jm),h − (vh,mj + vm,jh − vh,jm),i = 0 (2.7)

Although (2.7) is a simple equation than that of (2.6), we find (2.6) to be more usseful for most of our
consideration. From (2.2), we observe by contracting on the indices k and i that CC vector vi satisfies

$vRjh = 0 (2.8)

In general, if ∗T cn - space admits a vector vi such that (2.8) holds, we say that the ∗T cn - space admits “Ricci
Collineation” (RC)

Thus, we have the following
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Theorem 2.2. For a ∗T cn - space, every CC is an RC.
In (2.6), if we interchange the indices j and m and add the resulting equation to (2.6), we have

Theorem 2.3. A necessary condition for a transformation of the form (2.1) to define a CC is that

ljm,ih − ljm,hi = 0 (2.9)

It is of interest to note that (2.9) could also be obtained by starting with

giaR
a
jkm + gjaR

a
ikm = 0 (2.10)

Taking the Lie derivative of (2.10), it follows, that if (2.2) holds, we have

liaR
a
jkm + ljaR

a
ikm = 0 (2.11)

which by means of the Ricci identity reduce to (2.9).
The necesarry condition (2.9) of a CC leads directly to an identity that has been of special interest in

the formulation of the conservation laws of general relativity.

In particular, if the condition (2.9) is multiplied by g
1

2 gih gmi, where g =| gij |, we get

[
g1/2(vi,j)

]

,ji
=

[{
g1/2(vi,j − v

j
,i)
}

,j

]

,i

= 0 (2.12)

which is covariant identity.
Since this tensor expression is obviously a vanishing identity for all vi, it follows that this necessary

condition for a CC places no restriction on vi.

3. Relations between CC and other Symmetries

From the condition (1.12) of a M in a ∗T cn - space, it is immediate that we may state the following

Theorem 3.1. In an ∗T cn - space, every M is a CC.
Similarly, from the condition (1.13) of an AC, it follows that we may state

Theorem 3.2. In an ∗T cn - space AC is a CC.
Also, it follows immediately from the definition of HM that from (1.22) satisfies (1.14) and hence as a
consequence of Theorem 3.2, we state

Theorem 3.3. In an ∗T cn - space every HM is a CC.
From Yano ([3])(pp.167), it is known that if a transformation is both a Conf. M and PC, then it is an

HM . Hence, we have the following a consequence of Theorem 3.3.

Theorem 3.4. In a ∗T cn - space, if a transformation is both a Conf. M and PC, then it is a CC.
Next, let us consider under what conditions a PC is a CC. We, therefore, require that $vΓ

i
jk be given

by (1.16) and substitute for $vΓ
i
jk in (2.4). If we then demand that

$vR
k
ijh = 0

we obtain

δki φ,jh − δ
k
hφ,ji = 0 (3.1)

We set k = i and sum in (3.1) to get φ,jh = 0. We call a projective collineations with φ,jh = 0, a special
projective collineations (SPC). It follows immediately by a covariant differentiation of (1.16) that an SPC
satisfies
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($vΓ
k
ij),h = 0 (3.2)

In general, if a ∗T cn - space admits a vector vi such that (3.2) holds, we say that the ∗T cn - space admits a
special curvature collineation (SCC). Thus, every SPC is a SCC. We summaries the above by stating the
followng.

Theorem 3.5. The necessary and sufficient condition for a PC to be CC is that

φ,jh = 0 (3.3)

where

φ,jh =
1

(n+ 1)
vi,ijh

i.e., a PC must be an SPC.

Corollary 3.1. If a ∗T cn - space admits a SPC, then it admits a parallel field of vectors

φ,j =
1

(n+ 1)
vi,ij

where vi defines the SPC.
We now, turn our attention to the condition for a Conf. C to be a CC. We thus assume that the ∗T cn

- space admits a Conf. C, i.e. (1.25) holds. Now, we use (1.24) to evaluate $vΓ
k
ij in (2.4) and require that

$vR
k
jih = 0, we immediately obtain

δki σ,jh − δ
k
hσ,ji − gihg

kmσ,mj + ghjg
kmσ,mi = 0 (3.4)

We set k = i and sum in (3.4) to obtain

(n− 2)σ,jh + ghjg
imσ,mi = 0 (3.5)

Now we multiply equation (3.5) by gjh and sum to obtain

gjhσ,jh = 0 (3.6)

It follows from (3.5) and (3.6) that σ,ij = 0. We call a conformal collineation σ,ij = 0 a special conformal
collineations (S Conf. C).

It follows immediately by covariant differentiation of (1.24) that an S Conf. C satisfies (3.2). Thus,
every S Conf. C is a SCC.
We, now summaries the above by stating

Theorem 3.6. The necessary and sufficient condition for a Conf. C to be CC is that

σi,jh = 0 (3.7)

where

σ,jh =
1

n
vii,jh

i.e., the Conf. C must be a S Conf. C.

Corollary 3.2. If a ∗T cn - space admits a Special Conf. C, then it admits a parallel field of vectors

σj =
1

n
vi,ij
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where vi defines the S Conf. C.
We define Special Conformal motion (S Conf. M) as a Conf. M with

σ,ij = 0

Hence, we have the following:
Theorem 3.7. Every S Conf. M is a S Conf. C.
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