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Abstract. The objective of this work is to study the effects of unsteady two-dimensional free convective

oscillatory flow during the motion of a viscous incompressible fluid through a highly porolrs medium by

lsi1g finite difference technique. The temperature profiles for the case of air for cooling of the fluid have

been found. Its numerical values have beeu tabulated. Numerical solutions for velocity profiles for cooling

of the fluicl have been tabulated aud plotted graphically.The rate of heat transfer is studied for the case

of turbulent flow. Nurnerical solutions obtained from this study have been compared with available exact

solutions in the literature. It is found that they are in good agreement.

1. Introduction

The study of the effect of convection on the flow and heat transfer processes through a porous medium

plays an important role in agricultural engineering aud throws some light on the influence of environrnent

like temperature and pressure on the germination of seeds. It is also of interest in petroleum industry in

extracting pure petrol frour the crude. The study of flow through porolrs media is also of importance in soil

physics and ltyclrogeology. Studies associated with such flows through a porous media have been based on

the Darcy's empirical equation [2]

constant -qr: ]:]:iYVo (1)

where q1 is the mean filter velocity; ,pr, is the viscosity of the fluid; V, is the pressllre gradient. Later Muskat

[5] has showl tliat tlie constant in t]re above equation must depeud on th.e permeability of the porous

material and showed that

qr: LYo Q)

where K is the permeability of the porous material and has the dirnensions of length squared. This equation

has beeu used ever since to study the dynarnic behavior of flow through porous media. Following Yauramoto

ancl Iwamura [10], we regard the porous uredium as an assemblage of small identical spherical particles fixed

in space and the eqn (2) for incompressible fluid and unsteady flow, takes the form

* . (qr, v)q, : -Loo, - firr-t uY2q - s (3)

where y is the kinernatic viscosity, t is the time and g is the acceleration due to gravity. But the effects of free

convection flow through a porous mediurn play an iurportant role in agricultural engineering, petroleum

Keywords and phrases : Permeability parameter, Gra.shoff nurnber, Heat transfer, Oscillatory flow, Prandtl number.

AMS Subject Classification : 76E06, 76M20,76R10.



V. Ambethkar and La.ipat Rai

industry and heat transfer [9]. For this recently Raptis et al [6] studied the steady free convection flow

through a porous medium bounded by an infinite vertical plate. Unsteady free convection flow through

porou-s medium bounded by an infinite vertical plate was investigated by Raptis[7]. In this problem,

infinite vertical porous plates with constant suction velocity by taking into account both viscous and

Darcy,s resistance terms are considered. Also in this problem, the temperature of the plate oscillates with

time about a constant non- zero mean value, while the temperature away fiom the plate is constant.

Oscillatory flow is always important for it has many practical applications in geothermal, geophysics and

technology. Raptis and irerdikis [8] have studied the oscillating flow through a porous medium by the

pr"r"n." of fiee convective flow, MHD unsteady free convective flow past a vertical porous plate has been

,tudi"d by Helmy [3]. Unsteady MHD convective heat transfer past a semi infinite vertical porous moving

plate with variable suction has been studied by Kim[4].

The purpose of this work is to study the effects of unsteady two-dimensional free convective flow

during the motion of a viscous incompressible fluid through a highly porous medium by using finite

difference technique. The temperature profiles for the case of air for cooling of the fluid have been found.

Its numerical values have been tabulated. Numerical solution for velocity profiles for cooling of the fluid

have been tabulated and plotted graphically. Numerical solutions have been compared with available exact

solutions in the literature. They are found to be in good agreement.

2. MathematicalFormulation

We consider the unsteady two- dimensional flow through a highly porous medium which is bounded by a

vertical infinite plane surface. We assume that the fluid is viscous and incompressible, the surface absorbs

the fluid with a constant velocity and the velocity of the fluid far away from the surface vibrates about a

mean value with direction parallel to the x1 - axis. All the fluid properties are assumed constant except that

the influence of the density variation with temperature is considered only in the body force term.

The xr - axis is taken along the plane surface with direction opposite the direction of the gravity

and the yr - axis is taken to be normal to the surface (Fig. 1)'

Oscillatory
Suctiott

Porous ltl+tliunt

u-

Fig. I Physicat Model and Coordinate System of the Problem
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The equations, which govern the problem when the velocity and the temperature are functions

of y1 and the time t1, are:

Continuity equation :

Momentum equation :

(4)

(s)

4=o
0y,

AT, AT,
' + y, --J;Et, 'Ey,

k dzT,

&, dY,'

Yt =0, ul =0,

Vl=-V0=CODSt.r Tt=Tt*.

yl --+oo, ul +U*-I)(l+ui'l'),

Tr-Ir*,

where u1 and v1 being the components of the velocity which are parallel to the xland )r oxoS,

respectively, p, the density of the fluid, p1, the pressure, B, the acceleration due to gravity, p, the

viscosity, r,, the permeability of the porous medium, Tr, the temperature of the fluid, Tr*, the

temperature of the surface, Z,- , the temperature of the fluid far away from the surface, k, the thermal

conductivity of the fluid, cr, the specific heat of the fluid at constant pressure, U, a constant velocity,
co1, the frequency of vibration of the fluid and E ( s < I ), a constant quantity.

Equation (5), for the free stream, is reduced to

Energy equation :

Boundary conditions :

On eliminating
dp,

dr,

(7)

(6)

(8)p!!--=-y-p-s-F u*' dt, d*, Kl

between (5) and (8) we have

;y., +l = pdy* + sb*- p)+ t,-\*L1o*-u,)
I dr, dlr ) dt, d)1- Kl

,(y.-#) =-*-or.t#-t.,

This equation is reduced to
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by using the constitutive equation
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-4-)+ ,#.tV- -,,) (e)

tJ" -u* ,
U

sfp@,

where B is the volumetric coefficient of thermal expansion and p- the density of the fluid far away the

surface. Since the surface absorbs the fluid with a constant velocity, the continuity equation (4) gives

Vr = -Vo= Constant

where the negative sign indicates that the suction is towards the plate. Equation (9) then becomes

p*-p -- Fp@,-r,-)

y --!!-e-,
v

(10)

where the second term on RHS of the above equation denotes buoyancy effects and the fourth term is the

bulk matrix linear resistance, i.e', Darcy term.

We introduce the non-dimensional quantities

i+ * *) = + + sB@,-l-)+,ff *LQt *- u,)

,=\.t=t"3,Uv

PVc oP,= (Prandtl number) (11)

ugp(r,* - r,- )
O, =:-hl - (Grashoff number)

* =#*, (Permeability parameter)

where v is the kinematic viscosity.

With the help of the above non-dimensional variables, equations (10) and (6) are reduced to

dimensional equations

( a, Eu) dur o'u I
I +-: t- *' + - -' *-(u. -u)+G,r(.a, ay) dt 'dy' *,

non-

(12)
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-[# #) =# (13)

by taking into account from (7) that U- = U(l+rzi'"' ).

The conditions (7) are reduced to:

For

y=0, u=0, T=l )
I

when | (14)

I

y*co, u---l+ee'^, T---0 )

On substituting the value of U* fiom the non-dimensional quantities into equation (12), we obtained,

after taking the real part

(au _au\ ^-- _, _ d . dzu , t

Ia, ar.,J= 
-eotsin"*#+-(l+scos or-u)+G'T (15)

On rearranging the terms of the above equation, we obtain

f91-4) =*-++G.r*l(,+rcos ar)-cotsina (16)
l'a, dv )- dv' K ' "" K'

, ( gr_- qr) = d_'T. (r7)
"[ at oy )- ay'

where at is the frequency parameter, r, is the permeability parameter and e is very small quantity.

Initial conditions :

(18)

Ast-+0,u-+1+g

y -+0, u=0, T= I

y---+.o, u--- I + (t + e cos al )

when
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3. Method of Solution

An implicit finite difference method has been used to solve equations (16) and (17) subject to the

conditions given by (18). To obtain the difference equations, the region of the flow is divided into a gird or

mesh of lines parallel to y and t axes. Solution of difference gquations are obtained at the intersection of

these mesh lines called ntd", (as in Fig (2)). The values of the dependent variables T and u at the nodal

points along the planes y = 0 and t = 0 are given by T(0,t) and u(O,t) and hence are known.

In Figure 2, Ly , N are mesh sizes along y and t directions respectively. we wish to find single values at
next time level in terms of known values at an earlier time level. A forward difference approximation forthe first order partial derivatives of r and u w.r.t. t and y and a central difference approximation for thesecond order partial derivative of u and T w.r.t. y are used.

t
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(ar) Ti*t.i -7,..i *T,*r.i*, -7,-,.i*,

[a,.,|,,=6'
Iar) ui+t.i - tti-t.i + ui*r.i*r - Lti-r.i*r

[a,J,,=6'
(ar) _7,.i*, -7,.1
(.tJ,,, - N '

(ar) _ui.i*r - tti.1

[}J,, 
_ N ,

Ia'r) Ti*t.j *Ti-r.j -27,,, +7,*r,i*, +T,-r.i*, -27,.,*,

[af .J,, 
= '

(a'u\ ui*r.i + u,-r.j 2u,,, * ui*t.i*t * tt,-r,j*r -Zu,.j*,

[alJ,, 
= '

(le)

On substituting the values "f +,$ una ?'T Lorn (19) into equation (17) and 
du 

-du'crruLJ ur 
;;-r a) 

o.r" 
al 

rrvrrr \tz, ttt.v wYqqrrvrr \r r/ qrru 
dt 

r 
fo

in (16) we get the finite difference approximation of (16) and (17) as

(t I ^r) 
(t r ar) (t rar) (r lar)

[;- T;)tti*ri', -[r-i;)"i-'I 7+'I 
: 

[;.T;)'i+ 
;+[;- o *)Lti-rit

G,LtT i.i - i(tt)u,, * l( + e cos att)- eo sin @t (20)

and

[,+ +) r,i*, + t*; ;-) .,

(#. ;')r.,,., =(#. ;)r.,, . [-# . *),^,. [, 
- i)r,

Ezu
and ;;-,oy

t j+l

(21)

7
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4. Numerical Solutions and their accuracy

To get the numerical solutions of the temperature T and velocity u, we have taken the aid of the computer

by Ieveloping a code (program) in Mathematica 5.0. The logic of the program comprises 2 modules as

fbllows:

Module l: main, initially it creates two tables to hold the Numerical Solutions of Temperature and

Velocity. We know that all the terms and their coefficients on RHS of eqn. (21) are known values from

initial and boundary conditions. At every time step, for different values of i', the finite difference

approximation of equation (21) gives a linear system of equations.

Then, for j = 0 and i = 1,2,.... n-1, equation (21) gives a linear system of (n-l) equations fbr the (n-l)
unknown values of 'T' in the first time row in terms of known initial and boundary values. This module

maintains coefficients of this linear system of equations. Now, the flow will be followed up to the Module
2 for solving the system of equations. After then, the numerical solutions so we obtain tiom Module 2 will
be compared to the analytical solutions at every time step level. On making use of the numerical values of
'T'into equation (20), we obtain the numerical values of 'u'.

Module 2: CNSolve, It calculates the numerical values at the next time step level. In order to do this, it
uses another sub module named, TriDiagonal, which solves the tri-diagonal matrix by using Gauss-
Elimination method.

In order to assess the validity of our numerical solutions, we compared our numerical solutions for
temperature and velocity for the case of suction (r > 0) with the available exact solutions in the literature.
Table 1 and Table 2 show comparisons between the numerical values of temperature and velocity for
P.= 1 are obtained from the present study and those obtained in [7]. It is clearly seen from these tables that
results are in excellent agreement. The corresponding codes (programs) for calculating numerical solutions
for temperature and velocity and the comparison between the exact and numerical solutions have been
givn. The comparison table Table I and Table 3 have been plotted and shown in Fig 3 and Fig 4. As the
accuracy of the numerical solutions are very good, the curves corresponding to exact and numerical
solutions are lying very closer.

Code for comparison of temperature

TriDiagonal Ia0_;d0_,c0_,b0_] : =

Module[ { a=aO,b=b0,c=c0,d=dO,k,m,n=Length [b0] ,x ] ,

For[k=2,k < n,k++,

dttrlt= drrr; - (a11r-r1t / d16-rn ) * c11r-r11 I

b1r1r= btg1t - (atr-rl / d1ft-rl ) * bur.-rtt I ll

x=Tablel 0, { n } ]; xttnll= b11n11 / d11n11 ;

For[ k=n-l; I < k; k--, Xrrtt = ( brrr.n -cm.tt * xttr+rlt) / dlgn ; Ji

Return [x]; l;
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CNsolve[n-,m-]:=

Module[{b,ij},

b=Table[O,{n}];

For[=21(mj++, btr,t] = grUl; btt"n = gz[J];

For[i=2,i ( n-l,i++,

b11111=(0.5-(k/(4*h)))*utti-rj-rtl + uttij-rtl +(0.5+(k/(4*h)))* u11i+t1-t11*

(k/(48h))x(utri+r, jlt - uli-r,:tr)i ll
uttAlljll = TriDiagonal [Va, Vd, Vc, b]; ]; l;

a=1.0; b=0.1; c=l; n=21 m=41;F[xl=0; Gr[tl=1.0; Gz[tl=0.0;

h=a/(n-l); k=b/(m-1);

fti-l=p1611-111' Br[i-]=Grlk (j -1 ) l; ez[i-]=Gzlk (j - 1 )l;

u=Table[1,{n},{m}];

For[ i=l,I (n,i++, utti,l ]t = f[i]; ];

For[j=11(mj++, urrr;rr = gr[j]; uttn,jl = gzUl; l;

r=(c2 x k) / h2 ;

Va=Vc=Table[-1,{n- I }] ; Va11n-rl - Vcrrrrr = 0; Vd = Table[ 2 + (2/ r), { n} ];

Vdrtrtt = Vd 11n11= l;

CNsolve[n,m];

Print["Complete Table"] ;

Print[" t y Exact Numerical Error"];

Print[" Solution Solution 7o "];

I)-!-+f rr____ 
--------rll.frrrrrl ---- -------- It

result=Tablel " ---------", { (m*n)+m-20 }, { 5 } ] ; row= I ; t=0;

For[i=2,i(m,i++, t=t+k;y=-0.05;
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For[j-1j < n j++,

y=y+O. l; eta=(yt(Z*.lt D;

answer=O.5*(e-v x Erfb[eta - 0.5 * 1[ ]+ f,rttteta + 0.5 *.[ ];

result11pw,,r1l = t, result11row,,zll = y; resultttrow,'3ll = answer; result11row,,+11 = ut1;"ll;

resultttrow,lll= Absl(answer - uttj'itl) / 100]; row=row+1; ];

resultttrow,tll =" ------", resultttrow,2ll;" -------"'resultttrow,3ll ="--------";

resultttrow.4ll =" -----'", resultllro*,s11 = " ------"; row=row+I;];

Print[ TableFormI result,Tablespacing->{0,2} ]l;

Output:

t

0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09

v

0
0.05
0.1

0.l5
0.2

0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

I

Analytical
Solution

I
0.882046
0.771048
0.667759
0.572753
0.486402
0.408868
0.3401l
0.279899
0.227842
0.183413
0.145986
0.114868
0.089336
0.068665
0.052151
0.039134
0.02901l
0.021244
0.015366
0.010976

Numerical
Solution

1

0.883693
0.7713r1
0.664629
0.565148
0.414027
0.392043
0.319583
0.256661
0.202965
0.15791 8
0.120743
0.09054r
0.066351
0.0472tr
0.032194
0.020443
0.011181
0.003712
0.002582

0

lPercentage
Errorl

0
1.65E-05
2.648-06
3.13E-05
7.618-05
0.000124
0.000168
0.000205
0.000232
0.000249
0.000255
0.000252
0.000243
0.00023

0.000215
0.0002

0.000187
0.000178
0.000175
0.000128
0.00011

Table 1: Comparison Temperature
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Fig 3: Comparison of Temperature

t

0.02
0.02
0.02
o.o2
o.o2
0.02
o.o2
0.02
0.02
0.02
0.02
0.02
o.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02

v

0
0.05
0.1

0.15
o.2

0.25
0.3

0.35
0.4

0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

1

Numerical
Solution

1

0.588903
0.346183
0.202886
0.118364

0.0686
0.039409
0.022384
0.012537
0.006903
0.003718
0.001936
0.000935
0.000348
5.19E-05
0.000414
0.000864
0.001535
0.002617
o.oo4404

0

1.2

1

o.8

o.6

o.4

o.2

o

I
a

Numerical Solution

Analytical Solution

F

o o.5 1.5

v

Table 2: Numerical values of Temperature for Air P,=0.733
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code for numerical solutions for velocity proliles for cooling of the fluid

TriDiagonal [a0-,d0-,c0-,b01 :=
-Module[ 

{ a=a0,b=b0,c=c0,d=d0,k,m,n=I-ength[b0],x ],
For[k=2,k<n,k++,

drtrr= dtrtt - (attk-ltt / drtt-rl ) * c11r-r11 I

bt6ll= brrrtt - (a11r-r1 / Qtr-rtt ) * bxr.-r11 i Ji

x=Table[ 0, {n} ]; xunl= b11n11/ d11ntt 
'For[ k=n-l; I < k; k--, Xgtl; = ( brrrlt -cfitll * xttr*t]l) / dnt11 i Ji

Return [x]; l;

CNsolve[n-,ml:=
Module[{b,ij},

b=Table[0,{n}];
For[j=2J(mj++, brrrrr = gr[j]; bxnn = $zliJi
For[i=2,i ( n-1,i++,

b11111 =u1i-r;-r1 + ((2/r)-2) utti;-rtt + uttl+t j-t1i ll
uttAlljll = TriDiagonal [Va' Vd' Vc' b]; l;

b=Table[0,{n}];
For[j=21<^1**, sbrrrtt = grU]i sbtlntt = gz[j]l

For[i=2,i ( n-1,i++,
sb161 =suJ1i-r;-r11 * (2lst)-2) suttij-U11su1;t+t;-t1*0/4) *( su[l+li-l]l - suttr-ritt)

+ (W4) (suttr+rj-rlt- sqlrr;-r11) + (G, * hxh*( u1g;-r11* utli;lt) -
(h*5*1 su11i;-r11* su11i;11)/r *10 * ecosor)- eaxinox l;

uttAnjl = TriDiagonal [Va, Vd, Vc, b]; ];

a=1.0; b=0.1; c=l; n=21; m=41; F[xl=l; Gr[tl=I.O; Gz[tJ=Q.8; r = 1; G, = -10;

h=a/(n-1); k=b/(m-1);
f[i_]=p1511-l)l; grLil=Grlk ( j -l ) l; gzlil=Gztk ( j - I )l;

u=Table[,{n},{m}]; su=Table[1,{n},{m}];
For[ i=l,inn,i++, uxi,r 11 = f[i]; su1i.l11= f[i]; ];
For[ j=l11mj++, urrrj]t = gr[j]; urrn,;rt = Bzlj]; suttrjtl = Br[j]; suttn,jl = gzUl;l;

r=(c2 x k) I h2; sr=(c2 * k) / h2 ;

Va=Vc=Table[-1,{n-1}]; Vatrn-rtl - Vcrrrl = 0; Vd = Table[ 2 + (2/ r) , {n} ];
sVd=Table[ 2+(2/sr), {n} 1; Vdnrrr-Vdrrnrr= l; sVdrrrrl=svdrrnil = l;

CNsolve[n,m];
Print[NumberForm[TableForm[N[Transpose[Chop[u]ll,Tablespacing {0,2}lll;
Print[NumberForm[TableForm[N[Transpose[chop[su]ll,TableSpacing {0,2}lll;
row=l;t=0;
For[i=2, i<=m, i++, t=t*k; y=-0.05;

For[=1, j<=n, j++,
y=y+h; resultttrow,lll =t ; resultllrqw,zll=yi resultttrcw,3ll= Sutu,ill; row=row*1;]i

resultttruw,lll= ('---------";resultJlruw,zll= 
"---------,.;result11.o3I= ..--------.,;

row=row*l;];]l
Print[ TableForm[ result,TableSpacing->{0,2} ]l;



N,urnerical Soluti,ons of an Unsteady Free Conuectiue Osci,llatory Flow through q Porous Medi'um 13

Numercial Solution for
Numerical solution for
(tI=7tr€ =Q.lrY=J

* =+,, u

t

0.02
0.02
0.o2
0.02
0.02
0.o2

0.02
0.02
0.02

0.02

0.02
0.02
0.o2
0.02
0.02
0.02

0.02
0.02

0.02
0.02

0.02

0.0225

0.0225
0.0225
0.0225
0.0225

0.0225
0.0225
0.0225

0.0225
0.0225
0.0225
0.0225

0.0225
0.0225
0.0225

0.0225

0.0225
0.0225

0.0225
0.0225

0.0225

u

0
0.05

0.1

0. l5
0.2

o.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

o.7

0.15

0.8

0.85

0.9

0.95

I

0
0.05

0.1

0.15

0.2
0.25

0.3

0.35

0.4
0.45

0.5

0.55

0.6

0.65

0.1

0.15

0.8

0.85

0.9

0.95

I

I

l. l7 I 195

1.290882
1.371402
1.423423

1.45563 8

t.474701
1.485385

r.49085

t.492954
r.492496
1.489366

1.482566

1.470127

1.448955

1.414676

1.36r5r9
t.28Z3l

l.168575
1.010799

0.8

I

t.t83377
t.3144t6
1.404914

1.465206
1.503873

1.527656

1.54t532
1.54891 I
L55 1861

r.55t3l5
1.547 t91
1.53843 I

r.522949
t.49753t
t.457724
1.39776s

r .3 10587

1.187942

1.020616

0.8

=0.1, K=5,0)=6

I

0.7877 16

0.639298
o.539442
0.474906
0.434893
0.411103

0.397525
0.3e005s
0.38605

0.383933

0.382899
0.382795
0.384185

0.388617
0.399059
0.4204t

0.459967

0.527641
0.635823

0.8

I

0.7't2607
0.610107
0.497863
0.423045

0.374914
o.345222
032748

0.317279
0.3 I 1635

0.308731

0.307675

0.308407
o.3|77 r

0.3t9745
0.335785

0.3652t3
0.415511

0.496423
0.61974

0.8
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Fig 4 : Velocity profiles for cooling of the fluid( Qfr = lt and a =

5. Results and Discussions

The numerical values of the temperature profiles for different Prandtl numbers 0.73, 6.75, 16-6

correspondingly to air, water and alcohol are obtained and have been listed under table 4. By using these

values, the variation of temperature has been shown graphically in Fig. (5). From this figure it is observed

that as prandtl number increases the temperature profiles decreases. AIso it can be seen that the

temperature is maximum for the case of air (P. =0.733).

it

1.6

1.4

1.2

a1

0.8

0.6

0.4

0.2

0

CtI = 7T

Qfi=
7t

2

0.2 0.4 0.6 0.8 1.2



Numerical Soluti,ons of an Unsteady Free Conuert'iae Oscillatory Flow through a Porous Med'ium 15

v

0.2

0.4

0.8

t.2

1.8

2.0

P,=0.733 Pr= 6.75

09293 0.2592

0.7458 0.067

0.5563 0.0045

0.4149 0.003

P. = 16.6

0.036

0.0013

0.0000017

2 x lO-e

0.2612 0.0000052 1.05 x 10-13

0.2308 0.0000013 3.8 x 10-15

Table 4. Numerical Values of Temperature for different P'

1

o.95
o_9

o.a5
o.8

o-75
o.7

o.65
o.6

o.55
o.5

o.45
o.4

o-35
o.3

o-25
o.2

o.15
o.1

o.o5
o

o.9293
.---.}- Pt : 0-733

Pr :6-75
+- Pr : '1 6.6

o-7458

o.5563

o_4149

o.2672
o.2304

o-2 0-4 0.a 1.2 'l -8

v

Fig.5. Temperature profiles for different P,
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Numerical values of Transient velocity profiles for some values of K permeability parameter and

fixed G, Grashoff number are listed under table 5 and are shown graphically in Fig. 6.

v

0.2

0.6

1

t.4

2.0

K=0.5

-1.762t

-1.0326

-0.5813

-0.3070

-0.0906

K= I

0.1822

0.1428

0.0971

0.0652

0.0357

K = 1.5

0.0309

0.020s

0.0142

0.0095

0.0052

Table 5. Numerical Values of the Transient velocity for some values of K

Permeability Parameter and Fixed G, Grashof number

O-1A22 Oi42A
o-4
o-2

o

-o-2
-o.4
-o.6
-o.a

-1

-1-2
-1-4
-1.6
-1.4

-2

--O- K: O.5
----r_ K: 1

_#K:'l .5

Fig. 6 . Transient velocity profiles for some k and fixed G,
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The main conclusions of the above figures are

a. As the permeability parameter K increases, the velocity decreases.

b. As P, increases, then the velocity also increases'

c. The temperature profiles decreases as the time increases.

The rate of heat transfer is studied from Fig.7. From this Figure, it can be seen that as the Prandtl

number increases, the rate ofheat transfer first decreases and then increases gradually.

Nu

0.05

o

-o.05

-0.1

-o.15

-o.2

-o.25

-o.3

-o.35

-o.4

Fig. 7. Rate of heat transfer for turbulent flow

6. Stability and convergence for the finite difference scheme

The Stability criterion of the present implicit finite difference scheme for constant mesh sizes are
examined by using Von Neumenn analysis as explained by Carnahan et al []. The general terms of the
Fourier expansions fbr u and T at a time arbitrarily called t=0 are both exp(iar) exp(ifu)
(*h"rr,, = J- I ). At a later time t, these terms will become

u=F(r)exp(, m)exp(ifu)

T= G (r) exp (i m) exp(i py) (22)
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(23)

(2s)

Now rhe implicit finite difference scheme, the equations (16) and (17) respectively become, after

neglecting the constant term,

,!.j' - u!,, _lr!.j'., - u!j'-, + u.f.iu - r!.i-J *
Lt 4(^y)

[u!.j'., + u!.j'-, -zu!.j' + u!.,., + u!.,-, -2r!,,)
2(^v)'

. G,t,:i +r,r.i\ t (ui.j' +rl;)-----z -'-\ 2 )'

rli -r,i, _lr,r.il, -T,!1, +T,!i., -T,r.i-,\-[f)
tt -W l.el

lr,r,il, +T,li!, -2T,li' +7,0,., +7,r,,-, -2T,l,l . e4l
2(^v)'

Now substituting (22) in (23) and (24) we have,

F' - F - [(r'+ r')i sin Bly]* (r" + FXcol/Av - 1)

Lt z(ty) (ay)'

(26l'

on simplifying and rearranging the terms in the above expressions, we get

F' - F = ( F'* r 1[(a')i(:i', 
pa')- ((r-co's /AvXar))- (ar)-l *G'(G' 

+ G)^t 
Q7l

L 2(^),f (A.v)' z* ) 2
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[14,;f in Blr) ((t - cos /ayXt)l
G' _ G = (G'. c t 1_:ffi: -"=to,f:]

The above equations can be written as

(1+e) P'=(1-A) ,-W*

(1+B)6' = (l-BlG

o = 
[- 

(^')'ji^ift) . c1;p@. 9]

(2s)

where

where

(3U

(32)

D _ [((l -.o' Ba.vXar)) (r)i(sin B^y\]D- L "ruf---- ,Grt-)

Using equation (30), equation (29) becomes

o'=ffiF+D,G,

",=ffio,

GLtD,=11a;m

Expressing the equation (31) and (32) in matrix form, we have

(28)

[:] Lr *l[:]
(33)
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Now for stability the modulus of each eigen value of the amplification matrix should not exceed unity' The

eigen values of the amplification matrix are

^ l- A
A.- 

-

' l+A

and

" l-Bn'- 
t+B

Now to prove that l2,l < r and ll'rl <t .t'et

,=[,t#],'=[#] "o '=[9]
we can write A as

R = [- aisin(Bty)+ (l - cos BLy)b + c]

Since the real part of A is greater than or equal to 0, hence lf,l = t always.

Similarly we can write B as

s= [ 
(r -'o! /aYE - c, sin(/Ayl
L 1, )

Since real part of B is greater or equal to 0, hence llrl <talways.

Verification of Compatibility: Hence the Scheme is unconditionally stable. Local truncation error is

O (Ar)' + (Ay)') and tends to zero as Ar -+ OAy -+ 0. Hence the Scheme is compatible.

Convergence: Stability and compatibility ensures convergence.
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Abstract. Recently, Ojha and Prasad [3] initiated the study of a semi-symmetric non-metric connection

in an almost Grayan manifolds. The purpose of this paper is to introduce a semi-symmetric metric φ-

coonection in a normal contact Lorentzian manifold and to study some properties of the curvature tensor,

projective curvature tensor and W2-curvature tensor.

1. Introduction

Let M be a (2n+ 1)-dimensional (n ≥ 2) differentiable manifold of class C∞ and g be a Lorentzian metric
of M . A non-zero vector X is called spacelike, timelike, null if it satisfies g(X,X) > 0, < 0 = 0, respectively.

The normal contact Lorentzian structure (φ, ξ, η, g) or Sasakian structure with Lorentzian metric of M
is given by tensor field φ of type (1,1), vector field ξ, 1-form η and a Lorentzian metric g as follows ([1]):

φ2(X) = −X + η(X)ξ, φ(ξ) = 0, η(φX) = 0 (1.1)

η(ξ) = 1, η(X) = −g(X, ξ) (1.2)

g(φX,φY ) = g(X, Y ) + η(X)η(Y ) (1.3)

(∇Xη)Y = g(φX, Y ), ∇Xξ = −φX (1.4)

(∇Xφ)Y = −η(Y )X − g(X,Y )ξ (1.5)

where X is a any vector field of M and ∇ is covariant derivative with respect to g.
Let us put

F (X,Y ) = g(φX, Y ), (1.6)

then the tensor field F is skew-symmetric (0,2)-tensor field

F (X,Y ) = −F (Y,X) (1.7)

and
F (X,Y ) = (∇Xη)(Y ). (1.8)

Projective curvature tensor [2] and W2-curvature tensor [4] are given respectively by

W (X,Y, Z) = R(X, Y, Z)−
1

n− 1
{Ric(Y,Z)X − Ric(X,Z)Y } (1.9)

W2(X,Y,Z) = R(X,Y,Z) +
1

n− 1
{g(X,Z)RY − g(Y, Z)RX} (1.10)

where R is curvature tensor, Ric is Ricci tensor and RX is the (1,1) Ricci tensor defined by

g(RX,Y ) = Ric(X, Y ), for all X and Y .

Keywords and phrases : Semi-symmetric metric connection, Lorentzian manifold, contact manifold

AMS Subject Classification : 53C15, 53D10
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2. Semi-symmetric metric φ-connection on a normal contact Lorentzian manifold

Let ∇ be an affine connection. Then ∇ is said to be metric connection if it satisfies

∇Xg = 0 (2.1)

On a normal contact Lorentzian manifold M an affine connection ∇ is called an φ-connection if ([5])

∇Xφ = 0 (2.2)

Now we study metric φ-connection having torsion tensor of the following form

T (X,Y ) = η(Y )φ(X)− η(X)φ(Y ) + 2F (X,Y )ξ (2.3)

where T is a torsion tensor of connection ∇.

Definition. A linear connection ∇ satisfying (2.1)-(2.3) is called semi-symmetric metric φ-connection.

Theorem 2.1. On a normal contact Lorentzian manifold M , the connection ∇ defined by

∇XY = ∇XY + η(Y )φ(X) + F (X,Y )ξ (2.4)

is a semi-symmetric metric φ-connection, whose metric is given by

(∇Xg)(Y, Z) = 0 (2.5)

Proof. Let us put
∇XY = ∇XY +H(X,Y ) (2.6)

where H is a tensor field of type (1,2) defined by

H(X,Y ) = aη(Y )φ(X) + bF (X, Y )ξ + cη(X)φ(Y ) (2.7)

where a, b and c are constants. Then on a normal contact Lorentzian manifold, we have

(∇Xφ)(Y ) = H(X, φY )− φH(X, Y )− η(Y )X − g(X, Y )ξ (2.8)

Thus in view of (2.2) and (2.7), (2.8) gives

0 = (a− 1)η(Y )X + (b− 1)g(X, Y )ξ + (b− a)η(X)η(Y )ξ

Hence a = 1, b = 1. Putting these values in (2.7) and using (2.6) we at once get (2.4).

Note. We assume that c = 0 for metric.
Now, we have

(∇Xg)(Y, Z) = X(g(Y,Z))− g(∇XY,Z)− g(Y,∇XZ)

= X(g(Y,Z))− g(∇XY,Z)− g(Y,∇XZ)− η(Y )g(φX,Z)

−F (X,Y )g(ξ, Z)− η(Z)g(Y, φX)− F (X,Z)g(Y, ξ) = 0

which proves the statement (2.5).
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3. Curvature tensor of semi-symmetric metric φ-connection on a normal contact Lorentzian

manifold

Let R be the curvature tensor of the connection ∇, then

R(X,Y,Z) = ∇X∇Y Z −∇Y∇XZ −∇[X, Y ]Z (3.1)

From (2.4) and (3.1), we get

R(X,Y,Z) = ∇X(∇Y Z + η(Y )φY + F (Y,Z)ξ)−∇Y (∇XZ + η(Z)φX + F (X, Y )ξ)

−(∇[X,Y ]Z + η(Z)φ[X, Y ] + F ([X,Y ], Z)ξ)

R(X, Y, Z) = R(X, Y,Z) + F (X,Z)φY − F (Y,Z)φX − η(Z)η(Y )X

+η(Z)η(X)Y − η(Y )g(X,Z)ξ + η(X)g(Y, Z)ξ (3.2)

where R(X, Y,Z) = ∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z is the curvature tensor of ∇ with respect to the Rie-
mannian connection.

Contracting (3.2), we get

Ric(Y,Z) = Ric(Y, Z)− (n− 1)η(Y )η(Z) (3.3)

From (3.3), we have

g(RY, Z) = g(RY, Z) + (n− 1)g(Z, ξ)η(Y )

or,

r = r(n− 1) (3.4)

where Ric and r are the Ricci tensor and scalar curvature with respect to ∇.

4. Projective curvature tensor

Theorem 4.1. In a normal contact Lorentzian manifold the projective curvature tensor W of the semi-
symmetric metric φ-connection ∇ is equal to the projective curvature tensor W of the manifold iff

η(X)g(Y,Z)ξ − η(Y )g(X,Z)ξ + F (X,Z)φY − F (Y,Z)φX = 0

Proof. Let W and W denote the projective curvature tensor with respect to ∇ and ∇ respectively. Then
we have

W (X, Y,Z) = R(X,Y,Z)−
1

n− 1
[Ric(Y,Z)X −Ric(X,Z)Y ] (4.1)

and

W (X, Y,Z) = R(X,Y,Z)−
1

n− 1
[Ric(Y,Z)X −Ric(X,Z)Y ] (4.2)

In consequences of (3.2), (3.3), (4.1) and (4.2), we have

W (X,Y, Z) = W (X,Y, Z)− η(Y )g(X,Z)ξ + η(X)g(Y,Z)ξ + F (X,Z)φY − F (Y,Z)φX (4.3)

If

η(X)g(Y, Z)ξ − η(Y )g(X,Z)ξ + F (X,Z)φY − F (Y,Z)φX = 0,

then we get

W (X,Y,Z) = W (X,Y,Z). (4.4)

Converse is also true. Hence the theorem.
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Theorem 4.2. If the Ricci tensor of the projective curvature tensor of the semi-symmetric metric φ-
connection ∇ in a normal contact Lorentzian manifold vanishes, then the curvature tensor with respect to
∇ is equal to the projective curvature tensor of the manifold iff

η(X)g(Y, Z)ξ − η(Y )g(X,Z)ξ + F (X,Z)φY − F (Y, Z)φX = 0

Proof. In view of Ric = 0 and (4.1), we have

W (X, Y, Z) = R(X, Y,Z) (4.5)

From (4.3) and (4.5), we get

R(X, Y,Z) = W (X, Y,Z) (4.6)

iff η(X)g(Y, Z)ξ − η(Y )g(X,Z)ξ + F (X,Z)φY − F (Y, Z)φX = 0. This proves the theorem.

Theorem 4.3. In a normal contact Lorentzian manifold the projective curvature tensor W (X,Y,Z) of the
semi-symmetric metric φ-connection satisfies the following algebraic properties

W (X, Y,Z) +W (Y,X,Z) = 0 (4.7)

W (X, Y,Z) +W (Y,Z,X) +W (Z,X, Y ) = 2{F (X,Z)φY − F (Y,Z)φX − F (X,Y )φZ} (4.8)

Proof. By virtue of (4.3) and first Bianchi’s identity with respect to Riemannian connection ∇, we get
(4.7). The result (4.8) can be easily obtained.

5. W2-curvature tensor

Theorem 5.1. In a normal contact Lorentzian manifold the W2-curvature tensor ′W 2(X, Y,Z,W ) of the
semi-symmetric metric φ-connection ∇ is equal to the W2-curvature tensor ′W2(X, Y,Z,W ) of the manifold
iff

η(Z){η(X)g(Y,W )− η(Y )g(X,W )}+ F (X,Z)F (Y,W )− F (Y, Z)F (X,W ) = 0

Proof. Let W 2 and W2 denote the W2-curvature tensor with respect to ∇ and ∇ respectively. Then

′W 2(X, Y, Z,W ) =`R̄(X, Y,Z,W ) +
1

n− 1
[g(X,Z)Ric(Y,W )− g(Y,Z)Ric(X,W )] (5.1)

and
′W 2(X,Y,Z,W ) = R(X,Y, Z,W ) +

1

n− 1
[g(X,Z)Ric(Y,W )− g(Y, Z)Ric(X,W ) (5.2)

where g(W2(X,Y,Z),W ) = Ẁ2(X,Y,Z,W ) and g(R(X, Y,Z),W ) = R̀(X,Y,Z,W ).

In consequences of (3.2), (3.3), (5.1) and (5.2), we find

′W 2(X,Y,Z,W ) = Ẁ 2(X,Y, Z,W ) + η(Z)[η(X)g(Y,W )− η(Y )g(X,W )]

+F (X,Z)F (Y,W )− F (Y,Z)F (X,W ) (5.3)

If η(Z)[η(X)g(Y,W )−η(Y )g(X,W )] +F (X,Z)F (Y,W )−F (Y,Z)F (X,W ) = 0, then from equation (5.3),
we get

′W 2(X,Y, Z,W ) = Ẁ 2(X, Y, Z,W ). (5.4)

Conversely if ′W 2(X, Y, Z,W ) = Ẁ 2(X, Y,Z,W ) then from (5.3), we get

η(Z)[η(X)g(Y,W )− η(Y )g(X,W )] + F (X,Z)F (Y,W )− F (Y, Z)F (X,W ) = 0

which proves the theorem.
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Theorem 5.2. If the Ricci tensor W2-curvature of the semi-symmetric metric φ-connection ∇ in a normal
contact Lorentzian manifold vanishes, then the curvature tensor with respect to ∇ is equal to the W2-
curvature tensor of the manifold iff

η(Z){η(X)g(Y,W )− η(Y )g(X,W )}+ F (X,Z)F (Y,W )− F (Y,Z)F (X,W ) = 0

Proof. In view of Ric = 0 and (5.1), we have

′W 2(X, Y,Z,W ) = R̀(X,Y,Z,W ). (5.5)

From (5.3) and (5.5), we get

′R(X,Y, Z,W ) = Ẁ 2(X, Y, Z,W ) (5.6)

iff η(Z){η(X)g(Y,W )− η(Y )g(X,W )}+ F (X,Z)F (Y,W )− F (Y,Z)F (X,W ) = 0.
This proves the theorem.

Theorem 5.3. In a normal contact Lorentzian manifold the W2-curvature tensor ′W 2(X,Y,Z,W ) of the
semi-symmetric metric φ-connection satisfies the following algebraic properties

′W 2(X,Y, Z,W ) +′W 2(X,Y,Z,W ) = 0 (5.7)

′W 2(X, Y,Z,W ) +′W 2(Y, Z,X,W ) +′W 2(Z,X, Y,W ) = 2F [(X,Z)F (Y,W )

−F (Y,Z)F (X,W )− F (X, Y )F (Z,W )] (5.8)
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Abstract. In this paper we obtain some results on the existence of coincedence points for non-self

f -contraction and f -nonexpensive multivalued maps satisfying weaker form of the weakly inward

condition. These results unify and extend the corresponding results of a number of authors.

1. Introduction

Let M be a non-empty subset of a normed linear space X. We use CB(X) to denote the collection of all
non-empty closed subsets of X, KC(X) for the collection of all non-empty compact convex subsets of X
and H for the Hausdorff metric on CB(X) induced by the norms on X, i.e.,

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A), A, B ∈ CB(X),

where d(x,A) = inf{‖x− y‖ : y ∈ A}, the distance from the point x to the subset A. Now, let f :M → X

be a continuous map. A multivalued map T : M → CB(X) is said to be an f -contraction iff for a fixed
constant h ∈ (0, 1) and for each x, y ∈M

H(T (x), T (y)) ≤ h‖f(x)− f(y)‖.

Further, if T and f satisfy the inequality

H(T (x), T (y)) ≤ ‖f(x)− f(y)‖,

then T is said to be an f -nonexpensive. In particular, if f is the identity map on M then a multivalued
map is an f -contraction (respectively, f -nonexpensive) iff it is contraction (respectively, nonexpensive). A
point x ∈ M is called a fixed point of the multivalued map T iff x ∈ T (x) and it is called a coincidence
point of f and T iff f(x) ∈ T (x). A multivalued map T is said to be weakly inward if T (x) ⊂ clIM (x) for
all x ∈ M , where IM (x) = {z ∈ X : z = x+ λ(y − x) for some y ∈ M, λ ≥ 1} is the inward set of M at x
and cl denotes the closure of a set. Also, we say T is c-weakly inward if T (x) ∩ clIM (x) �= ∅ for all x ∈ M .
Note that each weakly inward map is c-weakly inward but the converse is not true in general.

Nadler [9] proved a fixed point result for multivalued contraction self maps of a complete metric space,
which is a generalization of the Banach Contraction Principle. Since then various well-known results for
single-valued self contraction and nonexpensive self maps have been extended to multivalued analogues.

On the other hand Kaneko [3] has proved coincidence and common fixed point results for multivalued
f -contraction self maps; extending the results of Nadler [9] and others. Many authors have further studied
an existence of coincidence points for self and nonself maps under some weaker conditions. For example, see
[1,5,6,10-15].

To study the existence of fixed points and coincidence points for non-self multivalued maps, one needs
some type of boundary conditions, e.g., inward/weakly inward conditions. Recently, Lim [7] has proved fixed
point result for nonself multivalued weakly inward contraction maps, generalizing the corresponding results

Keywords and phrases : Banach space, coincidence point, f-contraction, f -nonexpensive.

AMS Subject Classification : 47H09, 54H25.
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of Martinez-Yanez [8], Yi and Zhao [17], Xu [16] and many others. In [4] the first author and Tweddle
proved some coincidence point results for nonself compact valued weakly inward f -contraction and weakly
inward f -nonexpensive maps, extending many related known results in the literature. It has been observed
[2,18] that some known fixed point results for weakly inward contraction maps are not true for c-weakly
inward contractions. In this paper, we prove some general results on the existence of coincidence points
under some what weaker condition. These results unify and extend many existing results on fixed points
and coincidence points.

We shall require the following consequences of Theorems 11.5 of Deimling [2] (see also Theorem 1.6 [16]).

Theorem 1.1. Let M be a non-empty closed bounded convex subset of a Banach space X and let
T :M → KC(X) be a c-weakly inward contraction map. Then T has a fixed point.

2. Main Results

First we prove our main result on the existence of coincidence points for nonself c-weakly inward
f -contraction maps.

Theorem 2.1. Let M be a non-empty subset of a Banach space X. Let f : M → X be any map with its
range G closed convex bounded and T :M → KC(X) of a f -contraction map such that T (x)∩ clIG(z) �= ∅
for all x ∈ f−1(z). Then f and T have a coincidence point in M .
Proof. Define J : G → KC(X) by J(z) = Tf−1(z) for all z ∈ G. Then, for each z ∈ G and any
x, y ∈ f−1(z), the f -contractiveness of T implies there exists some h ∈ (0, 1) such that

H(T (x), T (y)) ≤ h‖f(x)− f(y)‖ = 0

and hence for all p ∈ f−1(z) we have J(z) = T (p). Now for any w, z ∈ G, we have
H(J(w), J(z)) = H(T (x), T (y)) for any x ∈ f−1(w) and y ∈ f−1(z). But T is an f -contraction, so we
get

H(J(w), J(z)) ≤ h‖f(x)− f(y)‖ = h‖w − z‖

which implies that J is a contraction map. Also, note that for any z ∈ G we have J(z)∩ clIG(z) �= ∅. Thus
by Theorem 1.1, there is a point z0 ∈ G such that z0 ∈ J(z0). Since J(z0) = T (x0) for any x0 ∈ f

−1(z0), so
f(x0) ∈ T (x0) which completes the proof.

Applying our Theorem 2.1, we have the following coincidence point result for nonself f -nonexpansive
maps.

Theorem 2.2. Let M be a non-empty subset of a Banach space X. Let f : M → X be any map with its
range G closed convex bounded and T :M → KC(X) an f -nonexpansive map such that T (x)∩ clIG(z) �= ∅
for all x ∈ f−1(z) and (f − T )M is closed. Then, f and T have a coincidence point in M .
Proof. For a fixed x0 ∈M and for each integer n ≥ 1, define

Tn(x) = (1−
1

n
)T (x) +

1

n
x0 for all x ∈M

Note that, for each n, Tn mapsM into KC(X) and also Tn(x)∩clIG(z) �= ∅ for all x ∈ f
−1(z). Furthermore,

for each n and for any x, y ∈M we have

H(Tn(x), Tn(y)) ≤ (1−
1

n
)‖f(x)− f(y)‖

that is, for each n, Tn is an f -contraction . By Theorem 2.1 there exists xn ∈M such that

f(xn) ∈ Tn(xn) = (1−
1

n
)T (xn) +

1

n
x0
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and so there is some un ∈ T (xn) such that

f(xn) = (1−
1

n
)un +

1

n
x0

Thus, f(xn)−un → 0 as n→∞. Since (f−T )M is closed and f(xn)−un ∈ (f−T )M , we get 0 ∈ (f−T )M .
Hence there is a point p ∈M such that f(p) ∈ T (p) and this proves the result.

Theorem 2.3. Let M be a non-empty subset of a Banach space X . Let f : M → X be any map with its
range G compact convex and T :M → KC(X) an f -nonexpansive map such that T (x)∩ clIG(z) �= ∅ for all
x ∈ f−1(z). Then, f and T have a coincidence point in M .
Proof. For a fixed x0 ∈M and for each integer n ≥ 1, define

Tn(x) = (1−
1

n
)T (x) +

1

n
x0 for all x ∈M

Following the proof of Theorem 2.2 we can find a sequence {xn} in M and un ∈ T (xn) such that
f(xn) − un → 0 as n → ∞. For each n, put f(xn) = yn. Since yn ∈ G and G is compact, for a
convenient subsequence still denoted by {yn}, we have yn → y ∈ G. Note that there is some p ∈ M such
that f(p) = y and by f -nonexpansivenss of T

d(yn, T (p)) ≤ H(T (xn, T (p)) ≤ (.f(xn), f(p))

Making n→∞, we obtain d(f(p), T (p)) = 0, proving f(p) ∈ T (p).

If we take f = I, the identity on M , then we have the following fixed point result which appeard
recently in [16].

Corollary 2.4. Let M be a non-empty compact convex subset of a Banach space X . Let T :M → KC(X)
be nonexpansive map such that T (x) ∩ clIM (z) �= ∅ for all x ∈M. Then T has a fixed point in M .
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Abstract. In the present paper, many concepts related to biadditive mappings of rings are defined as

left centralizer traces, generalized biderivations, left bimultipliers and generalized Jordan biderivations.

Two important results are proved. One of them is that every generalized biderivations of a prime ring of

characteristic not 2, could be reduced to a left bimultiplier under certain algebraic conditions. The second

result is that every generalized Jordan biderivation on a noncommutative prime ring of characteristic not

2, will be a generalized biderivation.

Introduction

Throughout the paper R will be a ring with center Z(R). Recall that a ring R is prime if aRb = (0) implies
that a = 0 or b = 0 for a, b ∈ R, and is semiprime if aRa = (0) implies a = 0.

A ring is of characteristic n, where n is a positive integer if nx = 0, x ∈ R implies x = 0. As usual the
commentator xy − yx will be denoted by [x, y].

An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R.
A derivation d is inner if there exists a ∈ R such that d(x) = [a, x] holds for all x ∈ R. A mapping
B : R × R → R is said to be symmetric if B(x, y) = B(y, x) for all x, y ∈ R. A mapping f : R → R

defined by f(x) = B(x, x) is called the trace of B. It is obvious that, in case B : R×R→ R is a symmetric
mapping which is also biadditive (i.e. additive in both arguments) the trace of B satisfies the relation
f(x, y) = f(x) + f(y) + 2B(x, y) for all x, y ∈ R, hence f is not an additive mapping.

A biadditive mapping B : R × R → R is called a biderivation if B(xy, z) = B(x, z)y + xB(y, z) and
B(z, xy) = B(z, x)y + xB(z, y) is fulfilled for all x, y, z ∈ R.

Zalar [9] introduced the notion of a left (right) centralizer. An additive mapping T : R→ R is called a
left (right) centralizer if T (xy) = T (x)y(T (xy) = xT (y)) holds for all x, y ∈ R. T is called a centralizer if it
is both a left and a right centralizer.

Following Zalar [9], if f : R → R is the trace of a symmetric biadditive mapping, we say that f is a
multiplicative left (right) centralizer trace on a nonempty subset S of R, if f(xy) = f(x)y(f(xy) = xf(y))
for all x, y ∈ S. If f is both a multiplicative left and a right centralizer trace on S, we say that f is a
multiplicative centralizer trace on S.

In section 1, we get some results for a multiplicative left centralizer trace on Lie ideals or left ideals of a
certain ring. Recall that the trace f is not an additive mapping. In the present paper, we define the action
of the trace f as some familiar kinds of derivations. Let S be a nonempty subset of S, we call that f is a
multiplicative derivation on S if f(xy) = f(x)y + xf(y)) holds for all x, y ∈ S, f is called a multiplicative
reverse derivation on S if f(xy) = yf(x) + f(y)x for all x, y ∈ S, and f is called a multiplicative Lie
derivation on S if f([x, y]) = [f(x), y] + [x, f(y)] holds for all x, y ∈ S. It is our aim in section 2 to know
what results when the trace acts as such kinds of derivations on a Lie ideal or left ideal of a certain ring.
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By a generalized derivation of an algebra A we usually mean a map of the form x �→ ax+xb where a and
b are fixed elements in A. Hvala [6] called such maps generalized inner derivations, see also [4]. Now in a ring
R, let g be a generalized inner derivation of R given by g(x) = ax+ xb. Notice that g(xy) = g(x)y + xIb(y)
where Ib(y) = yb− by = [y, b] is an inner derivation. Motivated by these observations, Hvala [6] introduced
the notion of generalized derivations in rings. An additive mapping g : R → R is called a generalized
derivation if there exists a derivation d : R→ R such that g(xy) = g(x)y + xd(y) holds for all x, y ∈ R.

It is our attempt in section 3 to initiate an algebraic study of generalized biderivations, which are
defined as follows:

A biadditive mapping G : R × R → R will be called a generalized biderivation if there exists a
biderivation B : R × R → R such that G(xy, z) = G(x, z)y + xB(y, z) and G(z, xy) = G(z, x)y + xB(z, y)
hold for all x, y, z ∈ R. Hence, the concept of a generalized biderivation covers both the concepts of
biderivations and generalized inner biderivations. Moreover, a generalized biderivation with B = 0 will be
called a left bimultiplier. Clearly every left bimultiplier is a generalized biderivation on R. Thus, it is natural
to question that whether every generalized biderivation on a ring R is a left bimultiplier. It is shown in
section 3 that the answer to this question is affirmative under certain algebraic conditions.

Following Ashraf and Rehman [2], an additive mapping F : R → R is called a generalized Jordan
derivation if there exists a derivation d : R → R such that F (x2) = F (x)x+ xd(x) holds for all x ∈ R. We
call a biadditive mapping J : R × R → R a generalized Jordan biderivation if there exists a biderivation
B : R × R → R such that J(x2, z) = J(x, z)x + xB(x, z) and J(z, x2) = J(z, x)x + xB(z, x) hold for all
x, z ∈ R. Clearly, every generalized biderivation on R is a generalized Jordan biderivation. In section 4 we
prove that every generalized Jordan biderivation on a noncommutative prime ring of characteristic not 2,
will be generalized biderivation.

In this paper we recall a few results that we will need in the subsequent sections.

Lemma 1 [3, Lemma 2]. Let R be a prime ring such that char R �= 2, and let U be a Lie ideal of R. If
U �⊆ Z(R). Then CR(U) ⊆ Z(R), where CR(U) is the centralizer of U in R.

Lemma 2 [5, Lemma 1-1-5]. Let R be a prime ring and let I be a right ideal of R. Then Z(I) ⊆ Z(R)
where Z(I) is the center of R.

Lemma 3 [5, Corollary of Lemma 1-1-5]. Let R be a semiprime ring, and let I �= (0) be a ring ideal of R.
If I is a commutative ideal, then I ⊆ Z(R). Moreover, if R is prime ring, then R is commutative.

Lemma 4 [8, Lemma 4]. Let R be a prime ring such that charR �= 2. Let I be a nonzero left ideal of R.
Suppose that B : R×R→ R is a symmetric biderivation with trace f . If f(x) = 0 for all x ∈ I, then B = 0.

Lemma 5 [3, Lemma 4]. Let U be a Lie ideal in a prime ring R with characteristic not 2. If U �⊆ Z(R) and
aUb = (0) for a, b ∈ R. Then either a = 0 or b = 0.

Lemma 6 [1, Theorem 3]. Let R be a prime ideal such that char R �= 2, and let U be a nonzero Lie ideal
of R. Suppose that f is a trace of a symmetric biderivation B : R×R→ R.

(a) If f(U) = (0), then either U ⊆ Z(R) or f = 0.

(b) If f(U) ⊆ Z(R), and x2 ∈ U for all x ∈ U then either U ⊆ Z(R) or f = 0.

Lemma 7 [8, Lemma 4]. Let R be a prime ring such that char R �= 2, and let I be a nonzero left ideal of R.
Suppose that B : R×R→ R is a symmetric biderivation with trace f . If f(x) = 0 for all x ∈ I. Then B = 0.
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1. Multiplicative left centralizer traces

Theorem 1.1. Let R be a prime ring such that char R �= 2, and let U be a Lie ideal of R. Suppose that
B : R × R → R is a symmetric biadditive map with trace f such that f is a multiplicative left centralizer
trace on U . Then either f(U) = (0) or U ⊆ Z(R).

Proof. We have
f(xy) = f(x)y ∀ x, y ∈ U (1.1)

Putting x+ z instead of x in (1.1), z ∈ U , we get

f((x+ z)y) = f(x+ z)y ∀ x, y, z ∈ U

f(xy) + f(zy) + 2B(xy, zy) = f(x)y + f(z)y + 2B(x, z)y (1.2)

By (1.1), the last relation becomes:

2B(xy, zy) = 2B(x, z)y ∀ x, y, z ∈ U

Since char R �= 2, so
B(xy, zy) = B(x, z)y ∀ x, y, z ∈ U (1.3)

Putting −y instead of y in (1.3), we get

B(xy, zy) = −B(x, z)y ∀ x, y, z ∈ U (1.4)

From (1.3), (1.4) and since char R �= 2, we get

B(x, z)y = 0 ∀ x, y, z ∈ U (1.5)

Let z = x in the last relation
f(x)y = 0 ∀ x, y ∈ U (1.6)

Since [y, r] ∈ U for all y ∈ U , and for all r ∈ R. Then by (1.6) we get

f(x)[y, r] = 0 ∀ x, y ∈ U, ∀ r ∈ R (1.7)

Putting rs instead of r, s ∈ R, we get

f(x)r[y, s] = 0 ∀ x, y ∈ U, ∀ r, s ∈ R (1.8)

By prime ness of R, either f(x) = 0 for all x ∈ U or [y, s] = 0 for all y ∈ U and for all s ∈ R, i.e. either
f(U) = (0) or U ⊆ Z(R).

Theorem 1.2. Let R be a prime ring such that charR �= 2, and let I be a nonzero left ideal of R. Suppose
that B : R×R→ R is a symmetric biadditive map with trace f such that f is a multiplicative left centralizer
trace on I. Then f(I) = (0).

Proof. We have
f(xy) = f(x)y ∀ x, y ∈ U

As step (1.1)-(1.6) in the proof of Theorem 1.1, we get f(x)y = 0 for all x, y ∈ I . Since in a prime ring
the left annihilator of a nonzero left ideal is zero, so f(x) = 0 for all x ∈ I.

2. Traces acting as some types of derivations

Theorem 2.1. Let R be a prime ring such that char R �= 2, and let U be a Lie ideal of R. Suppose that
B : R×R→ R is a biadditive map with trace f .
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(a) If f acts as a multiplicative derivation on U , then either f(U) = (0) or U ⊆ Z(R).

(b) If f acts as a multiplicative reverse derivation on U , then either f(U) = (0) or U ⊆ Z(R).

(c) If f acts as a multiplicative left derivation on U , then either f(U) = (0) or U ⊆ Z(R).

(d) If U �⊆ Z(R) and f acts as a multiplicative Lie derivation on U , then f(U) ⊆ Z(R).

Proof. (a) Since f acts as a multiplicative derivation on U , so

f(xy) = f(x)y + xf(y) ∀ x, y ∈ U (2.1)

Putting x+ z instead of x in (2.1), we get

f(xy) + f(zy) + 2B(xy, zy) = f(x)y + f(z)y + 2B(x, z)y + xf(y) + zf(y) ∀ x, y, z ∈ U. (2.2)

By (2.1), and since char R �= 2, so

B(xy, zy) = B(x, z)y ∀ x, y, z ∈ U (2.3)

Let z = x in (2.3)

f(xy) = f(x)y ∀ x, y ∈ U (2.4)

By (2.4), f will be a multiplicative left centralizer trace on U , so by Theorem 1.1 either f(U) = (0) or
U ⊆ Z(R).

(b) By hypothesis

f(xy) = yf(x)y + f(y)x ∀ x, y ∈ U (2.5)

Putting x+ z instead of x in (2.5), we get

f(xy) + f(zy) + 2B(xy, zy) = yf(x) + yf(z)y + 2yB(x, z) + f(y)x+ f(y)z ∀ x, y ∈ U. (2.6)

By (2.5), and since char R �= 2, so

B(xy, zy) = yB(x, z) ∀ x, y, z ∈ U (2.7)

Let z = x in (2.7), we get

f(xy) = yf(x) ∀ x, y ∈ U (2.8)

From (2.1) and (2.8) we get

f(y)x = 0 ∀ x, y ∈ U (2.9)

Since [x, r] ∈ U for all x ∈ U and for all r ∈ R, so from (2.9)

f(y)[x, r] = 0 ∀ x, y ∈ U, ∀ r ∈ R (2.10)

Putting rs instead of r in (2.9), we get

f(y)r[x, s] = 0 ∀ x, y ∈ U, ∀ r, s ∈ R (2.11)

By (2.11) and since R is prime so either f(y) = 0 for all y ∈ U or [x, s] = 0 for all x ∈ U and for all
s ∈ R, hence either f(U) = (0) or U ⊆ Z(R).

(c) Could be proved as (a).

(d) We have

f([x, y]) = [f(x), y] + [x, f(y)] ∀ x, y ∈ U (2.12)
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Putting x+ z instead of x in (2.12), z ∈ U , we get

f([x, y])+f([z, y])+2B([x, y], [z, y]) = [f(x), y]+ [f(z), y]+2[B(x, z), y]+ [x, f(y)]+ [z, f(y)] ∀ x, y, z ∈ U.

(2.13)

By (2.12), and since char R �= 2, so (2.9) becomes

B([x, y], [z, y]) = [B(x, z), y] ∀ x, y, z ∈ U (2.14)

Let z = x in (2.14)

f([x, y]) = [f(x), y] ∀ x, y ∈ U (2.15)

From (2.12) and (2.15) we get

[x, f(y)] = 0 ∀ x, y ∈ U (2.16)

By (2.16), we have f(y) ∈ CR(U), where CR(U) is the centralizer of U in R, for all y ∈ U , and since
U �⊆ Z(R), so by Lemma 1 we get f(y) ∈ Z(R), for all y ∈ U . This completes the proof.

Theorem 2.2. Let R be a prime ring such that charR �= 2, and let I be a nonzero left ideal on R. Suppose
that B : R×R→ R is a symmetric biadditive map with trace f .

(a) If f acts as a multiplicative derivation on I, then f(I) = (0).

(b) If the right annihilator of I is zero and f acts as a multiplicative left derivation on I, then f(I) = (0).

(c) If f acts as a multiplicative reverse derivation on I , then f(I) = (0).

Proof. (a) By similar steps as (2.1)-(2.4) in the proof of Theorem 2.1 (a), we get f(xy) = f(x)y for all
x, y ∈ I and by Theorem 1.2 f(I) = (0).

(b) We have

f(xy) = xf(y) + yf(x) ∀ x, y ∈ I (2.17)

putting x+ z instead of x in (2.17), we get:

f(xy) + f(zy) + 2B(xy, zy) = xf(y) + zf(y) + yf(x) + yf(z) + 2yB(x, z) ∀ x, y, z ∈ I. (2.18)

By (2.17) since char R �= 2, so

B(xy, zy) = yB(x, z) ∀ x, y, z ∈ I (2.19)

Let z = x in (2.19)

f(xy) = yf(x) ∀ x, y ∈ I (2.20)

From (2.17) and (2.20), we get

yf(x) = 0 ∀ x, y ∈ I (2.21)

Since the right annihilator of I is zero, so by (2.21) f(x) = 0 for all x ∈ I.

(c) We have

f(xy) = yf(x) + f(y)x ∀ x, y ∈ I (2.22)

Putting y + z instead of y in (2.17), we get

f(xy) + f(xz) + 2B(xy, xz) = yf(x) + zf(x) + f(y)x+ f(z)x+ 2B(y, z)x ∀ x, y, z ∈ I. (2.23)

By (2.22), and since char R �= 2, so (2.23) becomes as:

B(xy, xz) = B(y, z)x ∀ x, y, z ∈ I (2.24)
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Let z = y in (2.24), we get
f(xy) = f(y)x ∀ x, y ∈ I (2.25)

Putting −x instead of x in (2.25), we get

f(xy) = −f(y)x ∀ x, y ∈ I (2.26)

By (2.25) and (2.26), since char R �= 2,so

f(y)x = 0 ∀ x, y ∈ I (2.27)

By (2.27), and since the left annihilator of a nonzero left ideal in a prime ring is zero, so f(y) = 0 for
all y ∈ I, i.e. f(I) = (0). The proof is complete.

Theorem 2.3. Let R be a 2-torsion free semiprime ring, and let I be a left ideal in R. Suppose that
B : R×R→ R is a symmetric biadditive map with trace f , such that f acts as a multiplicative Lie deriva-
tion on I, then f(I) ⊆ Z(R).

Proof. We have
f([x, y]) = [f(x), y] + [x, f(y)] ∀ x, y ∈ I

using similar steps as (2.12)-(2.16) in the proof of Theorem 2.1 (d), we get [x, f(y)] = 0 for all x, y ∈ I, then
f(y) ∈ Z(I) for all y ∈ I, and by Lemma 2 f(y) ∈ Z(R) for all y ∈ I, i.e. f(I) ⊆ Z(R).

3. Generalized biderivations and left bimultipliers

Theorem 3.1. Let I be a nonzero ideal of a prime ring R of characteristic not 2. Suppose G : R×R→ R is
a symmetric generalized biderivation defined by a symmetric biderivation B : R×R→ R. If [G(x, x), x] = 0
for all x ∈ I. Then G is a left multiplier.

Proof. We have

[G(x, x), x] = 0 ∀ x ∈ I (3.1)

Putting x+ y instead of x in (3.1), then by using (3.1) we get

[G(x, x), y] + 2[G(x, y), x] + 2[G(x, y), y] + [G(y, y), x] = 0 ∀ x, y ∈ I (3.2)

Putting x− y instead of x in (3.1), we get

−[G(x, x), y]− 2[G(x, y), x] + 2[G(x, y), y] + [G(y, y), x] = 0 ∀ x, y ∈ I. (3.3)

Adding (3.2) and (3.3), since char R �= 2, we get

2[G(x, y), y] + [G(y, y), x] = 0 ∀ x, y ∈ I (3.4)

Let x = xy in (3.4), so

2[G(x, y), y]y + 2x[B(y, y), y] + 2[x, y]B(y, y) + [G(y, y), x]y = 0

By (3.4), and since char R �= 2, so the last relation becomes

x[B(y, y), y] + [x, y]B(y, y) = 0 ∀ x, y ∈ I (3.5)

Let x = zx in (3.5). Then using (3.5), we get

[z, y]xB(y, y) = 0 ∀ x, y, z ∈ I (3.6)
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Hence,
[z, y]IB(y, y) = 0 ∀ y, z ∈ I (3.7)

Since I is a right ideal in R, so relation (3.7) becomes

[z, y]IRB(y, y) = 0 ∀ y, z ∈ I (3.8)

Since R is a prime ring, so for each y ∈ I either B(y, y) = 0 or [z, y]I = 0 for all z ∈ I. If B(y, y) = 0,
then [B(y, y), y] = 0.

If [z, y]I = 0, then [z, y] = 0 for all z ∈ I , hence y ∈ Z(I), by Lemma 2, y ∈ Z(R). So [B(y, y), y] = 0.
Hence from the above we have

[B(x, x), x] = 0 ∀ x ∈ I (3.9)

Linearizing (3.9), we get

[B(x, x), y] + [B(y, y), x] + 2[B(x, y), x] + 2[B(x, y), y] = 0 ∀ x, y ∈ I (3.10)

Putting −x instead of x in (3.10), then adding the new relation with relation (3.10), since char R �= 2,
we get

[B(x, x), y] + 2[B(x, y), x] = 0 ∀ x, y ∈ I (3.11)

Let y = yz in (3.11), since char R �= 2, we get

B(x, y)[z, x] + [y, x]B(x, z) = 0 ∀ x, y, z ∈ I (3.12)

Let y = x in (3.12), so we get
B(x, x)[z, x] = 0 ∀ x, z ∈ I (3.13)

Since I is the right ideal of R, we put zr instead of z, r ∈ R in (3.13), then using (3.13), we get

B(x, x)z[r, x] = 0 ∀ x, z ∈ I, ∀ r ∈ R (3.14)

Since I is the right ideal of R, then relation (3.14) becomes

B(x, x)IR[r, x] = 0 ∀ x ∈ I, ∀ r ∈ R (3.15)

Since R is a prime ring, so for each x ∈ I either B(x, x)I = 0 or [r, x] = 0 for all r ∈ R. If B(x, x)I = 0,
then B(x, x) = 0. If [r, x] = 0 for all r ∈ R, then x ∈ Z(R). So, for each x ∈ I either x ∈ Z(R) or
B(x, x) = 0. If x �∈ Z(R), so B(x, x) = 0.

Let t, y ∈ I such that t ∈ Z(R) and y �∈ Z(R) so t+ y �∈ Z(R) and t− y �∈ Z(R). So B(y, y) = 0 and
B(t+ y, t+ y) = 0 and B(t− y, t− y) = 0.

Using the last two relations, we get 2B(t, t) = 0 and since char R �= 2, so B(t, t) = 0. Hence B(x, x) = 0
for all x ∈ I, by Lemma 4, we have B = 0, so by definition of G, we get

G(xy, z) = G(x, z)y ∀ x, y, z ∈ R

Hence the symmetric generalized biderivation is a left bimultiplier of R, and the theorem is proved.

Theorem 3.2. Let U �= (0) be a Lie ideal of a prime ring R, such that char R �= 2, x2 ∈ U for all x ∈ U
and U �⊆ Z(R). Let G : R × R → R be a symmetric generalized biderivation of R defined by a symmetric
biderivation B of R. If [G(x, x), x] = 0 for all x ∈ U , then G is a left bimultiplier of R.

Proof. We have
[G(x, x), x] = 0 ∀ x ∈ U (3.16)

U �⊆ Z(R) (3.17)

x2 ∈ U ∀ x ∈ U (3.18)
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Putting x+ y instead of x in (3.16), then using (3.16), we get

[G(x, x), y] + [G(y, y), x] + 2[G(x, y), x] + 2[G(x, y), y] = 0 ∀ x, y ∈ U (3.19)

Putting −x instead of x, then adding the relation we obtained with relation (3.19), since char R �= 2,
we get

[G(x, x), y] + 2[G(x, y), x] = 0 ∀ x, y ∈ U (3.20)

From (3.18):
xy + yx = (x+ y)2 − x2 − y2 ∈ U ∀ x, y ∈ U (3.21)

Since U is Lie ideal, so:
xy − yx ∈ U ∀ x, y ∈ U (3.22)

Adding (3.21) and (3.22), we get 2xy ∈ U for all x, y ∈ U .
Let y = 2yx in (3.20), so:

[G(x, x), 2yx] + 2[G(x, 2yx), x] = 0 ∀ x, y ∈ U

2y[G(x, x), x] + 2[G(x, x), y]x+ 4[G(x, y)x+ yB(x, x), x] = 0

From (3.16), the last relation becomes:

2[G(x, x), y]x+ 4[G(x, y), x]x+ 4y[B(x, x), x] + 4[y, x]B(x, x) = 0 ∀ x, y ∈ U

Since char R �= 2 and using (3.20), so the last relation becomes:

y[B(x, x), x] + [y, x]B(x, x) = 0 ∀ x, y ∈ U (3.23)

Let y = 2zy in (3.23), z ∈ U , we get:

2zy[B(x, x), x] + [2zy, x]B(x, x) = 0 ∀ x, y, z ∈ U

Then:
2zy[B(x, x), x] + 2z[y, x]B(x, x) + 2[z, x]yB(x, x) = 0 ∀ x, y, z ∈ U.

Since char R �= 2, and using (3.23), so:

[z, x]yB(x, x) = 0 ∀ x, y, z ∈ U (3.24)

From (3.17), (3.24) and Lemma 5, we get

For each x ∈ U either B(x, x) = 0 or [z, x] = 0 ∀ z ∈ U (3.25)

Then, if x �∈ Z(U) : B(x, x) = 0.
Let t, y ∈ U such that t ∈ Z(U) and y �∈ Z(U), so t + y �∈ Z(U) and t − y �∈ Z(U), so B(y, y) = 0,

B(t + y, t + y) = 0 and B(t − y, t − y) = 0, from the last two relations, we get 2B(t, t) = 0, and since
charR �= 2, so B(t, t) = 0.

Then B(x, x) = 0 for all x ∈ U , from Lemma 6(a) either U ⊆ Z(R) or B(x, x) = 0 for all x ∈ R.
But U �⊆ Z(R), so B(x, x) = 0 for all x ∈ R, then B = 0. So G(xy, z) = G(x, z)y for all x, y, z ∈ R.
Hence G is left bimultiplier of R. This completes the proof.

Theorem 3.3. Let R be a prime ring that charR �= 2, let U �= (0) be a Lie ideal of R such that
U �⊆ Z(R) and x2 ∈ U for all x ∈ U . Suppose that G : R → R is a generalized biderivation defined by a
symmetric biderivation B : R×R→ R. If G(x, y) = [x, y] for all x, y ∈ U . Then G is a left bimultiplier of R.

Proof. We have
G(x, y) = [x, y] ∀ x, y ∈ U (3.26)
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From relation (3.18), (3.21) and (3.22) in the proof of Theorem 3.2 we defined that 2xy ∈ U for all
x, y ∈ U . Putting 2xy instead of x in (3.1), since char R �= 2, so

G(x, y)y + xB(y, y) = [x, y]y ∀ x, y ∈ U (3.27)

From (3.26) and (3.27)
xB(y, y) = 0 ∀ x, y ∈ U (3.28)

Putting [x, y] ∈ U instead of x in (3.28), r ∈ R, we get

[x, r]B(y, y) = 0 ∀ x, y ∈ U, ∀ r ∈ R (3.29)

Let r = rs in (3.29), s ∈ R, we get

[x, r]sB(y, y) = 0 ∀ x, y ∈ U, ∀ r, s ∈ R (3.30)

Since R is a prime ring, so by (3.30) either [x, r] = 0 for all x ∈ U and all r ∈ R, or B(y, y) = 0 for all
y ∈ U . But U �⊆ Z(R), so B(y, y) = 0 for all y ∈ U . From Lemma 6 (a), we find that B = 0 on R.

So, G(xy, z) = G(x, z)y, for all x, y, z ∈ R, i.e. G is a left bimultiplier of R, and the proof is complete.

Theorem 3.4. Let I be a nonzero left ideal of a prime ring R such that char R �= 2. Suppose that
G : R × R → R is a symmetric generalized biderivation defined by a symmetric biderivation B. If
G(x, y) = [x, y] for all x, y ∈ I, then G is a left bimultiplier of R.

Proof. We have G(x, y) = [x, y] for all x, y ∈ I. Putting x instead of y, we get G(x, x) = 0 for all x ∈ I.
Linearizing the last relation, we get G(x, x) +G(y, y) + 2G(x, y) = 0 for all x, y ∈ I. Hence

G(x, y) = 0 ∀ x, y ∈ I (3.31)

By (3.31) and the assumption of the theorem, we get [x, y] = 0 for all x, y ∈ I, so I is commutative and
hence R is commutative by Lemma 3.

Let x = xy in (3.31), we get
G(x, y)y + xB(y, y) = 0 (3.32)

By (3.31) and (3.32), we get xB(y, y) = 0 for all x, y ∈ I.
Since R is a commutative prime ring, so the right annihilator of left ideal I in R is zero, henceB(y, y) = 0

for all y ∈ I. By Lemma 7, B = 0. Hence G is left bimultiplier of R, and the proof is complete.

4. Generalized Jordan biderivation

Lemma 4.1. Let R be a 2-torsion free ring. Suppose that J : R×R→ R is a generalized Jordan biderivation
defined by a biderivation B : R×R→ R. Then for all x, y, z ∈ R, the following axioms hold:

(i) J(xy + yx, z) = J(x, z)y + J(y, z)x+ xB(y, z) + yB(x, z),

(ii) J(xyx, z) = J(x, z)yx+ xB(y, z) + xyB(x, z),

(iii) J(xyw + wyx, z) = J(x, z)yw + J(w, z)yx+ xB(y, z)w + xyB(w, z) + wB(y, z)x+ wyB(x, z),

(iv) (J(xy, z)− J(x, z)y − xB(y, z))[x, y] = 0.

Proof. (i) Since J is a generalized Jordan biderivation, so

J(x2, z) = J(x, z)x+ xB(x, z) ∀ x, z ∈ R (4.1)

Let x = x+ y in (4.1), we get

J(x2+y2+xy+yx, z) = J(x, z)x+J(x, z)y+J(y, z)x+J(y, z)y+xB(x, z)+xB(y, z)+yB(x, z)+yB(y, z)
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From (4.1), the last relation becomes

J(xy + yx, z) = J(x, z)y + J(y, z)x+ xB(y, z) + yB(x, z),

so (i) holds.

(ii) Putting xy + yz instead of y in (4.1), we get

J(x(xy + yx) + (xy + yx)x, z) = J(x, z)(xy + yx) + J(xy + yx, z)x+ xB(xy + yx, z) + (xy + yx)B(x, z)
= J(x, z)xy + J(x, z)yx+ (J(x, z)y + J(y, z)x+ xB(y, z) + yB(x, z))x

+ x(B(x, z)y + xB(y, z) +B(y, z)x+ yB(x, z))
+ xyB(x, z) + yxB(x, z)

= J(x, z)xy + J(x, z)yx+ J(x, z)yx+ J(y, z)x2 + xB(y, z)x+ yB(x, z))x
+ xB(x, z)y + x2B(y, z) + xB(y, z)x+ 2xyB(x, z) + yxB(x, z)

On the other hand

J(x(xy + yx) + (xy + yx)x, z) = J(x2y + 2xyx+ yx2, z)
= J(x2y + yx2, z) + 2J(xyx, z)
= J(x2, z)y + J(y, z)x2 + x2B(y, z) + yB(x2, z) + 2J(xyx, z)
= J(x, z)xy + xB(x, z)y + J(y, z)x2 + x2B(y, z) + yB(x, z)x+ yxB(x, z)

+ 2J(xyx, z)

Combining the last two relations, we get

2J(xyx, z) = 2J(x, z)yx+ 2xB(y, z)x+ 2xyB(x, z)

Since R is 2-torsion free, so

J(xyx, z) = J(x, z)yx+ xB(y, z)x+ xyB(x, z)

(iii) Replacing x+ w for x in (ii), we get

J((x+ w)y(x+ w), z) = J(x, z)yx+ J(x, z)yw + J(w, z)yx+ J(w, z)yw + xB(y, z)x+ xB(y, z)w
+ wB(y, z)x+ wB(y, z)w + xyB(x, z) + xyB(w, z) + wyB(x, z) + wyB(w, z)

Application of (ii) yields that

J(xyw + wyx, z) = J(x, z)yw + J(w, z)yx+ xB(y, z)w + wB(y, z)x+ xyB(w, z) +wyB(x, z)

Hence (iii) holds.

(iv) Replacing xy for w in (iii), we get

J(xy(xy) + (xy)yx, z) = J(x, z)y(xy) + J(xy, z)yx+ xB(y, z)xy + xyB(y, z)x+ xyB(xy, z) + (xy)yB(x, z)

On the other hand

J(xy(xy) + (xy)yx, z) = J((xy)2 + xy2x, z)
= J((xy)2, z) + J(xy2x, z)
= J(xy, z)xy + xyB(xy, z) + J(x, z)y2x+ xB(y2, z)x+ xy2B(x, z)
= J(xy, z)xy + xyB(xy, z) + J(x, z)y2x+ xyB(y, z)x+ xB(y, z)yx+ xy2B(x, z)

Combining the last two relations, we get

J(x, z)y(xy) + J(xy, z)yx+ xB(y, z)xy − J(xy, z)xy − J(x, z)y(yx)− xB(y, z)yx = 0

J(x, z)y[x, y]− J(xy, z)[x, y] + xB(y, z)[x, y] = 0,
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so
(J(xy, z)− J(x, z)y − xB(y, z))[x, y] = 0,

which completes the proof.

From now on, we use the abbreviation J
(x,y)
z = J(xy, z)− J(x, z)y − xB(y, z), for simplicity.

Lemma 4.2. Let R be a 2-torsion free ring. Suppose that J : R×R→ R is a generalized Jordan biderivation
defined by a biderivation B : R×R→ R. Then for all x, y, w, z ∈ R, we have the following.

(i) J
(x,y)
z = −J

(y,x)
z ,

(ii) J
(x,y+w)
z = J

(x,y)
z + J

(x,w)
z ,

(iii) J
(x+y,w)
z = J

(x,w)
z + J

(y,w)
z .

Proof. Using Lemma 4.3, one can prove the above axioms.

Lemma 4.3. J
(x,y)
z r[x, y] = 0 ∀ x, y, z, r ∈ R

Proof. Consider w = xyryx+ yxrxy, then for all z ∈ R, we get

J(w, z) = J(xyryx+ yxrxy, z)
= J(x(yry)x+ y(xrx)y, z)
= J(x(yry)x, z) + J(y(xrx)y, z)

Using Lemma 4.1(ii), we get

J(w, z) = J(x, z)yryx+ xB(yry, z)x+ xyryB(x, z) + J(y, z)xrxy + yB(xrx, z)y + yxrxB(y, z)
= J(x, z)yryx+ xB(y, z)ryx+ xyB(r, z)yx+ xyrB(y, z)x+ xyryB(x, z) + J(y, z)xrxy

+ yB(x, z)rxy + yxB(r, z)xy + yxrB(x, z)y + yxrxB(y, z).

By Lemma 4.1(iii), we obtain

J(w, z) = J((xy)r(yx) + (yx)r(xy), z)
= J(xy, z)ryx+ J(yx, z)rxy + xyB(r, z)yx+ xyrB(yx, z) + yxB(r, z)xy + yxrB(xy, z)
= J(xy, z)ryx+ J(yx, z)rxy + xyB(r, z)yx+ xyrB(y, z)x+ xyryB(x, z)

+ yxB(r, z)xy + yxrB(x, z)y + yxrxB(y, z).

From the above two relations, we get

(J(xy, z)− J(x, z)y − xB(y, z))ryx+ (J(yx, z)− J(y, z)x− yB(x, z))rxy = 0

Thus,
J (x,y)z ryx+ J (y,x)z rxy = 0 ∀ x, y, z, r ∈ R

Applying Lemma 4.2(i), we get

J (x,y)z ryx− J (x,y)z rxy = 0 ∀ r, x, y, z ∈ R.

Hence J
(x,y)
z r[x, y] = 0 ∀ r, x, y, z ∈ R.

Theorem 4.1. Let R be a non-commutative prime ring such that charR �= 2. Suppose that J : R×R→ R

is a generalized Jordan biderivation defined by a biderivation B. Then J is a generalized biderivation.

Proof. From Lemma 4.3, we have

J (x,y)z r[x, y] = 0 ∀ r, x, y, z ∈ R (4.2)
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Putting y + w instead of y in (4.2), we get

J (x,y+w)z r[x, y + w] = 0 ∀ r, x, y, w, z ∈ R (4.3)

Using Lemma 4.2 (ii), relation (4.3) becomes

(J (x,y)z + J (x,w)z )r([x, y] + [x,w]) = 0,

J (x,y)z r[x, y] + J (x,y)z r[x,w] + J (x,w)z r[x, y] + J (x,w)z r[x, w]) = 0

By Lemma 4.3, the last relation becomes

J (x,y)z r[x,w] + J (x,w)z r[x, y] = 0 ∀ r, x, y, w, z ∈ R (4.4)

(J
(x,y)
z r[x,w])s(J

(x,y)
z )r[x,w]) = −(J

(x,w)
z r[x, y])s(J

(x,w)
z r[x,w])

= −J
(x,w)
z (r[x, y])sJ

(x,y)
z r)[x, w]

= 0.

Since R is a prime ring, so

J (x,y)z r[x, w] = 0 ∀ r, x, y, w, z ∈ R (4.5)

Replacing x+ v for x in (4.5), we get

J (x+v,y)z r[x+ v,w] = 0 ∀ r, x, y, v, w, z ∈ R

By Lemma 4.2(iii), we get

(J (x,y)z + J (v,y)z r([x, w] + [v, w]) = 0

that is
J (x,y)z r[x,w] + J (x,y)z r[v,w] + J (v,y)z r[x,w] + J (v,y)z r[v,w] = 0

By (4.5), the last relation becomes

J (x,y)z r[v,w] + J (v,y)z r[x,w] = 0 ∀ r, x, y, v, w, z ∈ R (4.6)

Then
(J
(x,y)
z r[v,w])s(J

(x,y)
z )r[v, w]) = −(J

(v,y)
z r[x, w])s(J

(x,y)
z r[v,w])

= −J
(v,y)
z (r[x, w])sJ

(x,y)
z r)[v,w]

= 0.

Since R is a prime ring, so

J (x,y)z r[v, w] = 0 ∀ r, x, y, v, w, z ∈ R (4.7)

Since R is a non-commutative prime ring, so from (4.7) J
(x,y)
z = 0 for all x, y, z ∈ R, i.e.

J(xy, z) = J(x, z)y + xB(y, z) ∀ x, y, z ∈ R.

Similarly, we can prove that J(z, xy) = J(z, x)y + xB(z, y). Hence J is a generalized biderivation, as
required.
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Abstract. This paper presents new definitions which are a natural combination of the definition for

asymptotically equivalence and [w]σ,λ - statistically convergence. Using these definitons, we have proved

the st− [w]Lσ,λ - asymptotically equivalence analogues of Mursaleen’s theorems in [9].

1. Introduction

Let lα and c be the Banach spaces of bounded and convergent sequences x = (xk) with the usual norm
‖ x ‖= sup

k

| xk |. A sequence x = (xk) ∈ lα is said to be almost convergent of all of its Banach limits

coincide. Let ĉ denote the space of all almost convergent sequences. Lorentz [6] proved that

ĉ =
{
x ∈ lα : lim

m
dmn(x) exists uniforly in n

}

where

dmn(x) =
xn + xn+1 + · · ·+ xn+m

m+ 1

The space [ĉ] is of strongly almost convergent sequences was introduced by Maddox [7] as follows:

[ĉ] =
{
x ∈ lα : lim

m
dmn(| x− le |) exists uniforly in n for some l ∈ �

}

where e = (1, 1, · · · ).

Let σ be one-to-one mapping of the set of positive integers into itself such that σk(n) = σ(σk−1(n)),
k = 1, 2, 3, · · · . A continuous linear functional φ on lα is said to be an invariant mean or a σ - mean if and
only if

(1) φ ≥ 0 when the sequence x = x(xn) has xn ≥ 0 for all n

(2) φ(e) = 1 where e = (1, 1, · · · ) and

(3) φ(xσ(n)) = φ(x) for all x ∈ lα

For a certain kinds of mapping σ every invariant mean φ extends the limit functional on space c, in the
sense that φ(x) = lim x for all x ∈ c. Consequently, c ⊂ Vα where Vα is the bounded sequences all of whose
σ - means are equal.

It can be shown [15] that

Vσ =

{
x ∈ lα : lim

k
lα(x) = Le uniforly in m for some L = σ − lim x

}

Keywords and phrases : Asymptotic equivalence, statistical convergence, invariant means, de la Vallee-Poussin means.
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where

lkm(x) =
xm + xσ(m) + · · ·+ xσk(m)

k + 1

We say that a bounded sequence x = (xk) is σ-convergent if and only if x ∈ Vσ such that σ
k(m) �= m for all

m ≥ 0, k ≥ 1.
In [10] Mursaleen, Gaur and Chishti introduced the following sequence space, which is generalized the

sequence space [w] of Das and Sahoo [2]

[w]σ =

{

x = (xk) :
1

n+ 1

σ∑

k=0

| tkm(x− L) |→ 0 as n→∞, uniformly in m for some L

}

where

tkm(x) =
xm + xσ(m) + · · ·+ xσk(m)

k + 1

We may introduce that the space (C2)σ is defined by

(C2)σ =

{

x = (xk) :
1

n+ 1

σ∑

k=0

(tk0(x)− L)→ 0 as n→∞, for some L

}

and the space [C2]σ is defined by

[C2]σ =

{

x = (xk) :
1

n+ 1

σ∑

k=0

| tk0(x)− L |→ 0 as n→∞, for some L

}

It is clear that the following inclusion relation holds: [w]σ ⊂ [C2]σ ⊂ (C2)σ
Let Λ denote the set of all non-decreasing sequences λ = (λn) of positive numbers tending to α such

that λn+1 ≤ λn + 1 and λ1 = 1. The generalized de la Vallee-Poussin mean is defined by

tn =
1

λn

∑

k∈ln

xk

where ln = [n− λn + 1, n].
A sequence x = (xk) is said to be (V, λ) - summable to a number L (see [5]) if

tn(x)→ L as n→∞

We write

[V, λ] =





x = (xn) : ∃L ∈ �, lim

n→∞

1

λn

∑

k∈ln

| xk − L |= 0






for the sets of sequences x = (xk) which are strongly (V, λ) - summable to L, i.e. xk → L[V, λ].
The idea of statistical convergence was introduced by Fast [3] and studied by various authors (see [1],

[4], [12]). A sequence x = (xk) is said to be statistically convergent to the number L if for every ε > 0

lim
n→∞

1

n
| {k ≤ n :| xk − L |≥ ε} |= 0

where the vertical bars indicate the number of elements in the enclosed set. In this case, we write S− limx =
L or xk → L(S) and S denotes the set of all statistically convergent sequences.

A sequence x = (xk) is said to be λ - statistically convergent or Sλ - convergent to L if for every ε > 0

lim
n→∞

1

n
| {k ∈ ln :| xk − L |≥ ε} |= 0
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where the vertical bars indicate the number of elements in the enclosed set. In this case, we write
S − limx = L or xk → L(S) and S denotes the set of all statistically convergent sequences.

A sequence (x = xσ) is said to be λ - statistically convergent or SL - convergent to L if for every ε > 0

lim
n→∞

1

λn
| {k ∈ In :| xk − L |≥ ε} |= 0

In this case, we write Sλ − limx = L or xk → L(Sλ) and the set of these sequences is denoted by Sλ. (see,
[9]). If we take λn = n, then we have Sλ = S.

In 1993 Marouf [8] presented definitions for asymptotically equivalent sequences and asymptotic
regular matrices. In 2003, Patterson [11] extend these concepts by presenting an asymptotically statis-
tically equivalent analog of these definitions and natural regularity conditions for non-negative summability
matrices. E. Savaş [13] presented the definition which is a natural combination of the definitions for asymp-
totically equivalent and λ - statistically convergence. In [14] R. Savaş and Başarir presented the definition
which is a natural combination of the definitions for asymptotically equivalent, λ - statistically convergence
and σ - convergence. In this paper, we define and study st− [w]σ,λ - asymptotically equivalent of multiple
L. In addition to these definitions, natural inclusion theorems shall also be presented.

2. Definitions and Notations

Definition 2.1 (Marouf [8]). Two non-negative sequences x, y are said to be asymptotically equivalent if

lim
k

xk

yk
= 1

(denoted by x�y).

Definition 2.2 (Patterson [11]). Two non-negative sequences x, y are said to be asymptotically statistical
equivalent of multiple L provided that for every ε > 0

lim
n→∞

1

n

{
k ≤ n :

xk

yk
− L ≥ ε

}
= 0

(denoted by x
SL

� y) and simply asymptotically statistical equivalent, if L = 1.

Definition 2.3. A sequence x = xn is said to be [w]σ,λ - statistically convergent or st− [w]σ,λ - convergent
to L if for every ε > 0

lim
n→∞

1

λn
{k ∈ ln : tkm(x)− L ≥ ε} = 0

uniformly in m = 1, 2, 3, · · · . In this case, we write st− [w]σ,λ− limx = L or xk → L(st− [w]σ,λ). We denote
the set of these sequences by st− [w]σ,λ.

Definition 2.4. A sequence x = xn is said to be [w]σ,λ - convergent to L if

lim
n→∞

1

λn

∑

k∈ln

| tkm(x)− L |= 0

uniformly in m = 1, 2, 3, · · · . In this case, we write [w]σ,λ − limx = L or xk → L[w]σ,λ. We denote the set
of these sequences by [w]σ,λ.
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Following this definitions which are given above, we shall now introduce following new notions
[w]σ - asymptotically equivalence, M − [w]Lσ - asymptotically equivalent of multiple L,
st − [w]Lσ,λ - asymptotically equivalent of multiple L and [w]Lσ,λ - asymptotically equivalent of multiple
L.

Definition 2.5. Two non-negative sequences x, y are said to be [w]σ - asymptotically equivalent if

lim
k

tkm(x)

tkm(y)
= 1

uniformly in m = 1, 2, 3, · · · , where tkm(x) =
xm+xσ(m)+···+xσk(m)

k+1 (denoted by x
[w]σ
� y).

Definition 2.6. Two non-negative sequences x, y are st − [w]Lσ - asymptotically equivalent of multiple L
provided that for every ε > 0

lim
n→∞

1

n

{
k ≤ n :

tkm(x)

tkm(y)
− L ≥ ε

}
= 0

uniformly in m = 1, 2, 3, · · · (denoted by x
st−[w]Lσ
� y) and simply [w]σ - asymptotically statistical equivalent,

if L = 1.

Definition 2.7. Two non-negative sequences x, y are (C2)
L
σ - asymptotically equivalent of multiple L

provided that for every ε > 0

lim
n→∞

1

n+ 1

n∑

k=0

[
tk0(x)

tk0(y)
− L

]
= 0

(denoted by x
(C2)Lσ
� y) and simply (C2)σ - asymptotically equivalent, if L = 1.

Definition 2.8. Two non-negative sequences x, y are [C2]
L
σ - asymptotically equivalent of multiple L

provided that for every ε > 0

lim
n→∞

1

n+ 1

n∑

k=0

tk0(x)

tk0(y)
− L = 0

(denoted by x
[C2]Lσ
� y) and simply [C2]σ - asymptotically equivalent, if L = 1.

Definition 2.9. Two non-negative sequences x, y are st− [w]Lσ,λ - asymptotically equivalent of multiple L
provided that for every ε > 0

lim
n→∞

1

λ0

{
k ∈ In :

tλm(x)

tλm(y)
− L ≥ ε

}
= 0

uniformly in m = 1, 2, 3, · · · (denoted by x
st−[w]L

σ,λ

� y) and simply st− [w]σ,λ - asymptotically equivalent, if
L = 1.

Definition 2.10. Two non-negative sequences x, y are [w]Lσ,λ - asymptotically equivalent of multiple L
provided that for every ε > 0

lim
n→∞

1

λn

∑

k∈In

tλm(x)

tλm(y)
− L = 0
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uniformly in m = 1, 2, 3, · · · (denoted by x
[w]L

σ,λ

� y) and simply [w]σ,λ - asymptotically equivalent, if L = 1.

If we take σ(n) = n+ 1 then [w]σ - asymptotically equivalence, st− [w]
L
σ - asymptotically equivalence,

st − [w]Lσ,λ - asymptotically equivalence and [w]Lσ,λ - asymptotically equivalence reduce [w] -

asymptotically equivalence,
�

st −[w]L - asymptotically equivalence,
�

st −[w]Lλ - asymptotically equivalence
and [w]Lλ - asymptotically equivalence; respectively.

The following theorems are the analogue of [9] and [14].

3. Main Result

Theorem 3.1. Let λ ∈ Λ, then

(i) If x
[w]L

σ,λ

� y then x
st−[w]L

σ,λ

� y.

(ii) If x, y ∈ l∞ and x
st−[w]L

σ,λ

� y then x
[w]L

σ,λ

� y and hence x
(C2)Lσ
� y.

(iii) x
st−[w]L

σ,λ

� y ∩ l∞ = x
[w]L

σ,λ

� y ∩ l∞.

Proof. (i) If ε > 0 and x
[w]L

σ,λ

� y then

∑

k∈In

|
tkm(x)

tkm(y)
− L| ≥

∑

k ∈ In
tkm(x)
tkm(y)

− L ≥ ε

|
tkm(x)

tkm(y)
− L | ≥ ε |

{
k ∈ I0 :

tkm(x)

tkm(y)
− L ≥ ε

}
|

Therefore x
st−[w]L

σ,λ

� y.

(ii) Suppose x, y are in l∞ and x
st−[w]L

σ,λ

� y. Then we can assume that

tλm(x)

tλm(y)
− L ≤M for all k and m

Given ε > 0

1

λn

∑

k∈In

|
tλm(x)

tλm(y)
−L | =

1

λn

∑

k ∈ In
tλm(x)
tλm(y)

− L ≥ ε

|
tkm(x)

tkm(y)
−L | +

1

λn

∑

k ∈ In
tkm(x)
tkm(y)

− L ≥ ε

|
tkm(x)

tkm(y)
−L |

≤
M

λn

{
k ∈ I0 :

tkm(x)

tkm(y)
− L ≥ ε

}
+ ε

Therefore x
[w]L

σ,λ

� y.

Further, we have
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1

n+ 1

n∑

k=0

(
tkm(x)

tkm(y)
− L

)
=

1

n+ 1

n−λ0∑

k=0

(
tkm(x)

tkm(y)
− L

)
+

1

n+ 1

∑

k∈In

(
tkm(x)

tkm(y)
− L

)

≤
1

λn

n−λn∑

k=0

tkm(x)

tkm(y)
− L +

1

λn

∑

k∈In

tkm(x)

tkm(y)
− L

≤
2

λn

∑

k=0

tkm(x)

tkm(y)
− L

Since uniform convergence of
1

n+ 1

n∑

k=0

(
tkm(x)

tkm(y)
− L

)
with respect to m as n → ∞ implies convergence

for m = 0, it follows that x
[C2]Lσ
� y.

(iii) This immediately follows from (i) and (ii).

Theorem 3.2. x
st−[w]Lσ
� y implies x

st−[w]L
σ,λ

� y if

lim inf
n→∞

λn

n
> 0 (3.2)

Proof. For given ε > 0 we have

{
k ≤ n :

tkm(x)

tkm(y)
− L ≥ ε

}
⊃

{
k ∈ In :

tkm(x)

tkm(y)
− L ≥ ε

}

Therefore

1

n

{
k ≤ n :

tkm(x)

tkm(y)
− L ≥ ε

}
≥
1

n

{
k ∈ In :

tkm(x)

tkm(y)
− L ≥ ε

}
=
λn

n

1

λn

{
k ∈ In :

tkm(x)

tkm(y)
− L ≥ ε

}
.

Taking the limit as n→∞ and using (3.2), we get desired result.

References

[1] Connor, J.S. : The statistical and strong p-Cesaro convergence of sequences, Analysis, 8 (1988) 47-63.

[2] Das, G.S. and Sahoo K. : On Some Sequence Spaces, J. Math. Anal. Appl., 164 (1992) 381-398.

[3] Fast, H. : Sur la convergence statistique, Colloq. Math., 2 (1951) 241-244.

[4] Fridy, J.A. : On statistical convergence, Analysis, 5 (1985) 301-313.

[5] Leindler, L. : ber de la Vale Pounsische Summierbarkeit allgemeiner Orthogonalreihen, Acta Math. Acad. Sci.
Hung., 16 (1965) 375-378.

[6] Lorentz, G.G. : A contribution to the theory of divergent sequences, Acta Math., 80 (1948) 167-190.

[7] Maddox, I.J. : Spaces of strongly summable sequences, Quart. J. Math., 18 (1967) 345-355.

[8] Marouf, M. : Asymptotic equivalence and summability, Int. J. Math. Sci., 16 (4) (1993) 755-762.

[9] Mursaleen : λ - statistical convergence, Math. Slovaca, 50 (1) (2000) 111-115.

[10] Mursaleen, Gaur A.K. and Chishti, T.A. : On some new sequence spaces of invariant means, Acta Math.
Hungar., 75 (3) (1997) 209-214.



[w]Lσ,λ Asymptotically Statistical Equivalent Sequences 53

[11] Patterson, R.F. : On asymptotically statistically equivalent sequences, Demonstratio Math., 36 (1) (2003) 149-
153.

[12] Salat, T. : On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980) 139-150.
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Abstract. In this paper we study the generalized CR-submanifolds of a nearly trans-Sasakian manifold

and obtain their basic properties. We generalize the results of trans-Sasakian manifold and find integra-

bility conditions of distributions of generalized CR-submanifolds of nearly trans-Sasakian manifolds.

1. Introduction and Preliminaries

Bejancu [2] defined and studied CR-submanifolds of Kaehlerian manifolds. CR-submanifolds of Sasakian
manifold were studied by Kobayashi [6]. Bejancu and Papaghiuc [3] defined almost semi-invariant
submanifold of Sasakian manifold. In 1985, Oubina [9] studied a new class of almost contact
Riemannian manifold known as trans-Sasakian manifold which generalizes both α−Sasakian and β−Kenmotsu
structures. Sengupta and De, [11], Shahid [14] and Ojha [10] studied generalized CR-submanifolds of a
Nearly Trans-Sasakian Manifold, generic submanifolds and almost semi-invariant manifolds of trans-Sasakian
manifold. Mihai [9] introduced a new class of submanifolds called “Generalized CR-submanifolds” of a
Kaehler manifold. This class contains both CR-submanifolds and slant submanifolds.

The purpose of the present paper is to study the generalized CR-submanifold of a nearly trans-Sasakian
manifold.

Let M be a (2n+1)-dimensional contact metric manifold with almost contact metric structure (φ, ξ, η, g),
where φ is a tensor field of type (1,1), ξ is a vector field, η a 1-form and g is a Riemannian metric on M

such that

φ2 = −I + η ⊗ ξ, η (ξ) = 1, φξ = 0, η ◦ φ = 0 (1.1)

and

g(φX,φY ) = g(X, Y )− η(X)η(Y ) (1.2)

and

g(X, ξ) = η(X) (1.3)

for all vector fields X,Y on M .

On such a manifold we may define a fundamental 2-form by

Φ(X, Y ) = g(φX, Y ) = −g(X,φY ) (1.4)

Keywords and phrases : Generalized CR-submanifold, nearly trans-Sasakian manifolds, trans-Sasakian manifold,

distribution, submanifold.

AMS Subject Classification : 53C40.
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An almost contact metric structure (φ, ξ, η, g),on M is called trans-Sasakian if and only if

(∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX) (1.5)

for X,Y tangent to M , where α and β are non zero constants and ∇ is the Riemannian connection with
respect to g.

From (1.5) it follows that

∇Xξ = −αφX + β(X − η(X)ξ (1.6)

for any vector X tangent to M .

2. Nearly trans-Sasakian manifold and generalized CR-submanifold

An almost contact metric manifolds M with almost contact metric structure is called nearly trans-Sasakian
if

(∇Xφ)Y + (∇Y φ)X = α(2g(X,Y )ξ − η(Y )X − η(X)Y )

−β(η(Y )φX + η(X)φY )
(2.1)

It is clear that any trans-Sasakian manifold is nearly trans-Sasakian.

From equation (2.1), we have

(∇Xφ)ξ + (∇ξφ)X = α(2g(X, ξ)ξ − η(ξ)X − η(X)ξ)

−β(η(ξ)φX + η(X)φξ)

= α(2η(X)ξ −X − η(X)ξ)− βφX

= α(η(X)ξ −X)− βφX

= −α(X − η(X)ξ)− βφX

Thus ∇ξφX − φ(∇Xξ +∇ξX) = − αφ2X − βφX

If ξ is killing vector field then

∇Xξ = −φX

and we have

(∇ξφX − φ∇ξX) = (1− α)φ2X − βφX

or,

(∇ξφ)X = (1− α)φ2X − βφX. (2.2)

In the case of trans-Sasakian manifold,

(∇ξφ)X = 0
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Let M be an m-dimensional submanifold isometrically immersed in a nearly trans-Sasakian manifold
M such that the structure vector field ξ of M is tangent to the submanifold M . We denote by{ξ} the
1-dimensional distribution spanned by ξ on M and{ξ}⊥ the complementary orthogonal distribution to {ξ}in
TM . Let us denote by same g the Riemannian metric tensor field induced on M from that of M .

For any X ∈ TM , we have

g(φX, ξ) = 0, φX = bX + cX (2.3)

where bX ∈ {ξ}⊥ and cX ∈ T⊥M . Thus X −→ bX is an endomorphism of the tangent bundle T (M ) and
X −→ cX is a normal bundle valued 1-form on M .

Definition 2.1. A m-dimensional Riemannian submanifold M of nearly trans-Sasakian manifold M is called
a CR-submanifold if ξ is tangent to M and there exists a differentiable distribution D : x ∈ M −→ Dx ⊂ TxM

such that

(i) the distribution is invariant under φ , that is, φDx ⊂ Dx for each x ∈ M ,
(ii) the complementary orthogonal distribution D⊥ : x ∈ M −→ D⊥

x ⊂ TxM of D is anti-invariant under
φ, that is, φD⊥

x ⊂ T⊥x M for all x ∈ M , where TxM and T⊥x M are the tangent space and the normal space
of M at x, respectively.

If, dimD⊥
x = 0 (resp., dimDx = 0), then the CR-submanifold is called an invariant (resp., anti-

invariant) submanifold.

Definition 2.2. A submanifold M of an almost contact metric manifold M with almost contact metric
structure (φ, ξ, η, g) is said to be a generalized CR-submanifold if

D⊥

x = Tx(M ) ∩ φT⊥x (M), x ∈M (2.4)

defines a differentiable subbundle of Tx(M). Thus for X ∈ D⊥ one has bX = 0. We denote by D the
complementary orthogonal subbundle to D⊥ ⊕ {ξ}in TM . For any X ∈ D, bX �= 0. Also we have bD = D.

Thus for a generalized CR-submanifold M we have the orthogonal decomposition

T (M) = D ⊕D⊥ ⊕ {ξ}

Let ∇(resp., ∇) be the Riemannian connection on M(resp.,M) with respect to Riemannian metric g.
Let ∇⊥ is a connection on T⊥(M ) induced by ∇.

The Gauss and Weingarten formulas for M , are respectively, given by

∇XY = ∇XY + h(X,Y ) (2.5)

and

∇XN = −ANX +∇⊥XN (2.6)

for X,Y ∈ TM and N ∈ T⊥M , where h is the second fundamental form of M and AN is the fundamental
tensor with respect to normal section N . These tensor fields are related by

g(h(X,Y ), N) = g(ANX, Y ) (2.7)

for X,Y ∈ TM and N ∈ T⊥M .

Proposition 2.3. Let M be a nearly trans-Sasakian manifold, then we have

(∇φXφ)Y = 2ag(φX, Y )ξ − αη(Y )φX + βη(Y )X − βη(X)η(Y )ξ

−η(X)∇Y ξ + φ(∇Y φ)X + η(∇YX)ξ − Y η(X)ξ

(2.8)

for X,Y ∈ TM .
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Proof. From the definition of nearly trans-Sasakian manifold

(∇φXφ)Y + (∇Y φ)φX = a(2g(φX, Y )ξ − η(Y )φX − η(φX)Y )

−β(η(Y )φ2X + η(φX)φY )

= α(2g(φX, Y )ξ − η(Y )φX)

−β(−η(Y )X + η(Y )η(X)ξ)

(2.9)

Now

(∇Y φ)φX = ∇Y (φ
2X)− φ(∇Y φX)

= ∇Y (−X + η(X)ξ)− φ
[
(∇Y φ)X + φ(∇YX)

]

= −∇YX + η(X)∇Y ξ − φ((∇Y φ)X)− φ2(∇YX) + (∇Y η(X))ξ

= −∇YX + η(X)∇Y ξ − φ((∇Y φ)X) +∇YX − η(∇YX)ξ + (∇Y η(X))ξ

= η(X)∇Y ξ − η(∇YX)ξ − φ((∇Y φ)X) + (∇Y η(X))ξ

= η(X)∇Y ξ − η(∇YX)ξ − φ((∇Y φ)X) + Y η(X))ξ

(2.10)

Using equation (2.9) and (2.10), we get the result.

On a nearly trans-Sasakian manifold M , Nijenhuis tensor is given by

Nφ(X,Y ) = (∇φXφ)Y − (∇φY φ)X − φ((∇Xφ)Y + φ(∇Y φ)X (2.11)

for X, Y ∈ TM .

From equation (2.8) and (2.11) we have

Nφ(X,Y ) = 4αg(φX, Y )− αη(Y )φX + αη(X)φY + βη(Y )X − βη(X)Y

−η(X)∇Y ξ + η(Y )∇Xξ − η(∇XY )ξ + η(∇YX)ξ

+Xη(Y )− Y η(X) + 2φ(∇Y φ)(X)− 2φ(∇Xφ)(Y )

Using equation (2.1), we get
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Nφ(X, Y ) = 4αg(φX, Y )ξ − αη(Y )φX + αη(X)φY + βη(Y )X

−βη(X)Y − η(X)∇Y ξ + η(Y )∇Xξ + 2dη(X,Y )ξ

+2φ(∇Y φ)(X)− 2φ(α(2g(X, Y )ξ − η(Y )X

−η(X)Y )− β(η(X)φY + η(Y )φX − (∇Y φ)X))

= 4αg(φX, Y )ξ − αη(Y )φX + αη(X)φY + βη(Y )X

−βη(X)Y − η(X)∇Y ξ + η(Y )∇Xξ + 2dη(X,Y )ξ

+4φ(∇Y φ)(X) + 2αη(Y )φX + 2αη(X)φY

+2βη(X)φ2Y + 2βη(Y )φ2X

= 4αg(φX, Y )ξ + αη(Y )φX + 3αη(X)φY − βη(Y )X

−3βη(X)Y − η(X)∇Y ξ + η(Y )∇Xξ + 4βη(X)η(Y )ξ

+2dη(X, Y )ξ + 4φ(∇Y φ)X, for X,Y ∈ T M

3. Some important lemmas

Let M be a generalized CR-submanifold of the nearly trans-Sasakian manifold M . We denote by g both
the Riemannian metrics on M and M .

For each X ∈ T (M), we can write

X = PX + QX + η(X)ξ (3.1)

where PX and QX belong to the distribution D and D⊥, respectively.

Also,

ξ = Pξ + Qξ + η(ξ)ξ, Pξ = Qξ = 0 (3.2)

and ηoP = ηoQ = 0.

For any N ∈ T⊥x (M), we can take

φN = tN + fN (3.3)

where tN is the tangential part of φN and fN is the normal part of φN .

Let X ∈ D⊥
x and Y ∈ Dx, then by equation (1.2)

g(φX, cY ) = g(φX, bY + cY ) = g(φX,φY ) = g(X,Y ) = 0
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Hence we have

g(φD⊥

x ,Dx) = 0 (3.4)

Let V be the orthogonal complementary vector bundle to φD⊥ ⊕ cD in T⊥M . Thus we have

T⊥M = φD⊥ ⊕ cD ⊕ V (3.5)

Lemma 3.1. The endomorplism t and f satisfy

t(φD⊥) = D⊥ and tX(cD) ⊂ D

Proof. For X ∈ D⊥ and Y ∈ D,

g(tφX, Y ) = g(tφX + fφX, Y ) = g(φ2X, Y ) = g(−X + η(X)ξ, Y ) = −g(X,Y ) = 0

Also

g(tφX, ξ) = g(φ2X, ξ) = g(−X + η(X)ξ, ξ) = −g(X, ξ) + η(X) = −η(X) + η(X) = 0

therefore, t(φD⊥) ⊂ D⊥.

For X ∈ D⊥, we have

−X = φ2X = tφX + fφX

which shows that −X = tφX . So, D⊥ ⊂ t(φD⊥). Hence, t(φD⊥) = D⊥.
Let X ∈ TM then

φX = bX + cX

where bX ∈ TM , cX ∈ T⊥M and φX ⊥ ξ. From (3.3), we have

φ(cX) = t(cX) + f(cX) (3.6)

If x ∈ Dx, then it is clear from (2.3) and (3.6) that t(cD) ⊂ D.

Lemma 3.2. Let M be a generalized CR-submanifold of a nearly trans-Sasakian manifold M . Then we
have

P (∇XbPY +∇Y bPX −AcPYX −AcPXY −AφQYX −AφQXY )− (bP∇XY − bP∇YX + 2Pth(X,Y ))

= −αη(X)PY − αη(Y )PX − βη(Y )PbX − βη(X)PbY (3.7)

Q(∇XbPY +∇Y bPX −AcPYX −AcPXY −AφQYX −AφQXY )− 2Qth(X,Y )

= −αη(X)QY − αη(Y )QX − βη(Y )QbX − βη(X)QbY (3.8)

η(∇XbPY +∇Y bPX −AcPYX −AcPXY −AφQYX −AφQXY )

= 2αg(X,Y )− βη(X)η(bY )− βη(Y )η(bY ) (3.9)

h(X, bPY ) + h(Y, bPX) +∇⊥XcPY +∇⊥Y cPX +∇⊥XφQY +∇⊥Y φQX

− cP∇XY − cP∇YX − φQ∇XY − φQ∇YX − 2fh(X, Y ) = −βη(X)cY − βη(Y )cX (3.10)

for X, Y ∈ TM .
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Proof. For X, Y ∈ TM , by using equations (2.1), (3.1) (3.3) and (2.3), we have

(∇Xφ)Y + (∇Y φ)X = α(2g(X,Y )ξ − η(X)Y − η(Y )X

−β(η(Y )φX + η(X)φY

= α(2g(X,Y )ξ − η(X)PY − η(X)QY

−η(Y )PX − η(Y )QX)− β(η(Y )bX

+η(Y )cX + η(X)bY + η(X)cY

= α(2g(X,Y )ξ − η(X)PY − η(X)QY

−η(Y )PX − η(Y )QX)− β(η(Y )PbX

+η(Y )QbX + η(Y )η(bX)ξ + η(X)PbY

+η(X)QbY + η(X)η(bY )ξ

+η(Y )cX + η(X)cY )

(3.11)

Consider

(∇Xφ)Y + (∇Y φ)X = ∇X(φY )− φ(∇XY ) +∇Y (φX)− φ(∇YX)

= ∇XbPY + h(X, bPY )−AcPYX +∇⊥XcPY

−AφQYX +∇⊥XφQY − bP∇XY − cP∇XY

−φQ∇XY − 2Pth(X, Y )− 2Qth(X,Y )

−2fh(X,Y ) +∇Y bPX + h(Y, bPX)−AcPXY

+∇⊥Y cPX −AφQXY − bP∇YX +∇⊥Y φQX

−cP∇YX − φQ∇YX

= P (∇XbPY +∇Y bPX −AcPYX −AcPXY −AφQYX

−AφQXY ) + Q(∇XbPY +∇Y bPX −AcPYX −AcPXY

−AφQYX −AφQXY ) + η(∇XbPY +∇Y bPX −AcPYX

−AcPXY −AφQYX −AφQXY )ξ − (bP∇XY + bP∇YX

+2Pth(X, Y )− 2Qth(X, Y ) + (h(X, bPY )) +∇⊥XcPY

+∇⊥XφQY − 2fh(X,Y ) + h(Y, bPX) +∇⊥Y cPX +∇⊥Y φQX

−cP∇XY − cP∇YX − φQ∇XY − φQ∇YX)

(3.12)
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we obtain (3.11) and (3.12). Moreover,

P (∇XbPY +∇Y bPX −AcPYX −AcPXY

−AφQYX −AφQXY ) + Q(∇XbPY +∇Y bPX

−AcPYX −AcPXY −AφQYX −AφQXY ) + η(∇XbPY +

∇Y bPX −AcPYX −AcPXY −AφQYX −AφQXY )ξ

−(bP∇XY + bP∇YX + 2Pth(X, Y )− 2Qth(X, Y )

+(h(X, bPY ) +∇⊥XcPY +∇⊥XφQY − 2fh(X, Y )

+h(Y, bPX) +∇⊥Y cPX +∇⊥Y φQX − cP∇XY

−cP∇YX − φQ∇XY − φQ∇YX

= α(2g(X, Y )ξ − η(X)PY − η(X)QY − η(Y )PX

−η(Y )QX)− βη(Y )bPX + η(Y )QbX + η(Y )η(bX)ξ

+η(X)PbY + η(X)QbY + η(X)η(bY )ξ + η(Y )cX + η(X)cY

(3.13)

By Equating the components of each the vector bundles D,D⊥, {ξ}, and T⊥M , respectively, we get
equation (3.7), (3.8), (3.9) and (3.10), respectively.
Lemma 3.3. Let M be a CR-submanifold of a nearly trans-Sasakian manifold M then,

2(∇Xφ)Y = ∇XφY −∇Y φX + h(X,φY )− h(Y, φX)

−φ[X,Y ] + α(2g(X,Y )ξ − η(Y )X

−η(X)Y )− β(η(Y )φX + η(X)φY

(3.14)

for any X, Y ∈ TM .

Proof. Using Gauss formula, we have

∇XφY = ∇XφY + h(X, φY ) (3.15)

∇Y φX = ∇Y φX + h(Y, φX) (3.16)

(∇XφY )− (∇Y φX) = (∇Xφ)Y + φ∇XY − (∇Y φ)X − φ∇YX

= (∇Xφ)Y − (∇Y φ)X + φ[∇XY −∇YX],

(3.17)

For Riemannian connection, we have

∇XY −∇YX = [X, Y ]∇XφY −∇Y φX = (∇Xφ)Y − (∇Y φ)X + φ[X,Y ] (3.18)

From equations (3.17) and (3.18), we have

(∇Xφ)Y − (∇Y φ)X = ∇XφY + h(X, φY )−∇Y φX − h(Y, φX)− φ[X, Y ] (3.19)
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For nearly trans-Sasakian manifold, we know that

(∇Xφ)Y − (∇Y φ)X = α(2g(X,Y )ξ − η(Y )X − η(X)Y )− β(η(Y )φX + η(X)φY (3.20)

Adding equations (3.19) and (3.20), we get

2(∇Xφ)Y = α(2g(X, Y )ξ − η(Y )X − η(X)Y )− β(η(Y )φX + η(X)φY

+∇XφY −∇Y φX + h(X,φY )− h(Y, φX)− φ[X,Y ]

Corollary 3.4. Let M be a generalized CR-submanifold of a nearly trans-Sasakian manifold M , then

2(∇Xφ)Y = ∇XφY −∇Y φX + h(X,φY )− h(Y, φX)− φ[X,Y ] + 2αg(X,Y )ξ (3.21)

for any X,Y ∈ D.

Proof. In this case η(X) = 0, η(Y ) = 0, and result follows directly from Lemma 3.3.

Lemma 3.5. Let M be CR-submanifold of a nearly trans-Sasakian manifold, then we have

2(∇Xφ)Y = AφXY −AφYX +∇⊥XφY −∇⊥Y φX − φ[X,Y ]

+α(2g(X,Y )ξ − η(Y )X − η(X)Y )− β(η(Y )φX + η(X)φY (3.22)

for any X,Y ∈ D⊥.
Corollary 3.6. Let M be a generalized CR-submanifold of a nearly trans-Sasakian manifold, then we have

2(∇Xφ)Y = AφXY −AφYX +∇⊥XφY −∇⊥Y φX − φ[X,Y ]− 2αg(X,Y )ξ (3.23)

for X,Y ∈ D⊥.

Lemma 3.7. Let M be a generalized CR-submanifold of a nearly trans-Sasakian manifold M , then

2(∇Xφ)Y = −AφYX +∇⊥XφY −∇Y φX − h(Y, φX)− φ[X, Y ] (3.24)

for X ∈ D and X ∈ D⊥.

Lemma 3.8. Let M be a CR-submanifold of a nearly trans-Sasakian manifold M , then we have

2(∇Xφ)Y = −AφYX +∇⊥XφY −∇Y φY − h(Y, φX)

−φ[X,Y ] + α(2g(X, Y )ξ − η(Y )X

−η(X)Y )− β(η(Y )φX + η(X)φY )

(3.25)

for X ∈ D and Y ∈ D⊥.

4. Parallel distributions

Definition 4.1. The horizontal (respectively, vertical) distribution D(respectively, D⊥) is said to be par-
allel [11] with respect to connection ∇ on M if ∇XY ∈ D (respectively, ∇ZV ∈ D⊥) for any vector fields
X,Y ∈ D (resp., V,Z ∈ D⊥). Also φ is called D-commutative with respect to h if h(X,φY ) = h(φX, Y ).

Lemma 4.2. Let M be a generalized CR-submanifold of a nearly trans-Sasakian manifold M . If the
horizontal distribution D is parallel, then

h(X, φY ) = h(Y, φX) = φh(X,Y ) (4.1)

for all X, Y ∈ D.
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Proof. Using parallism of horizontal distribution D. we have

∇XφY ∈ D, ∇Y φX ∈ D for any X, Y ∈ D

Using the fact that QX = QY = 0 for X,Y ∈ D, equation (3.8) gives

th(X,Y ) = 0 for any X,Y ∈ D

Since φh(X,Y ) = th(X, Y ) + fh(X,Y ),

φh(X,Y ) = fh(X,Y ) (4.2)

From equation (3.10), we have

h(X, φY ) + h(Y, φX) = 2fh(X, Y ) (4.3)

While from (4.2) and (4.3), we have

h(X, φY ) + h(Y, φX) = 2φh(X, Y ) (4.4)

Replacing X by φX in equation (4.4), we get

h(φX, φY )− h(Y,X) = 2φh(φX, Y ) (4.5)

Again, replacing Y by φY in equation (4.4) , we get

− h(X,Y ) + h(φX,φY ) = 2φh(X,φY ) (4.6)

From equation (4.5) and (4.6), we have

φh(φX, Y ) = φh(X,φY )

which shows that h(φX, Y ) = h(X, φY ). Also from equation (4.5), we have

h(φX, Y ) = h(X, φY ) = φh(X,Y )

Here φ is D-commutative with respect to h.

Lemma 4.3. Let M be generalized CR-submanifold of a nearly trans-Sasakian manifold M . If the
distribution D⊥ is parallel with respect to connection on M , then we have

(AφXY + AφYX) ∈ D⊥ for any X, Y ∈ D⊥

Proof. Using the definition of nearly trans-Sasakian manifold, we have

(∇Xφ)Y + (∇Y φ)X = α(2g(X,Y )ξ − η(Y )X − η(X)Y )− β(η(Y )φX + η(X)φY

Let X, Y ∈ D⊥, then using Gauss and Weingarten formula, we have

(∇Xφ)Y − φ(∇XY ) + (∇Y φX)− φ(∇YX) = α(2g(X,Y )ξ −AφYX

+∇⊥XφY −AφXY +∇⊥Y φY

−φ(∇XY )− φ(∇YX)− 2φh(X,Y )

= α(2g(X,Y )ξ
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(AφXY + AφYX) = φ∇XY + φ∇YX + 2φh(X,Y ) + 2αg(X, Y )ξ (4.7)

Taking inner product with Z ∈ D in (4.7), we obtain

g(AφXY,Z) + g(AφYX,Z) = g(φ∇XY, Z) + g(φ∇YX,Z) (4.8)

If distribution D⊥ is parallel, then

∇XY ∈ D⊥, DYX ∈ D⊥ ∀X, Y ∈ D⊥

So from equation (4.8)

g(AφXY, Z) + g(AφYX,Z) = 0, g(AφXY + AφYX,Z) = 0, for every Z ∈ D (4.9)

If we take inner product with ξ in equation (4.7), we get

g(AφXY + AφYX, ξ) = 0 (4.10)

From (4.9) and (4.10) we have

AφXY + AφYX ∈ D⊥

which proves the result.

Definition 4.4. A generalized CR-submanifold is said to be mixed totally geodesic if h(X,Z) = 0 for all
X ∈ D and Z ∈ D⊥ ⊕ ξ.

Lemma 4.5. Let M be a CR-submanifold of a nearly trans-Sasakian manifold M , then M is mixed total
geodesic iff ANX ∈ D, for all X ∈ D.

Proof. Let X ∈ D and Y ∈ D⊥, then from g(h(X,Y ), N) = g(ANX,Y ), M is mixed totally geodesic. Also
h(X, Y ) = 0 and g(ANX,Y ) = 0 which show that ANX ∈ D for all X ∈ D.

Definition 4.6. A normal vector field N �= 0 is called D parallel normal vector, if ∇⊥XN = 0 for all X ∈ D.

Lemma 4.7. Let M be a mixed totally geodesic generalized submanifold of a nearly trans-Sasakian manifold
M .Then the normal section N ∈ φD⊥ is D -parallel iff ∇XφN ∈ D for all X ∈ D.

Proof. Let N ∈ φD⊥, then from (3.8) we have

Q(∇Y φX) = 0 for any X ∈ D, Y ∈ D⊥

We have also

Q(∇YX) = 0

By using it in (3.10), we get

∇⊥XφQY = φQY∇XY or ∇⊥XN = −φQ∇XφN (4.11)

If the normal section M �= 0 is D−parallel, then using above definition and equation (4.11), we get
Qφ(∇XφN) = 0, which shows that ∇XφN ∈ D for all X ∈ D.

Similarly converse part follows from (4.11).
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5. Integrability conditions of distributions

Theorem 5.1. Let M be a generalized CR-submanifold of a nearly trans-Sasakian manifold M , then

AφY Z −AφZY =
1

3
φP [Y, Z] (5.1)

for Y,Z ∈ D⊥.
Proof. For Y, Z ∈ D⊥and X ∈ TM . Consider

2g(AφZY,X) = 2g(h(X,Y ), φZ)

= g(h(X,Y ), φZ) + g(h(X,Y ), φZ)

= g(∇XY, φZ) + g(∇YX, φZ)

= g(∇XY +∇YX,φZ)

= −g(φ(∇XY +∇YX), Z)

= −g(∇XφY +∇Y φX − (∇Xφ)Y − (∇Y φ)X,Z))

= −g(∇XφY +∇Y φX − α(2g(X,Y )ξ − η(Y )X

−η(X)Y ) + β(η(Y )φX + η(X)φY,Z)

Using equation (4.1), we have

2g(AφZY,X) = −g(∇XφY +∇Y φX − 2αg(X, Y )ξ − αη(X)Y,Z)

as η(Y ) = η(Z) = 0, g(φX,Z) = g(φY,Z) = 0. Now

2g(AφZY,X) = −g(∇XφY,Z)− g(∇Y φX,Z)− αη(X)g(Y,Z)

= −g(∇XφY,Z) + g(∇Y Z, φX)− αη(X)g(Y,Z)

= g(AφYX,Z) + g(∇Y Z, φX)− αη(X)g(Y, Z)

= g(AφY Z,X)− g(φ∇Y Z), X)− αg(Y,Z)g(ξ,X)

This equation is true for all X ∈ TM and elimination of vector field X from both sides leads to

2AφZY = AφY Z − φ(∇Y Z)− αg(Y,Z)ξ (5.2)

for Y,Z ∈ D⊥. Interchanging Y and Z, we get

2AφY Z = AφZY − φ(∇ZY )− αg(Z, Y )ξ. (5.3)
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Subtracting (5.2) from (5.3), we get

3AφY Z − 3AφZY = −φ[∇ZY −∇Y Z]− φ[Z, Y ]− φ[Z, Y ] = φP [Y, Z]

so that

AφY Z −AφZY =
1

3
φP [Y,Z] (5.4)

Theorem 5.2. Let M be a generalized CR-submanifold of a nearly trans-Sasakian manifold M , then the
distribution D⊥ is integrable iff

AφY Z = AφZY (5.5)

for any Y,Z ∈ D⊥

Proof. Let the distribution D⊥is integrable then [Y, Z] ∈ D⊥, for every Y, Z ∈ D⊥. So P [Y,Z] = 0. Thus
from equation (5.4), we get (5.5).

Conversely suppose AφY Z = AφZY , then from equation (5.4)

φP [X,Y ] = 0 which means that P [X,Y ] = 0, and thus

[X,Y ] ∈ D⊥, for every Y,Z ∈ D⊥

Hence D⊥is integrable.

Theorem 5.3. Let M be generalized CR-submanifold of a trans-Sasakian manifold M , the we have

AφXY = AφYX, for every X,Y ∈ D⊥

.

Proof. Let Z ∈ TM , using equation (2.5), (2.6) and (1.5), we get

g(AφXY, Z) = g(h(Y,Z), φX) = g(∇ZY −∇ZY, φX)

= g(∇ZY, φX)

= −g(φ∇ZY,X)

= −g(∇ZφY − (∇Zφ)Y,X)

= −g(∇ZφY − α(g(X,Y )ξ − η(Y )X)

−β(g(φX, Y )ξ − η(Y )φX,X))

= −g(∇ZφY,X) = g(φY,∇ZX)

Since g(φY,X) = 0, for every X,Y ∈ D⊥, we have

Zg(φY,X) = 0

This means that

g(∇ZφY,X) + g(φY,∇ZX) = 0
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so that

g(∇ZφY,X) = −g(φY,∇ZX) = g(h(Z,X), φY ) = g(h(X,Z), φY ) = g(AφYX,Z)

Thus,

g(AφXY −AφYX,Z) = 0

or,

AφXY −AφYX = 0 which shows that AφXY = AφYX.

Hence the theorem is proved.

Theorem 5.4. Let M be a generalized CR-submanifold of a nearly trans-Sasakian manifold M . Then the
distribution D⊥ is always involutive.
Proof. From Theorems 4.2 and 4.3, we have

φP [X,Y ] = 0, for every X, Y ∈ D⊥

bP [X,Y ] = 0, for every X, Y ∈ D⊥

as b is automorphism of D.
Thus P [X,Y ] = 0, for every X,Y ∈ D⊥. Hence D⊥ is involutive.

Theorem 5.5. Let M be a generalized CR-submanifold of a nearly trans- Sasakian manifold M . Then the
distribution D is integrable if

T (X, Y ) ∈ D and h(X,φY ) = h(φX, Y )

for any X, Y ∈ D.
Proof. The torsion tensor T (X,Z) of the almost contact structure (φ, ξ, η, g) is given by

T (X,Z) = Nφ(X,Z) + 2dη(X,Z)ξ = Nφ(X,Z) + 2dη(X,Z)ξ (5.6)

or,

T (X,Z) = [φX,φZ]− φ[φX,Z]− φ[X,φZ] + φ2[X, Y ] + 2dη(X,Y )ξ (5.7)

for X,Z ∈ TM .
Suppose that the distribution D is integrable. So for X,Z ∈ D,Q[X,Z] = 0, then

T (X,Z) = 4αg(φX,Z)ξ + 4φ(∇Y φ)X, for every X,Z ∈ D

If T (X,Z) ∈ D, then from (5.6), we have

4αg(φX,Z)ξ + 4(φ∇ZφX + φh(Z, φX) + (∇ZX) + h(X,Z)) ∈ D

Or,

4αg(φX,Z)Qξ + 4(φQ∇ZφX + φh(Z, φX) + Q(∇ZX + h(X,Z) = 0 (5.8)

Replacing Z by φY for Y ∈ D in (5.8), we get

αg(φX,φY )Qξ + (φQ∇φY φX + φh(φY, φX) + Q(∇φYX + h(X,φY ) = 0 (5.9)
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Interchanging X and Y for X, Y ∈ D in (5.9) and subtracting these relations, we obtain

φQ[φX,φY ] + Q[X, φY ] + h(X, φY )− h(Y, φX) = 0, for every X,Y ∈ D

which shows that h(X,φY ) = h(Y, φX). Hence theorem is proved.
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Abstract. The object of the present paper is to study a new type of non-flat Riemannian space called

Pseudo 2-recurrent space.

1. Introduction

As a generalization of locally symmetric spaces many geometers have considered its generalizations. A-non
flat Riemannian space of dimension n is said to be recurrent space [8] if its curvature tensors Rhijk satisfy
the condition

Rhijk,l = λlR
h
ijk , (1.1)

where λl is a non zero vector and a comma denotes covariant differentiation with respect to the metric
tensor gij. Such a space is denoted by kn. In 1950, A. Lichnerowicz [3] introduced the notion of 2-recurrent
Riemannian space which is defined as follows:

A non-flat n-dimensional Riemannian space for which the curvature tensor satisfies the condition

Rhijk,lm = almR
h
ijk (1.2)

where alm �= 0 is called a 2-recurrent space. Such a space is denoted by 2kn. In a recent paper [1] De,
Das and Yawata have introduced Pseudo recurrent spaces. After the curvature tensor and Weyl conformal
curvature tensor, concircular curvature tensor is the most important (1, 3)−type curvature tensor from the
Riemannian point of view.

The concircular curvature tensor T in a Riemannian space is defined by ([9] and [10])

Thijk = Rhijk −
R

n(n− 1)
(δhkgij − δhj gik) (1.3)

where R is the scalar curvature. We observe immediately from the form of the concircular curvatur tensor
that Riemannian spaces with vanishing concircular curvature tensor are of constant curvature. Thus one
can think of the concircular curvature tensor as a measure of failure of a Riemannian space to be of constant
curvature. Also a necessary and sufficient condition that a Riemannian space be reducible to an Euclidian
space by a suitable concircular transformation is that its concircular curvature tensor vanishes.

In the present paper the notion of a non-flat Riemannian space whose Riemannian curvature tensor
satisfies the condition

Rhijk,lm = almT
h
ijk (1.4)

where alm is a non-zero tensor, has been introduced. From (1.3) and (1.4) it follows that if R = 0 the
space reduces to a 2−symmetric space. Hence in our study we assume that R �= 0 and the space is not of
constant curvature. Such a space shall be called a Pseudo 2−recurrent space and is denoted by P (2kn). The
tensor alm is called the tensor of recurrence. At first we prove that the tensor of recurrence of a P (2kn)
is symmetric and such a space is a semi-symmetric space. In section 3 we prove that in a P (2kn) with
divergence free curvature tensor one Ricci principal invariant is R

n
. Also it is shown that such a space is

an Einstein space under certain condition. Finally we consider P (2kn) with definite metric satisfying the

condition RijRij = R2

n
.

Keywords and phrases : Pseudo 2-recurrent space, tensor of recurrence, Einstein space, Ricci principal invariant.

AMS Subject Classification : 53C25.
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2. Tensor of Recurrence

From Walker’s identity for the covariant curvature tensor [8] we have

Rhijk,lm −Rhijk,ml +Rjklm,hi −Rjklm,ih +Rlmhi,jk −Rlmhi,kj = 0 (2.1)

Equation (1.4) can be written as

Rhijk,lm = almThijk (2.2)

Now using (2.2) in (2.1), we obtain

blmThijk + bhiTjklm + bjkTlmhi = 0 (2.3)

where blm = alm − aml. The above equation can be expressed as

bpTqr + bqTrp + brTpq = 0 (2.4)

where p = lm, q = hi and r = jk. Now we state

Walker’s Lemma ([8]). If aij, bi are numbers satisfying

aij = aji, aijbk + ajkbi + akibj = 0, for i, j, k = 1, 2, ..., n,

then either all the aij are zero or all the bi are zero.
Hence by the above lemma we get from (2.4) that either bp = 0 or Tqr = 0. But by definition of

P (2kn), T �= 0. Also Thijk = Tjkhi. Therefore bp = 0. That is, alm = aml. Thus we can state the following:

Theorem 2.1. In a P (2kn), the tensor of recurrence is symmetric.
Contracting h and k in (1.4) and using (1.3) we have

Rij,lm = alm(Rij −
R

n
gij) (2.5)

Transvecting (2.5) with gij we get

R,lm = 0 (2.6)

From (2.5) it follows that the space P (2kn) is an Einstein space if and only if the space is Ricci 2-symmetric.
Again from (1.4) we find

Rhijk,lm −Rhijk,ml = 0 (2.7)

since alm is symmetric.

A Riemannian space is said to be semi-symmetric(respectively Ricci semi-symmetric) ([4], [6]) if
Rhijk,lm − Rhijk,ml = 0, (respectively, Rhij,lm −Rij,ml = 0). Of course every parallel tensor is semi-symmetric
and every semi-symmetric space is Ricci-semi-symmetric.

Thus we can state the following:

Theorem 2.2. A P (2kn) is a semi-symmetric space and hence a Ricci semi-symmetric space.

3. Ricci Principal Invariant

In this section we first suppose that divergence of Rhijk = 0, i.e., Rhijk,h = 0. Then from Bianchi’s identity we
get

Rhijk,h +Rik,j −Rij,k = 0 (3.1)

Covariant differentiation of (3.1) gives

Rhijk,hm +Rik,jm +Rij,km = 0
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whence we have by virtue of (2.5)

Rhijk,hm = akm(Rij −
R

n
gij)− ajm(Rik −

R

n
gik) (3.2)

By hypothesis, Rhijk,h = 0 implies Rhijk,hm = 0. Hence transvecting (3.2) with gik we obtain

akmR
k
j = ajm

R

n
(3.3)

Equation (3.3) can be written as
Btka

t
m = 0 (3.4)

where Btk = Rtk −
R
n
gtk and atm = gtrarm. From (3.4) we get a system of linear homogeneous equations in

a1m, a
2
m, ....., a

n
m whose coefficient matrix is (Bij). Since atm is not zero for all values of t and m, the rank of

(Bij) must be less than n. Hence |Bij | = 0. Therefore R
n

is a root of the equation |Rij − ρgij | = 0. This leads
to the following:

Theorem 3.1. In a P (2kn) with divergence free curvature tensor one Ricci principal invariant is R
n
.

Next we suppose that the Ricci tensor is of Codazzi type [1], i.e., Rij,l = Ril,j. Therefore Rij,lm = Ril,jm.

Using (2.5) in the above equation we get

alm(Rij −
R

n
gij) = ajm(Ril −

R

n
gil) (3.5)

From (3.5) it follows that

almRij − ajmRil =
R

n
(almgij − ajmgil) (3.6)

Now we suppose that the rank of the matrix (aij) is n. Then there exist uniquely determined quantities aij

such that
ahjahk = δ

j
k

Multiplying (3.6) by atm we get

nRij −Rij =
R

n
(ngij − gij), i.e., Rij =

R

n
gij

Hence we can state the following:

Theorem 3.2. In a P (2kn) if the Ricci tensor is of Codazzi type and the rank of (aij) is n, then the space
is an Einstein space.

4. P (2kn) With Definite Metric

In this section we consider a P (2kn) for which

RijRij =
R2

n
(4.1)

holds. Then from (4.1)

RijRij,l =
R

n
R,l

Differentiating both sides of the above equation covariantly, we get

Rij,mRij,l +RijRij,lm = 1

n
R,lR,m + R

n
Rlm

= 1

n
R,lR,m

(4.2)
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since in a P (2kn), R,lm = 0.
But

RijRij,lm = almR
ijRij −Rij R

n
gij

= alm
R2

n
− alm

R2

n
= 0

By virtue of the above expression (4.2) reduces to

Rij,mRij,l =
1

n
R,lR,m

Put Sijk = Rij,k − λkRij , where λk =
R,k
R
. Then

SijkSijk = gmkRij,mRij,k − λmg
mkRijRij,k − λkg

mkRhlRhl,m + gmkλmλkR
ijRij

= 1

n
gmkR,mR,k − gmkλm

R
n
R,k − gmkλk

R
n
R,m + 1

n
λmλkg

mkR2

= 1

n
gmkR,mR,k − gmk

R,m
R

R
n
R,k − gmk

R,k
R

R
n
R,m + 1

n

R,m
R

R,k
R
gmkR2

= 0

(4.3)

If the space is of definite metric then (4.3) will give Sijk = 0 whence Rij,k = λkRij .

A Riemannian space is said to be Ricci Recurrent [5] if Rij �= 0 and Rij,k = λkRij , where λk is a non
zero vector. Such a space is denoted by Rn. We can therefore state the following:

Theorem 4.1. Every P (2kn) of definite metric satisfying RijRij = R2

n
, is an Rn.

It is known [2] that in an irreducible Ricci-recurrent space R = 0. Hence a P (2kn) of definite metric can not
be irreducible. Therefore its metric can be written as

ds2 =
n−1∑

α,β=1

gαβdx
αdxβ + (dxn)2

where gαβ are functions of x1, x2, x3, ....., xn−1 only. Hence

|Rij − ρgij| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R11 − ρg11 R12 − ρg12 ..... ..... R1n−1 − ρg1n−1 0

R12 − ρg12 R22 − ρg22 ..... ..... R11 − ρg11 0

..... ..... ..... ..... ..... .....

..... ..... ..... ..... ..... .....

0 0 ..... ..... 0 −ρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

whence |Rij| = 0. Hence the rank of the matrix (Rij) is less than n. Since a P (2kn) with definite metric is
an Rn, if λk be its vector of recurrence, then from (3.1) it follows that

Rhijk,h = λkRij − λjRik

Multiplying both sides of the above equation by gij and summing for i and j, we get

λrR
r
k =

1

2
Rλk

whence

(Rtk −
1

2
Rgtk)λ

t = 0
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Therefore it follows that one of the Ricci principal directions corresponding to 1

2
R is λt. Summing the above

results we can state the following:

Theorem 4.2. In a P (2kn) of definite metric, the rank of the Ricci tensor is les than n. Further, a Ricci

principal direction corresponding to the invariant 1

2
R is λt, where λt = git

R,i
R

.
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Abstract. In this paper we prove some analogues of the classical Korovkin theorem [3] via statistical

summability (C, 1).

1. Introduction

Let N be the set of all natural numbers and let E ⊆ N. Suppose that χE is the characteristic function on E

defined as

χE(x) :=

{
1, if x ∈ E

0, if x �∈ E

The density of E is defined, whenever the following limit exists, as

δ(E) := lim
n→∞

1

n

n∑

j=1

χE(j)

We say that the number sequence x = (xk) is statistically convergent to the number L if for every ε > 0 we
have δ{k ∈ N : |xk −L| ≥ ε} = 0. Here we write st− limxk = L. It is very well known that every statistical
convergent sequence is convergent, but the converse is not true. For example, suppose that the sequence
x = (xn) is defined as

x = (xn) =

{ √
n, if n is square

0, otherwise

It is clear that the sequence x = (xn) is statistically convergent to 0, but it is not convergent (see Fridy [1],
Mursaleen [5] and Salat [6]). Now, let us define the arithmetic means σn of the sequence x = (xn) as the
following

σn =
1

n+ 1

n∑

k=0

xk, n = 0, 1, 2, · · ·

We say that the number sequence (real or complex numbers) x = (xn) is Cesàro statistically convergent to
L (or statistically summable (C, 1) to L) if the sequence σ = (σn) is staistically convergent to L. Here, we
write C1(st)− limxk = L (see Moricz [4]).

Now let us define the linear operator T as follows:
(i) The domain of T is a vector space and the range lies in a vector space over the same field.
(ii) For all x, y ∈ domain(T ) and scalars α, β ∈ C, we have T (αx+ βy) = αT (x) + βT (y).

Suppose that Tn : CM [a, b]→ B[a, b]. Here, CM [a, b] is the space of all functions f continuous on every
point of the interval [a, b] and bounded on the entire real line, i.e.,

|f(x)| ≤Mf , −∞ < x <∞
Keywords and phrases : Statistical convergence, statistical (C, 1) summability.
AMS Subject Classification : 40C05, 40J05.
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where Mf is a constant depending on f . Let B[a, b] be the space of all bounded functions on [a, b].
Remember that B[a, b] is a Banach space with norm ||f ||B := supa≤x≤b |f(x)|, f ∈ B[a, b]. As usual,
we write Tn(f, x) instead of Tn(f(t), x) and we say that T is a positive operator if T (f, x) ≥ 0 for all f(x) ≥ 0.

In this paper, we prove some analogues of the classical Korovkin theorem [3] via statistical summability
(C, 1).

2. Main Results

Theorem 2.1. Suppose that Tn : CM [a, b]→ B[a, b] is a sequence of positive linear operator satisfying the
following conditions

C1(st)− lim ||Tn(1, x)− 1||B = 0 (1)

C1(st)− lim ||Tn(t, x)− x||B = 0 (2)

C1(st)− lim ||Tn(t2, x)− x2||B = 0 (3)

Then for any function f ∈ CM [a, b], we have

C1(st)− lim ||Tn(f, x)− f(x)||B = 0

Proof. We have f ∈ CM [a, b] so that f is bounded on the real line. Hence

|f(x)| ≤M, −∞ < x <∞

Therefore
|f(t)− f(x)| ≤ 2M, −∞ < t, x <∞ (4)

Also, since f ∈ CM [a, b] we do have that f is continuous on [a, b], i.e.

|f(t)− f(x)| < ε, ∀ |t− x| < δ (5)

Using (4), (5) and putting ψ(t) = (t− x)2, we get

|f(t)− f(x)| < ε+
2M

δ2
ψ, ∀ |t− x| < δ

This means

−ε− 2M

δ2
ψ < f(t)− f(x) < ε+

2M

δ2
ψ

Now we could apply Tn(1, x) to this inequality since Tn(f, x) is monotone and linear. Hence

Tn(1, x)

(
−ε− 2M

δ2
ψ

)
< Tn(1, x) (f(t)− f(x)) < Tn(1, x)

(
ε+

2M

δ2
ψ

)

Note that x is fixed and so f(x) is constant number. Therefore,

−εTn(1, x)−
2M

δ2
Tn(ψ, x) < Tn(f, x)− f(x)Tn(1, x) < εTn(1, x) +

2M

δ2
Tn(ψ, x) (6)

But,

Tn(f, x)− f(x) = Tn(f, x)− f(x)Tn(1, x) + f(x)Tn(1, x)− f(x)

= [Tn(f, x)− f(x)Tn(1, x)] + f(x)[Tn(1, x)− 1] (7)

Using (6) and (7), we have

Tn(f, x)− f(x) < εTn(1, x) +
2M

δ2
Tn(ψ, x) + f(x)(Tn(1, x)− 1) (8)
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Now, let us estimate Tn(ψ, x) and we have

Tn(ψ, x) = Tn((t− x)2, x) = Tn(t
2 − 2tx+ x2, x)

= Tn(t
2, x) + 2xTn(t, x) + x2Tn(1, x)

= [Tn(t
2, x)− x2]− 2x[Tn(t, x)− x] + x2[Tn(1, x)− 1]

Using (8), we get

Tn(f, x)− f(x) < εTn(1, x) +
2M

δ2
{[Tn(t2, x)− x2]− 2x[Tn(t, x)− x]

+ x2[Tn(1, x)− 1]}+ f(x)(Tn(1, x)− 1)

= ε[Tn(1, x)− 1] + ε+
2M

δ2
{[Tn(t2, x)− x2]− 2x[Tn(t, x)− x]

+ x2[Tn(1, x)− 1]}+ f(x)(Tn(1, x)− 1)

Since ε is arbitrary we can write

||Tn(f, x)− f(x)||B ≤
(
ε+

2Mb2

δ2
+M

)
||Tn(1, x)− 1||B

+
4Mb

δ2
||Tn(t, x)− x||B +

2M

δ2
||Tn(t2, x)− x2||B (9)

Now taking C1(st)− lim on both sides of (9) and using conditions (1), (2) and (3), we get

C1(st)− lim ||Tn(f, x)− f(x)||B = 0

which completes the proof.

Remark 2.1. (i) We get the classical Korovkin theorem by letting n→∞ in (9).
(ii) By taking st− lim in (9), we get Theorem 1 of Gadjiev-Orhan [2].

Next we study a Korovkin type theorem for a sequence of positive linear operators on Lp[a, b] via sta-
tistical summability (C, 1).

Theorem 2.2. Let (An) be the sequence of positive linear operators An : Lp[a, b] → Lp[a, b] and let the
sequence {||An||} be uniformly bounded. If

C1(st)− lim ||An(1, x)− 1||Lp = 0

C1(st)− lim ||An(t, x)− x||Lp = 0

C1(st)− lim ||An(t2, x)− x2||Lp = 0

Then for any function f ∈ Lp[a, b], we have

C1(st)− lim ||An(f, x)− f(x)||Lp = 0

Since statistical summability (C, 1) of a sequence x = (xk) is a same thing as statistical convergence
of a sequence of its arithmetic means, we can reformulate the above theorem under the same hypothesis as
follows : If

st− lim ||Bn(1, x)− 1||Lp = 0

st− lim ||Bn(t, x)− x||Lp = 0

st− lim ||Bn(t2, x)− x2||Lp = 0

Then for any function f ∈ Lp[a, b], we have

st− lim ||Bn(f, x)− f(x)||Lp = 0
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where Bn =
1

n+ 1

n∑

k=0

Ak.

Therefore the proof of this theorem follows immediately from Theorem 7 of [2] just by replacing An by
Bn.

Now we present a more general result than Theorem 6 of [2], by weakening the conditions in the hy-
pothesis.

Theorem 2.3. Let (An) be a sequence of positive linear operators on Lp[a, b] such that

st− lim
n

1

n+ 1

n∑

k=0

||An −Ak|| = 0

If

C1(st)− lim ||An(tν , x)− xν ||Lp = 0, (ν = 0, 1, 2) (10)

Then for any function f ∈ Lp[a, b], we have

st− lim ||An(f, x)− f(x)||Lp = 0 (11)

Proof. From Theorem 2.2, we have that if (10) holds then

C1(st)− lim ||An(f, x)− f(x)||Lp = 0

which is equivalent to

st− lim ||Bn(f, x)− f(x)||Lp = 0

that (Bn(f, x)) is statistically convergent to f(x) in Lp-norm. Now

An −Bn = An −
1

n+ 1

n∑

k=0

Ak

=
1

n+ 1

n∑

k=0

(An −Ak)

Hence, using the hepothesis we get

st− lim ||An(f, x)− f(x)||Lp = st− lim ||Bn(f, x)− f(x)||Lp = 0

that is (11) holds.

3. The order of Statistical Summability (C, 1) Convergence

In this section we deal with the order of statistical summability (C, 1) convergence of a sequence of positive
linear operators.

Definition 3.1. The number sequence x = (xk) is statistically summable (C, 1) to the number L with
degree 0 < β < 1 if for each ε > 0,

st− lim
n→∞

|{k ≤ n : |σn − L| ≥ ε}|
n1−β

= 0

where the bars mean the number of the enclosed set and

σn =
1

n+ 1

n∑

k=0

xk
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In this case, we write
xk − L = C1(st)− o(k−β), as k →∞

Theorem 3.1. Suppose that Tn : CM [a, b]→ B[a, b] is a sequence of positive linear operator satisfying the
following conditions

||Tn(1, x)− 1||B = C1(st)− o(n−β1) (12)

||Tn(t, x)− x||B = C1(st)− o(n−β2) (13)

||Tn(t2, x)− x2||B = C1(st)− o(n−β3) (14)

Then for any function f ∈ CM [a, b], we have

||Tn(f, x)− f(x)||B = C1(st)− o(n−β), as n→∞

where
β = min{β1, β2, β3}

Proof. We could write the inequality (9) in Theorem 3.1 as the following

||Tn(f, x)− f(x)||B
k1−β

≤
(
ε+

2Mb2

δ2
+M

) ||Tn(1, x)− 1||B
k1−β1

k1−β1

k1−β

+
4Mb

δ2
||Tn(t, x)− x||B

k1−β2

k1−β2

k1−β

+
2M

δ2
||Tn(t2, x)− x2||B

k1−β3

k1−β3

k1−β
. (15)

Hence
||Tn(f, x)− f(x)||B = C1(st)− o(n−β), as n→∞

where
β = min{β1, β2, β3}.
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Abstract. The aim of this paper is to generalize some results and properties from the class of duo rings

to the class of weakly duo rings.

1. Introduction

Recall that a ring R is called right (respectively left) duo if every right (respectively left) ideal of R is a
two-sided ideal. A ring is called duo ring if it is both a right and a left duo ring. Duo rings and their
properties have been studied and discussed by many mathematicians (see [1], [3], [4], [9], [10] and [12]).

Brungs, in [2], asked three questions on duo rings: (a) Is the localization at a prime ideal P of a duo
ring again a duo ring? (b) In a duo ring, is the P -component of zero equal to the right (left) P -component
of zero? (c) In the Noetherian duo domain, is the semi-group of ideals commutative under multiplication?
The answers of all these questions, in general, were in negative. But, in the Noetherian case, the answers
for the first two questions were in positive and for the last one was in positive if R is integrally closed in its
division ring of quotients.

Yao, in [11], introduced a new notion called weakly duo rings which are defined as follows: A ring R is
called a weakly right (respectively left) duo, WRD (respectively WLD), ring if for every a in R \ {0}, there
exists a positive integer n depending on a such that anR (respectively Ran) is a non-zero ideal of R. If R
is a WRD ring and a WLD ring, then R is called a weakly duo ring (WD).

In this paper we discuss some properties of WD rings and we answer the questions raised by Brungs
for this class of weakly duo rings. Most of the results and the their proofs in the class of weakly duo rings
are parallel to those of the class of duo rings done by Brungs [2]. Typically, all that is required is to make
little changes into the relevant results and proofs.

2. nP -component of zero and central localization

The following definition extends the definition of Brungs in [2].

Definition 2.1. Let R be a weakly duo ring, P a prime ideal in R. Then the nP -component of zero is
defined by

N = {r ∈ R|s1r
ns2 = 0, for s1, s2 ∈ S = R \ P, some positive integer n}. (1)

Note that the image S̄ of S = R \ P in R̄ = R/N is an Ore-system consisting of nonzero divisors.
Consequently, the ring of quotients

RP = R̄S̄−1 = S̄−1R̄ = {
r̄

s̄
|r̄ ∈ R̄ , s̄ ∈ S̄},

exists.

Keywords and phrases : Duo rings, Weakly duo rings, Localization of rings.

AMS Subject Classification : 16D25, 16E50, 16P60.
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Lemma 2.2. If R is Noetherian weakly duo ring, then the central localization RP = S̄−1R̄, with S =
Z(R) ∩ (R \ P ), is again a weakly duo ring.
Proof. It is known that if R is Noetherian, then RP is also Noetherian. Assume that there exist an element
s ∈ S and an element r ∈ R such that s−nrnRP � rnRP for all positive integer n. Since an element ś ∈ R
exists with snrn = rnśn for some n, we have s−1rnśn = rn. Thus, we obtain the non- stationary chain

rnRP � s−nrnRP � s−2nrnRP � . . . .

This contradicts the assumption that RP is Noetherian, which implies that RP is a weakly duo ring.

Lemma 2.3. If P is a prime ideal of a duo ring R, then the nP -component of zero, N , is contained in P .
Proof. Let P be a prime ideal and let r ∈ S = R \P . Then s1r

ns2 ∈ S for all s1, s2 ∈ S and some positive
integer n and thus S = R \ P is multiplicative closed. This completes the proof.

Corollary 2.4. Let R be a Noetherian weakly duo ring with a prime ideal P . Then for r ∈ R, not in N ,
the nP -component of zero, and s ∈ S = Z(R) ∩ (R \ P ), there exist elements ś, ŝ ∈ S such that

s rn = rnś and rns = ŝ rn,

for some n.
Proof. As R is a Noetherian ring, RP is also Noetherian which implies that

s−1rnRP = rnRP .

Hence for a ∈ R and t ∈ S, we have
s−nrn = rnat−1.

Thus for some ś ∈ R, we get

rnt = rnśna or rn(t− śna) = 0.

The fact that RP is a local ring and that ś ∈ P lead to (t − śna) is a unit and rn = 0 in RP which
implies that r ∈ N . This contradicts the assumption that r /∈ N .

3. Localization and Valuation of WRD

Definition 3.1. An ideal P of a ring R is said to be strongly prime, if xRyk ⊆ P implies that either x ∈ P
or y ∈ P .

Definition 3.2. A set L of elements of a ring R is said to be an l-system if it has the following property:
If a, b ∈ L, then there exists x ∈ R such that axbn ∈ L for every positive integer n.

Theorem 3.3. An ideal P of a ring R is strongly prime ideal of R if and only if C(P ) is an l-system.
Proof. Let P � R and a, b ∈ C(P ). Then a, b /∈ P and since P is strongly prime, aRbn � P for each n.
Hence there exists x ∈ R such that axbn /∈ P . Thus there exists x ∈ R such that axbn ∈ C(P ). Therefore,
C(P ) is an l-system.

Now we assume that C(P ) is an l-system and aRbn ⊆ P . Then axbn ∈ P for every x ∈ R. Thus
axbn /∈ C(P ) for every x ∈ R. Since C(P ) is an l-system, then a /∈ C(P ) or b /∈ C(P ). Hence a ∈ P or
b ∈ P . Therefore, P is strongly prime.

Lemma 3.4. If R is WRD ring, then for any strongly prime ideal P of R the l-system C(P ) satisfies Ore
condition.
Proof. Let s ∈ C(P ). Since C(P ) is an l-system, there exists x ∈ R such that sxsn ∈ C(P ) for all n.
Since R is WRD ring, then the right principle ideal I = snR is two sided for some n. Since sn ∈ I, then
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Rsxsn ⊆ Rsn ⊆ snR. Hence for all r ∈ R and s ∈ C(P ), there exists s
′

= sxsn and r
′

= sn−1r∗ such that
rs

′

= sr
′

which just mean that the l-system C(P ) satisfies Ore condition.

Proposition 3.5. Let R be a Noetherian WRD ring. Then every strongly prime ideal P is localization and
PRp is completely maximal ideal.

Proof. Since C(P ) satisfies Ore Condition from Lemma 3.4, we have that

Rp = {rs
−1|r ∈ R, s ∈ C(P )},

is a local with unique maximal ideal PRp. Moreover, Rp/PRp is a division ring. In fact, since R/P is
Neotherian domain, then its ring of quotients Q(R/P ) is a division ring.

On the other hand, we have Q(R/P ) ∼= Rp/PRp which implies that Rp/PRp is a division ring and PRp
is a completely maximal ideal.

Definition 3.6. A ring (R,M ) is called local if (i) the Jacobson radical M = J(R) is maximal, (ii) the
quotient ring R/J(R) is simple artinian.

Definition 3.7. A ring (R,M) is called scalar local if (i) the Jacobson radical M = J(R) is maximal, (ii)
the quotient ring R/J(R) is division ring.

Definition 3.8. A function v on the multiplicative group D∗ of a division ring D into an ordered group Γ
is called a weak valuation WV if
(i) The function v : D∗ → Γ is surjective.
(ii) v(ab) ≥ v(a) + v(b).
(iii) v(a+ b) ≥ min{v(a), v(b)}.

Lemma 3.9. Let (R,M ) be a Noetherian scalar local WRD ring then R admits a weak valuation.

Proof. By the properties of scalar local rings any ideal I in R can be written as I = M i. Also there exists
a descending chain of M ⊃ M2 ⊃ M3 ⊃ .... This chain is infinite if and only if R is not artinian . Now it
is easy to see that any element a ∈ R can be written as a = ti.u where ti ∈ M i \M i+1, i = 0, 1, 2, ... and
M0 = R, u is a unit. Define the function v : R→ Γ where Γ is an ordered group as follows v(tiu) = i. So if
a ∈M, b ∈ R \M then ab ∈M and a+ b ∈ R \Mi. Assume that a ∈M i \M i+1 i.e. v(a) = i, since ab ∈M i,
then (ab) ≥ i. Thus v(ab) ≥ v(a) + v(b) = i + 0 = i and v(a + b) = 0 = min{v(a), v(b)} = min{i, 0} = 0.
If a, b ∈ M with v(a) = i > v(b) = j, then, as ab ∈ M i+j, we have v(ab) ≥ i + j = v(a) + v(b). Also
a + b ∈ M i, hence v(a + b) ≥ i ≥ min{i, j} = j. Finally, if a, b ∈ R \ M then since M is a strongly
maximal ideal ab ∈ R \M and v(ab) = 0 = v(a) + v(b). Moreover v(a + b) ≥ 0 = min{v(a), v(b)} = 0.
Since R is a domain, {0} is a completely strongly prime ideal and also since R is a Noetherian WRD then,
by Proposition 3.5, b(0) = C(0) = R \ {0} satisfies Ore condition. Thus R is embedded in a division ring
D = {x = ab−1 : a, b ∈ R, b = 0}. Then one can write v(x) = v(a) − v(b). It is easy to conclude that
Ov = {x ∈ D∗|v(x) ≥ 0} = R and M = {x ∈ D∗|v(x) > 0}.

Theorem 3.10. Let R be a right Noetherian WRD ring and P be a strongly prime ideal, then RP = S−1R,
with S = Z(R) ∩ (R \ P ), is a weakly valuation WRD ring.

Proof. Since R is WRD, then for every a ∈ R, anR is a nonzero two sided ideal in R. Thus for any element
x = as−1 ∈ RS−1 = RP , x

nRP is also nonzero two sided ideal in RP . Thus from Lemma 3.9 the scalar ring
(RP , PRP ) admits a weak valuation.

Corollary 3.11. If R is a right Noetherian WRD ring containing a strongly prime ideals P1 ⊂ P2, then
R/P1 can be embedded in a weak valuation ring (R̃, P2R̃).
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4. One sided nP -component of zero

Definition 4.1. Let R be a ring, P a prime ideal in R. Then the left nP -component of zero is defined by

Nl = {r ∈ R|srn = 0, for some s ∈ S = R \ P, some positive integer n}. (2)

Similarly, the right nP -component of zero is defined by

Nr = {r ∈ R|rns = 0, for some s ∈ S = R \ P, some positive integer n}. (3)

We need now to answer the question: Is it true that N = Nl = Nr? The answer in general is in negative
as we can see in the following example (For more details of the construction of this example see [2], [6] and [7]).

Example 4.2. Let F = Q(x) be the field of functions in one variable x over the rational numbers Q which
can be ordered by writing the multiple of any two elements of F to be > 0 if and only if the multiple of
their non-zero leading coefficients > 0. Let G be the group defined by:

G = {(a, b) |a > 0, a, b ∈ F },

with operation defined by

(a1, b1) (a2, b2) = (a1a2, b1a2 + b2),

for (a1, b1), (a2, b2) ∈ G. Note that G is an ordered group with identity element (1, 0). From this, a
generalized power series ring R can be formed as follows:

R = Q{{G+}} =
{∑

qigi | qi ∈ Q , gi � (1, 0) , gi ∈ G
}
.

This ring is a duo ring. Now, for an element r ∈ R with r =
∑

qigi, we define

θ(r) =

{
gi = 0 if r = 0
∞ if r = 0

}
.

We use this notation to define the following prime ideal in R:

P = {r ∈ R | θ(r) > (1, q) ∀ q ∈ Q}

Note that (x, 0)(x, 0) = (x2, 0) , (x, 0)(x, 0)(x, 0) = (x3, 0), and so on. In general, (x, 0)n = (xn, 0)
which leads to (x, 0)n = (xn, 0). If we take the two sided ideal J = (xn, xn)R which is contained in the ring
R for some positive integer n, we can put K = R

J
and write P1 for the image of P in K. The elements of

K are written as r̄ = r + J . So if we take s = (1, 1) and r = (x, 0), then s rn = (xn, xn) ∈ R which leads to
s̄ rn = 0̄. Thus, r̄ is contained in the left nP1-component of zero. But, rns̄ = 0̄ ∀s ∈ S, where rn = (xn, 0),
which just mean that r̄ is not in the right nP1-component of zero in K.

Lemma 4.3. Let R be a weakly duo ring in which the zero ideal is the intersection of finitely many strongly
prime ideals, P a prime ideal of R. Then the nP -component of zero is the strongly prime decomposition of
{0}, i.e. N = Nr = B =

⋂
Li , Li ⊂ P , if

⋂n
i=1 Li = {0}.

Proof. Let B =
⋂k
i=1 Li where 1 ≤ k ≤ n. Then for an element r ∈ N , there exist elements s1, s2 ∈ S

and a positive integer n such that s1r
ns2 = 0 ∈ Li for each i = 1, · · · , k. Consequently, rn ∈ B which leads

to r ∈ B due to the definition of B. Thus, N ⊆ B. Now to show that B ⊆ N , we start with the fact that
there is an element sj satisfying sj ∈ S ∩ Lj for every Lj , where k + 1 ≤ j ≤ n. Note that s = Πsj is not
contained in P but sB ⊆ Li and Bs ⊆ Li for all Li , i = 1, · · · , n. These imply that sB = Bs = {0} which
leads to B ⊆ Nl and B ⊆ Nr as required.
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5. g-commutative rings

Definition 5.1. A ring R is said to be g-commutative if anRbmR = bmRanR, for all a, b ∈ R and some
positive integers m and n.

Any Noetherian integrally closed duo domain is g-commutative [2]. It is known that a duo domain R is
integrally closed if and only if EndR = R for every finitely generated ideal M = {0}. This definition is still
true in the case of weakly duo rings.

Definition 5.2. A weakly duo domain R is integrally closed if and only if EndR(MR) = R for every
finitely generated ideal M = {0}.

Now, we prove the following theorem:

Theorem 5.3. Let R be Noetherian integrally close weakly duo domain. Then R is g-commutative ring.
Proof. Let a = 0 be an element of R which is not a unit and P a prime ideal associated with aR. This
just means that for some element b ∈ R which is not in aR, bP ⊂ aR. P is finitely generated and so
EndR(P, P ) = R implies that a−1bP � P . But then there exist p ∈ P and c ∈ R such that bp = ac with
c /∈ P . The ring Rp exists and aRp = acRp = bpRp ⊂ bPRp ⊂ aR. Thus bPRp = aRp and PRp = pRp.
We conclude that P is a prime ideal of height 1 in R and R = ∩Rp for all prime ideals with height 1 in R.
Indeed, if s−1r ∈ ∩Rp, then r ∈ (sRp ∩ R) = sR and s−1r ∈ R for s /∈ P . Thus, for some positive integers
m and n, we have amRbnR = ambnR = ∩ambnRp = bmanR = bmRanR which completes the proof.
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Generalized CR-submanifolds of a nearly trans-Sasakian manifold

Rajendra Prasad, Amit Kumar Rai and M.M. Tripathi 55-69

On pseudo 2-recurrent spaces

B.K. De 71-75

Some Approximation Theorems Via Statistical Summability (C, 1)
Abdullah Alotaibi 77-81

Some Problems on Weakly Duo Rings

M.M. AA-Mosa Al-Shomrani and F. Aly 83-87


