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literature and used to write poetry in English, Urdu and Persian. He also 
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Abstract. This paper is based on the fact, which is shown in §3, that the non-stable blocks of the

modular Hecke algebra for the general linear group can be parameterized by the partitions of n. We also

study the central elements of such blocks and determine basis elements of the block that involved in the

center.

§0. Introduction

Let G = (G,B,N,R,U,H) be a finite group with a split BN -pair of characteristic p, for some prime p φ 0
(see [4] , §69). Let k be an algebraically closed field of the same characteristic and let Y = kG[U ]; the left

ideal of kG generated by [U ] =
∑

u∈U

u. Then Y defines a left kG-module isomorphic to the induced kG-

module IndGU (k). We write E for the endomorphism algebra EndkG(Y ) for the module Y . This algebra is
well studied for the strong connection of its representations and the representations of the group G. In fact,
the complete set of irreducible representations of E over k (which are all one-dimensional) parameterizes
the irreducible kG-modules (see [4], §72B). The blocks of E as well as the extension groups of its irreducible
representations have been obtained in [1]. A presentation of the blocks as well as a partial characterization
for the block central elements were given in [5]. The aim of this paper is to study the central elements of
the blocks of E which correspond to the characters of H = B ∩N that are non-stable under the action of
the Weyl group W = N/H of G (or what are called the non-stable blocks) in the case when G = GL(n, q)
and q is a power of p. It turns out (see §3) that such blocks can be parameterized by the partitions of n.
To study the central elements of such blocks we shall use the presentation of such blocks given in [5]. We
provide a set of central operators which give a basis for the center of the block. Some illustrating examples
are given towards the end of the paper. The case of the (stable) blocks has been studied in [6].

Notations

The following notations will be used throughout this paper

Ĥ : the set of the multiplicative characters of H

[X] :
∑

x∈X

x for any X ⊂ G

W = N/H : The Weyl group of X ⊂ G

(w) : An element of N such that (w)H = w ∈W

λ(w) : The length of w ∈W.

w0 : The unique element of W with maximal length
0 Keywords and phrases : Hecke algebra, Blocks.
0 AMS Subject Classification : 20C33, 20C20.
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For each w ∈W ; we write U−w = U ∩ Uw0wi , U+w = U ∩ Uw.
For wi ∈ R; the set of simple reflections in W , we write

Ui = U−wi , U−i = Uw0
i and Hi = H ∩ πUi, U−iφ

For χ ∈ Ĥ; we let p(χ)) = {wi ∈ R;χ |Hi
= 1}

For J ⊆ R; write WJ = 〈J〉; the parabolic subgroup of W generated by J .

§1. The non-stable blocks of E

Since G = Yn∈NUnU (see[4], 69.2), the k-algebra E has a k-basis an;n ∈ N indexed by the elements of N ,

where an ∈ E is given by : an([U ]) = [UnU ]. For each χ ∈ Ĥ define eχ =| H |−1
∑

h∈H

χ(h−1)h ∈ kH. The

Weyl group W acts on Ĥ by conjugation, hence induces a W -action on Ĥ as follows : If w ∈W and χ ∈ Ĥ
then wχ ∈ Ĥ is given by wχ(h) = χ((w)−1h(w). The set P (χ) (see the notations above) plays an important
role in the parameterization of the simple E-modules as well as simple kG-modules (see [4], §72B). It is
known (see [7]) that wχ = χ, ∀ w ∈ WP (χ). If P (χ) �= R, we denote by (χ) the W -orbit of χ and we write

e(χ) =
∑

λ∈(χ)

eλ. Then e(χ) is central idempotent of E ([5], 2.2) and in fact the blocks of E which corresponds

to the non-stable characters of H are indexed by the set of W -orbits {(χ) : χ ∈ Ĥ, P (χ) �= R}. Write

Bχ = e(χ)E. For µ ∈ Ĥ and wi ∈ R, write µi =
∑

x∈U∗i

µ(hi(x)) ∈ k where hi : U
∗

i → Hi is the bijection

defined by the structure equation (see [3], 2.2). It is known that

µi =






−1 if wi ∈ P (µ)

0 if wi �∈ P (µ)
(∗)

(see [4], Prop.72.24). The following gives a presentation of Bχ.
Theorem 1.1 ([5], 3.1 and 3.3). Suppose that χ ∈ Ĥ with P (χ) �= R. Then

(1) Bχ has a k-basis
{
eλa(w);λ ∈ (χ), w ∈W

}
. In particular

dimBχ =|W | W : Wχ where Wχ is the W -stabilizer of χ.

(2) For all λ, µ ∈ (χ) and w, v,∈ w, eλa(w)eµa(ν) = 0 unless µ = wλ.

(3) If w ∈W, wi ∈ R and λ ∈ (χ) then

eλa(w)ewλa(wi) =






eλa(wi)(w) if λ(wiw)φλ(w)

(wλ)ieλa(w) if λ(wiw)πλ(w)

and

eλa(wi)ewiλa(w) =






eλa(w)(wi) if λ(wwi)φλ(w)

(wiλ)ieλa(w) if λ(wwi)πλ(w)

The following gives a restriction on the basis elements which are involved in the central elements of the
block Bχ.
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Proposition 1.2 ([5], 3.4). Suppose that x =
∑

cλ,weλa(w) ∈ Z(Bχ) where cλ,w ∈ k, sum over all

λ ∈ (χ), w ∈W . Then cλ,w = 0 unless w ∈Wλ. �

Proposition 1.2 implies that Z(Bx) ⊆ 〈eλa(w);λ ∈ (χ), w ∈ Wλ〉, so we fix an element

x =
∑

λ∈(χ), w∈Wλ

cλ,weλa(w) ∈ Bχ where cλ,w ∈ k. First we have

Proposition 1.3. x ∈ Z(Bχ) if and only if xa(wi) = a(wi)x for all wi ∈ R.

Proof. Bχ is generated as a k-algebra by {eλ, a(wi); λ ∈ (χ), wi ∈ R}. It is clear that x commutes with
eλ;λ ∈ (χ). So to be in the center is equivalent the condition xa(wi) = a(wi)x for all wi ∈ R. �

§2. The blocks of Hecke algebras of GL(n, q)

In this section we show that the non-stable blocks of the Hecke algebra E for the group G = GL(n, q) are
parameterized by the partitions of n. As usual we take the BN -pair of G as follows :

B := the subgroup of upper triangular matrices, N := the subgroup of monomial matrices, then

H := B ∩N = the subgroup of diagonal matrices and W = Sn; the symmetric group on n letters. For each
1 ≤ i ≤ n− 1 we write wi = (i, i+ 1) and we take R = {wi; i = 1, 2, · · · , n− 1}. For each 1 ≤ i ≤ n− 1 we
shall take (wi) to be the matrix obtained from the identity matrix by multiplying the row i+ 1 by −1 and
interchanging it with the row i. Thus

(wi) =






1

·

·
1

0 −1

1 0

1

·

·

1






i
i+ 1

Then with this choice, if w = v1v2 · · · vt ∈ W where vi ∈ R; 1 ≤ i ≤ t then (w) = (v1)(v2) · · · (vt) ∈ N and
eλa(w) = eλa(vt) · · · a(v1). This choice and observation will be useful when dealing with the coefficients of
block central elements in the next section.

From the representation of abelian groups we have | Ĥ |=| H |. In fact if we write h(x, y, · · ·) for the
diagonal matrix diag (x, y, · · ·), then Ĥ = {χa1,a2,···,an ; ai ∈ F

∗
q } where

χa1,a2,···,an(h(x1, x2, · · · , xn)) = xa11 x
a2
2 · · · x

an
n

for all h(x1, x2, · · · , xn) ∈ H. The following lemma describes the W -action on Ĥ and the W -stabilizers of
the elements of Ĥ.

Lemma 2.1. (1) The W -action on Ĥ is given as follows:
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wχa1,a2,···,an = χ
w(a1),···,w(an) for all w∈W and χa1,a2,···,an

∈ Ĥ

(2) If χ = χa1,a2,···,an then Wχ = {w ∈W ; aw(i) = ai(mod(q−1), for all 1 ≤ i ≤ n}. �

For each 1 ≤ i ≤ n, we have

Ui = U−wi = U ∩ Uw0wi =











1

λ

1





i ; λ ∈ F






Therefore we have the following

Lemma 2.2. For each 1 ≤ i ≤ n, we have

(1) πUi, U−iφ =






1

SL(2, Fq)

1






i
i+ 1

(2) Hi = H ∩ πUi, U−iφ =






hi(x) =






1

1

x

x−1

1

1






i
i+ 1

; x ∈ F ∗q






Proof. (1) We have U−i =











1

λ

1






i; λ ∈ Fq






, Hence

πUi, U−iφ = πUi ∪ U−iφ ≤ πUi, U−iφ =






1

SL(2, Fq)

1






i
i+ 1
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On the other hand the group SL(2, Fq) is generated by









1 λ

0 1



 ,




1 0

µ 1



 ; λ, µ ∈ Fq






(see [2], Lemma 6.1.1) which gives the other inclusion. (2) is clear from (1)
From the above lemma 2.2 we can easily deduce the following lemma which describes the set P (χ)

Lemma 2.3. Suppose that χ = χa1,a2,···,an and wi ∈ R. Then wi ∈ P (χ) if and only if ai = ai+1.
The function hi : U

∗

i → Hi which is determined by the structure equation plays a fundamental role in
the defining relations of Bχ. The following determines this function for the general linear group.

Lemma 2.4. (The structure equation for GL(n, q))

For each wi ∈ R and x ∈ Fq, we have

(wi)
−1ui(x)(wi) = u(−x−1)hi(x)(wi)ui(−x

−1)

where

ui(x) =






1

x

1






i
←− �

A Parameterization Of The Blocks Of E
Now suppose that χ = χa1,a2,···,an ∈ Ĥ. Define a relation ∼ on the set n = {1, 2, · · · , n} as follows :

If i, j ∈ n then i ∼ j ⇔ ai ≡ aj(mod q − 1). It is clear that ∼ is an equivalence relation on n. Let
n1, n2, · · · , nt be the equivalence ∼-classes of n. Then clearly we have Wχ = S(n1) × S(n2) × · · · × S(nt)
where S(ni) = {w ∈W ; w(j) = j ∀ j ∈ n−ni}. From theW -action on Ĥ we can pick an element λ ∈ (χ) for
which n1, n2, · · · , nt are intervals in n = {1, 2, · · · , n}; i.e. ni = {i, i+1, · · · , m−1,m} for some 1 ≤ iπm ≤ n,
in which case Wλ =WP (λ). Therefore each W -orbit (χ) of Ĥ determines a partition p(n, χ) of n and we say
that the block Bχ is of type p(n, χ). Summarizing we have

Proposition 2.5. Take G = GL(n, q)

(1) For each h ∈ Ĥ there is λ ∈ (χ) such that Wλ =Wp(λ).

(2) The non-stable blocks of the modular Hecke algebra E can be parameterized by the partitions of n.
In fact E has p(n) types of such blocks where p(n) is the number of partitions of n.

§3. The central elements of Bλ

In this section we consider the central elements of the block Bλ for the group G = GL(n, q). As before we

take x =
∑

λ∈(χ),w∈Wλ

cλ,weλa(w) and investigate the behavior of the central coefficients ; that are the coeffi-

cients cλ,w ∈ k which makes x belongs to the center of Bλ. Basically we shall be using proposition 1.3.

Proposition 3.1. Suppose that v ∈ Wλ; λ ∈ (χ). If there exists wi ∈ R − P (λ) such that wiv �=
vwi, λ(wiv)φλ(v) and λ(vwi)φλ(v), then cλ,v = 0.

Proof. It is clear from the multiplication rule in 1.1(3) that cλ,v = coefficient of eλawiv in xawi , while the
coefficeint of eλawiv in awix is 0. The result follows by comparing coefficients since eλav : λ ∈ (χ), v ∈ Wλ

are linearly independent. �
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For wi ∈ R, writeW
i = {w ∈W ;w = wix for some x ∈W}, iW = {w ∈W ;w = wix for some x ∈W}

and iW i = iW ∩W i.

Proposition 3.2. cλ,v = 0 for all λ ∈ (χ), v ∈W ∗

P (λ).

Proof. We are assuming that P (λ) �= R, hence WP (λ) �= W . Therefore there exist wi ∈ P (λ) such that
v = wwi ∈ W i − iW . For if v ∈ W i ∩ iW ∀ i = 1, 2, · · · , n, then v = w0 ∈ WP (λ) and so P (λ) = R which
contradicts our assumption. From 1.1 and (∗) , since xa(wi) = a(wi)x, v ∈ W i and wi ∈ P (λ), we have
−cλ,v = coefficient of eλav in awix (note that λi = −1). On the other hand eλav is not involved in xawi
since v �∈ iW , therefore cλ,v = 0. �

As a result of the last proposition we have the following restriction for the index set of the central
coefficients to double cosets of certain reflection subgroups of W .

Corollary 3.3. If cλ,v; v ∈W
∗

λ is non-zero central coefficient then

v ∈WP (λ)xWP (λ) for some x �∈WP (λ).

�

Proposition 3.4. If λ ∈ (x), v ∈Wλ, wi ∈ P (λ) are such that vwi �= wiv, λ(vwi)φλ(v) and λ(wiv)φλ(v).
Then cλ,v = cλ,vwi = cλ,wiv.

Proof. Since wi ∈ P (λ), the coefficient of eλawiv in xawi is cλ,v − cλ,wiv and 0 in awix, since vwi �= wiv.
Hence cλ,v = cλ,wiv. Similarly for the other equality. �

Proposition 3.5. If λ, µ ∈ (χ), v ∈ Wλ ∩Wµ and wi ∈ R − (P (λ) ∪ P (µ)) are such that λ = wiµ, vwi =
wiv, λ(vwi)φλ(v) and λ(wiv)φλ(v). Then cλ,v = cµ,v.

Proof. Writing

x = · · ·+ cλ,veλav + · · ·+ cwiλ,vewiλavwi + · · ·+ cµ,veµav + · · ·+ cwiµ,vwiewiµavwi

then since wi �∈ (P (λ) ∪ P (µ)), we have awiewiλavwi = 0 = awiewiµavwi and since λ = wiµ, vwi = wiv, we
have awieλav = eµavwi = eµavawi . Therefore

cλ,v = coefficient of awieλav in awix

= coefficient of eµavawi in xawi = Cµ,v �

Proposition 3.6. If λ, µ ∈ (χ), v ∈ Wλ, w ∈ Wµ, wi ∈ R − (P (λ) ∪ P (µ)) are such that λ = wiµ, wwi =
wiv, w ∈

iW −W i, v ∈W i − iW . Then cλ,v = cµ,w.

Proof. Write x = · · · + cλ,veλav + · · · + cµweµaw + · · · Since λ = wiµ, wwi = wiv, w ∈ iW −W i and
v ∈W i − iW , we have
cλ,v = coefficient of eµavwi in awix = coefficient of eµawiw in xawi = Cµ,w. �

For χ ∈ Ĥ, define Ω(χ,W ) = {(λ, v), λ ∈ (χ), v ∈ Wλ} and write Ω∗(χ,W ) = {(λ, v) ∈ Ω(x,W ) :
eλav is involved in the centre }

The following determines the non-zero central coefficients

Proposition 3.7. Suppose that x =
∑

λ∈(χ),w∈Wλ

cλ,weλa(w) ∈ Z(Bχ). Then cλ,v = 0 if and only if there exist

a sequence (µ, w), (α, u), · · · , (β, h) ∈ Ω(x,W ) such that cλ,v = cµ,w = cα,u = · · · = cβ,h and the conditions
of 3.1 are satisfied for the pair (β, h).
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Proof. (⇐) is clear. To prove the other direction assume that cλ,v = 0. Since x ∈ Z(Bχ) we have
xa(wi) = a(wi)x for all wi ∈ R. Therefore by comparing coefficients in such equations for a sequence
of generators in R we get a sequence (µ, w), (α, µ), · · · , (β, h) ∈ Ω(χ,W ) such that the conditions in the
proposition are satisfied. �

For T ⊆ Ω∗(χ,W ), we write AT =
∑

(λ,v)∈T

eλav. Then the following determines when AT is central

operator of Bχ. Note that the number of such T gives dimZ(Bχ)

Theorem 3.8. If T ⊆ Ω∗(χ,W ) then AT ∈ Z(Bχ) if and only if for all (λ, v) ∈ T and all wi ∈ R; one of
the following holds

(1) v ∈ iW ∩W i.

(2) v �∈ iW ∪W i and eλawiv = ewiµaxwi for some (µ, x) ∈ T .

(3) v ∈W i − iW, wi ∈ P (λ) and (λ, vwi) ∈ A.

(4) v ∈ iW −W i, wi ∈ P (λ) and (λ,wiv) ∈ A.

Proof. Write AT = · · · + eλav + · · ·. We have AT ∈ Z(Bx) if and only if ATawi = awiAT for all wi ∈ R.
But from the presentation of Bχ we have

eλavawi =






eλawiv if λ(wiv)φλ(v)

−eλav if λ(wiv)πλ(v) and wi ∈ P (λ)

0 if λ(wiv)πλ(v) and wi �∈ P (λ)

(3.9)

and

awieλav =






ewiλavwi if λ(vwi)φλ(v)

−eλav if λ(vwi)πλ(v) and wi ∈ P (λ)

0 if λ(vwi)πλ(v) and wi �∈ P (λ)

(3.10)

Now if v ∈ iW ∩ W i, then λ(vwi)πλ(v) and λ(wiv)πλ(v) and so the coefficient of eλav in
awiAT = the coefficient of eλav in ATawi . If v �∈ iW ∪ W i then λ(wiv)φλ(v) and λ(vwi)φλ(v) and so
by 3.9 and 3.10 we must have eλawiv = ewiµaxwi for some (µ, x) ∈ T . If v ∈ W i − iW, wi ∈ P (λ) then
λ(vwi)πλ(v) and so, again by 3.9 and 3.10, we must have (λ, vwi) ∈ A. The last case is similar. �

The following determines those T in 3.8 whose cardinal is one

Proposition 3.11. eλav ∈ Z(Bχ) if and only if

(1) ∀wi �∈ P (λ); v ∈
iW ∩W i

(2) ∀wi ∈ P (λ); eighther [v ∈
iW ∪W i]

or [λ(vwi), λ(wiv)φλ(v) ∧ vwi = wiv] �

As a corollary we have the following

Corollary 3.9. If w0 ∈Wλ for some λ ∈ (χ) then eλaw0 ∈ Z(Bχ). �
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§4. Examples

In this section we present some examples in the cases n = 4, 5 and 6. To simplify notation we shall write
aijk for the Hecke algebra basis element awiwjwk···

(1) n = 4 and χ = χa,a,b,b; a �= b(mod q − 1). Hence Bχ is of type 22,
Wχ = πw1, w3φ
(χ) = {χ, θ = χb,b,a,a, α = χb,a,b,a, β = χb,a,b,a, µ = χb,a,a,b, γ = χa,b,b,a} and

Z(Bχ) =
k · e(χ) ⊕ k · eµa12321 ⊕ k · eγa12321 ⊕ k · eµaw0 ⊕ k · eγaw0 where w0 = w1w2w3w2w1w2

(2) n = 5 and χ = χa,a,a,b,b; a �= b(mod q − 1). Hence Bχ is of type (3.2),
Wχ = πw1, w2, w4φ,
(χ) = {χ, λ = χa,a,b,b,a, µ = χa,b,b,a,a, α = χb,b,a,a,a, τ = χa,a,b,a,b, γ = χa,b,a,b,a, δ = χa,b,a,a,b,
β = χb,a,b,a,a, η = χb,a,a,b,a, ξ = χb,a,a,a,b}, and

Z(Bχ) =
k · e(χ)⊕ k · (eµa1234321+ eγa1234321+ eλa1234321+ eδa12321+ eτa12321)⊕ k · eγa1234321232⊕k · (eγa121+ eδa121)

(3) n = 5 and χ = χa,a,b,b,c; a �= b, a �= c(mod q − 1). Hence Bχ is of type 221,
Wχ = πw1, w3φ. In this case Z(Bx) =
k ·e(χ)⊕k ·(eµa1234321+eγa1234321+eλa1234321)⊕k ·(eαa1234321+eβa1234321)⊕k ·e(σa1234321k ·eθaw0⊕k ·eρaw0
where
µ = χa,c,b,b,a, γ = χa,c,a,b,b, λ = χa,b,b,c,a, α = χb,a,a,c,b, β = χb,a,c,a,b, σ = χ, θ = χa,c,a,b,b, ρ = χb,a,c,a,b.

(4) n = 5 and χ = χb,a,a,a,a; a �= b(mod q − 1). Hence Bχ is of type (4, 1) and
Wχ = πw2, w3, w4φ. In this case Z(Bχ) = k · e(χ)⊕
k ·(eαa121+eαa1213+eαa3121+eαa43121+eαa31214+eαa12134+eαa41213+eαa1214+ eγa232+eγa2321+eγa1232+
eγa2324+eγa4232+eγa12324+eγa41232+eγa23214+eγa42321+ eλa343+eλa34312+eλa23431+eλa12343+eλa34321+
eαa12321+eαa123214+eαa412321+eαa121343+eαa343121+ eγa12321+eγa123214+eγa412321+eγa23432+eγa123432+
eγa234321+eλa121343) ⊕k · (eαa1234321+eγa1234321+eλa1234321) ⊕k · (eγa23214232+ eγa232142321+eγa123214232)
⊕ k · eγaw0 . Note that dimk Z(Bχ) = 5 while dimkBχ = 2880.
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Abstract. Let R be aring. A sytnnretric biadditive rnapping D(.,.) : fi-x R 
-+.R 

is callecl asyrlrletric
biderir'ation if for an;, fixed y € B, the rnapping r,- D(t,11) is a rleriration. The nrail result of the paper
which is in sprit of the classical theoreru of Posuer [12, Theoreur 2] aucl an extension of Vukmau's result
[14, Theorern 2], states that ifa uon-cornuurtative priure ritrg r? ofcharacteristic differerrt from 2, 3 a16 5
adrnits a symmetric (o, o)-bideriration D with trace / such that [{/(c), a(c)], a(c)] e Z(R), tor all z e 1,
a lroDzero ideal of R. theu D : 0. Further sorne other results concerning biderilrations are also obtaiued
which extend the results proved by Posner [12, Theorern 1] anrl Vuknrau[13, Theorem 3 a1d Theorem b].

1, Introduction

Througlrout the papel r? will denote an associative ring and Z(R.), tlrc centre of R. A riug r? is sairl to
be prirne if aR.b = 0 iurplies that o = 0orh:0. lVe shall write [r,y] - T.1) y:r ancl usetheiclentities
[xg'z):lx,z)y+r[g,z)atrd,[:t,112):lx,y]z+ylt ,21. Anadclitivernappirig d.:R----+ Biscalledaderivation
if d(xy) : d(x)y + d(g), holds for all 2,9 € B. A derivation 11 is iruel if there exists an elernent a € B,
suchthat d(r): [o,;r], holclsforall:r € B. AmappingD(.,.) , RxR ---+ Rissaidtobesymrnetric
ifD@'y)=D(y,.r),hoklsforallpairsx,y€R.Ar,appiug!:R--+rtclefineclbv/(r):D(t,r),
where D(., .) : .R x .R --+ .R is a symmetric napping, is called the trace of D. It is obvious that in case
D(.'.) 'R x R --+ R is a symmetric mapping which is also biadciitive (i.e. additive in both arguments),
thetrace/ofDsatisfiestherelation/(r+g) :/(z) +f(y)+zD(r,a),forallr,g€R.Letaandrbe
autourorphisuson.R. Asyruuretricbiadditiveurappirrg D(...) : Rx F ---+ Rissaidtobeasvmuretric
(4, r)Jriderivatiolr if D(ca, z) : Dk., z)o (y) + r(x) DkJ, z) is satisfie<l, for all a. g. z € R. Obviously, in rhis
case also D(r,yz): D(t,y)o(z) +r(y)D(:t,z), for all x,?t,z e R.

In lg80' Gy' Maksa [7] introduced the concept of symuretric biclerivatiou (see also [8], where au example
can be fouud)' It \'('as showu in [8] ard [16] that symruetric biderivations aure related t9geleral sohtion of
some fttnctional equations. Some results on syn:metric biclerirration in prime ancl semiprime rings can be
found in [13] and [14]' The notion of additive conrmuting nrappings is closely connectecl with the notion of
biderivatiorrs' Every coururutiug additive urapping I , R ---+ E gives rise to a biderivatiol on R. Narlely
liuealizing [/(r),r] :0, for all z e E, u'e get [/(c),37] : [",/(y)], for all r,9 € R ancl hence we lote that
tlre ua1>Ping (r,y) ---+ lfG),Al is a bi<leriration (moreover, all clerivatious appearing are inner).

There has beetl considerable interest fot' cornmutiug, cetrtralizing aud reiatecl rnappings iu prirne
(semiprime) rings (see t1][2][4][9][10][11][15], where further references can be founcl). The most functamental
result in the theorv of centralizing rnappings is a theorem of Posner Il2,Theorem 2], which states that if a
derinationdof atrotr-cortrtnutativeriug Rsatifies [rJ(r),:rr] e Z(R), forall o € R, thend:0. A lultber
of authors have extetrded Posner's theoreur in ser6ral clilectious. Vukman [14] proved that if R is a nop-
cornr,utati'eprinreri,gofcharacte.isticdiffere,tfror,2andJa,difD(.,.) ,BxR----+.Risasyurrnetr.ic
biderivatiou with trace / sttch that the urapping r *-+ I/(r).cl is cerrtr.alizing for all c € 1, a lonzero ideal
of R, theu D : 0. The maiu r-esult of the pleseut paper e4teuds the abor.e lnentioned results for synlnetr.ic
(o, a)-biclerivation.

Kelmords and phrues : Prirne rings, Syrnrnetric bicleriratious, (o, o)-bi<leriratiols, torsion free ri1gs.
AMS Subject Classification : 16V\,25, 16N60.
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2. We begin with the following lemmas

Lemma 2.1 ([16, Lemrna 2.1 and 2.2)). Let d : R ---+ rB be a deriration of a prime ring .R and f be a
nonzeroidealof B. Supposethat either (i) od(;u) = 0, fprallo €.I or (ii) d(o)o:0, for allr € /holds.
Theneithero:0ord:0.

Lemma 2,2 (117, Lemura 3l). Let .B be a 2-torsion free prirne ring and I be a nouzero icleal of rR. Let o,b
befixedelementsof R. If a:tb+b.xa = 0,forallr€f,theneithero : 0orD = 0'

Lemma 2.3. Let R be a 2-torsion free prirne riug and I be a nonzero ideal of E. Suppose that o is an

autonrorphismof Eand D(.,.),-Bx.R---+.Eisasymrnetric(o, o)-biderivationwithtrace/. If /(r) :a'
for all z € 1, then .f : 0 and hence D : 0.

Proof. We have
- /(r) : 0, for all e € 1. (2.1)

Linearizing (2.1) and using 2-torsion freeness of R, u'e get

D(",d: 0, for all t'g e L (2'2)

Now replaciug y by nr in (2.2), we obtain

o(r)D(x,t) =Q, for all r € I, r € R. (2'3)

Agaiu replaciug r by r1r nr (2.3) and using (2.3), we have o(z)o(r1)D@,r):0, for all z € f and r,11 €.R
tlratis, o(x)RD@,r):(0). SinceEisprime,wefindthateithero(r) :AorD(c,r) :O' If o(r) :0then
c:0. Hence, in both the cases D(x,r):0, for allr €.I and r € E. Nowreplacing xby xr andusing
D(x,r):0, for allxe I andr € R, wefind that a(c)/(r) :0, for all z € f and r € R. Substituting zr1

forrtogero(z)o(r1\f(") =0,forallz€fandrr,reR.Henceo(z)R/(r) :(O).AgainprimenessofR
givestlrateithero(z) :0or,f(r) =0. If o(z):g,thenz:0,whichisacontradiction. Hence/("):0,
for all r € B i.e., D(r,r):0. Now lirrearization on r yields tbat 2D(r,s) :0, for all r,s € R. Since R is
2-torsion free, we have D(r,s) :0 i.e., D:0.

3. Main Results

Theorem 3.1. Let ,? be a non-commutative prime ring of characteristic different from 2 and 3 and f
be a nonzero ideal of r? . Let o be an automorphism of R and D(.,.) , E x l? 

-r 
B be a symmetric

(a,a)-biderivation with trace /. If [/(r),o(o)] e Z(R), for all z € 1, then D = 0.

Proof. We have

[/(r),o(r)] e Z(R), for all c € 1. .(3.1)

Linearizing (3.1), we get

It@),"@)l+ll@),o(t)]+2lD(t,y),o(r)l+2lD(a,s),"(y)le Z(R), for all r e r. (3.2)

Substituting -a for r, we have

ll@),"(a)1+ [/(y),a(c)] +2lD(x,y),o(r))+2lD(x,y),"(y)]e Z(R), tor all z € r. (3.3)

Courpariug (3.2) and (3.3), we obtain

[/(r),"(y)] +2lD(t,y),o(x)l e Z(R), for all r,y €.I. (3.4)
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Replacing y by x2 in (3.4) and using (3.1), we have 6[/(z),a(r)]o(c) e Z(R). Since B is of characteristic

different from 2 arrd 3, it follows that

lf (t),o(r)lo(x) e Z(R), for all :r,y € 1.

This implies that
lJ@),o(t)llr,o(r)l = 0, for all :r € I,r e R.

Let us write r/(r) instead of r, to arrive at

[/(r),a(e)]r[/(r),o(o)] :0, for all :r e I,r € R.

That is [/(o),o(o)]E[/(a;),o(r)] : (0), implies that

[./(e),o(r)] :0, for all r e 1.r e R. (3.7)

Arguing in the sirnilar rnallnel' as we have done above to get (3.4) ftoru (3.1), (3.7) at once yields that

[/(r), "(y)] + 2lD(x.s).o(r)l = 0, for all z, y e /.

Replacing A by Ar in (3.8), we find that

lf (x), o (v)lo (x) + o (s) [7 1z 1' o (r)l + 2lD (x. v), o (z) ]o (r)

+2lo(y),o(a)lf (r) +zo(a)ll(z),o(c)l = 0, for all z,s € 1.

Now application of (3.7) and (3.8), gives that

(3.8)

l"@),"(r))f (") : 0, for all r e 1. (3.e)

Replacing yby Az in (3.9) ancl usiug (3.9), we obtain [o(y),o(x))o(z)J@):0, for all r,y,z €.I. That is,

ly,'r)IRo-l f(.r) :(0),forallr,y€l.Theprirnenessof.Rgivesthatforeachfixedr€.I,either[y,r]/=(0)
or /(lr) :0. This irlplies that for each a € I,[a,rl: O or /(o) :0. Since .R is a non-commutative prime
ring and I is a uonzero ideal of .R, it follows that f is also non-comrnutative. Thus for each fixed c € 1,

lA.*l* 0, for all y € 1. Hetice f (r):9, for all c € 1, i.e., D:0.

Theorem 3.2. Let .R be a nou-comruutative priure riug of characteristic differeut frour 2, 3 and 5. Let 1 be

a nonzero ideal of R and o be an autoruolphisn of ,8. Suppose there exists a syuunetric (o, a)-biderivation
D(.,.), B x .E --r R such that o(r),---+ [/(r),a(r)] is centralizing for all r € /, where / deuotes the trace
of D. Then D = 0.

Proof. Liuearizing the relation

[[/(z).a(c)j.a(r)l e Z(R), for all z e r,

llf (y), o (r)), o (r)) + zllD (r, y,;, o(r)1, o(o)l + [[/(r), o(e)]. o(z)l

+2llD (r, y), o(y)], 
"(")l + lll (d, 

" 
(y)l,o(c)l + [[/(c), o(z)], o(s)l

+[[/(e), o(r)], o(s)l + 2l[D(x,y),o(t)], 
"(c)l 

+ [[/(c), o(s)], a(s)l

+2llD(x,y),o(y)l.o(c)l e Z(R), for all z,y € I.

(3.10)

we obtain

Replacing r by -2, we get

lll(y),o(x)l,o(r)l - 2llD(r,y), o(z)1, o(r)l - [[/(r), o(y)], a(r)l

+2[D@,y),o(y)],"(,)l - [[/(c),"(y)],o(r)l - [[/(c),o(c)],a(s)l

(3 5)

(3.6)



12 Asma Ali and Deepak Kumar

- [["f (y), 
"(r)], 

o(y)l + 2l[D(r,y),o(r,)], 
"(u)l + [[/(z). o(e)], a(e)l

-2llD(a,y),o(a)1,o(a)le Z(R), for all z,s €.I.

Courpariug the above relations arrd using the fact that ^B is of characteristic different from 2. we obtain

2llD(x.y),o(x)1,"(,)l+ [[/(o),o(s)],o(o)]+ lll@),"(v)1,"(z)l+ [[/(z),o(,)],"(y)l

+[[/(s),a(z)], o(a\+2llD(r,y),o(y)],"(y)l € Z(R\, for all c,y e.I. (s.11)

Agairr replacing r by 2:r in (3.11) and conrparing the relation so obtained with (3.11), we get

2llD(x,y),o(r)1,"(r)l+ [[/(c),a(y)],o(z)l+ [[/(o),a(c)],o(s)l e Z(R), for att r,y e I. (3.12)

Let us write c2 insteacl of g in (3.12) aud use (3.10), to arrive at 8[[/(r),o(o)],a(c)]a(o) e Z(r?). Since
characteristic of R is diffelent frour 2. it folloq/s that [[/(c),o(r\l,o(r)]o(x) e Z(R). Application of (3.10)
yields that

[[/(r),o(z)],4(r)llo(r),o(y)l :0, for all x,y e I. (3.13)

Now we intend to prove that

[[/(c),4(a)],4(")l : O, for all o € r. (3.14)

Tlrere is nothing to prove in case t e Z(R). lf x / Z(R), then the relation (3.13) yields that
o-r([[/(r),a(z)],a(r)l)Ef[r,g] = (0), for all o,9 € f. Ill view of the fact that fi is uon-cornmutative
and f is a noilzero ideal of R, relation (3.14) holds. Now using the siurilar techuiques as we have used to
get (3.12) frorn (3.10), we obtaiu

2llD(r,y),o(r)l,o(r)j+ [[/(z),a(y)].a(o)l+ [[/(z),o(r)],o(y)l = o, for all r,e e 1 (3.Ib)

Substituting zy for g in (3.15), we get

[ [/(u ), a (z)], o (,)lo (a) + o ( z)l[f (r), o(r)],, (s)l + lo (z), o (r)llf (*), o (il]

+'Q)ttt@)'o(u,lIj:J[[l;':i)i,Yfi;rl?-iff 
];':',';i,o'""'

+2llo(z), o(t)l,o(x)lD(x,y) + 2D@, z)[[o(y), o(r)], a(r)l + alD(t, z),o(x)l[a(s), a(r)]

+2llD(x,z),o(r)l,o(r)lo(y) :0. (3.16)

Now using (3.15) and writing c instead of z, we obtain

5ll@),o@)llo(y),"(*)l + 2f (x)llo(s),o(x)l,o(x)l: 0, for al r,y e I. (J.lz)

Agairr leplace g b1'e aud z by y in (3.16), to get

5[a(y),a(r)][/(z),o(c)] +2llo(y),o(x)l,o(r)l/(c) = g, for all z,e € 1. (3.18)

Let us write zy iustead of9 iu (3.18), to arrive at

5[/(a;), a(e)]o (z)lo(s),o(r)) + 2t@)o(z)llo(y), a(r)1, a(r)l

+a!@)lo(z\.o(c)l[o(s),a(u)] = 0, for att r,y.z € I. (3.19)

Irr particular, writiug z: ro-L(f(r)) in (3.19), we obtain

5{/(c), a(c)lo (t) f (t)lo (y), o(r)} + 2/(r)o(z) [[o(y), o(c)], o(r)l

raf@)o(x)ff (r),o(o)j[a(y),o(r)] :0. for e'l r,y e I. (3.20)
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Multiplying (3.17) on the left by /(r)a(c), we have

5 t @) o (x)lf (x), o (n)llo (y), o (x)l + 2 I @) o (r) f (a)llo (y), o(z)1, o (c) I : s,

for all c,y € f. (3.21)

Combine (3.20) and (3.21), to get

(5[/(c),a(c)]o(")/(r) - f (x)o(t)lf (r),c(x)l)lo(y),o(x)l = 0, for all x,y e I. (3.22)

Replaciug y by rA iD (3.22), we get

(5[/(r),a(c)]a(") f (") - l@)o(x)ll(c),a(r)l)a(r)[a(y), o(r)] : [,

for all o, y € I ,r E ft. (3.23)

That is d-1(5[/("),o(x)lo(x)f(t) - l(r)o(x)lJ(r),o(x)])Rly,tl : (0), for all r,y e r. Since ft is a

non-commutative prime ring and f is a nonzero ideal of R, it follows that 1 is also non-commutative.
Hence, for each y € I , la, rl I 0, yields that

5[/(z),o(r)]o(r)l@) - /(c)a(r)[/(r),o(r)]= 0, for all e € 1. (3.24)

Replacing yz for y in (3.18) and arguing as above, we have

[a(s), o(r)](5/(r)o(r)lf (r),o(c)l - [/(e), o(o)]o(z)/(r)) : 0, for all c € 1.

F\rther repetitiou ofthe arguments which led to get (3.24) from (3.25), yields that

5f(x)o(x)[f(t),"(r)] - lf(r),o(r)lo(t)/(r) :0, for all r € 1. (3.25)

Conrbining (3.24) and (3.25), we obtain

/(c)o(c){/(z),o(r)l : 0, for all z € r. .(3.26)

Using the usual approach, first linearizing and substituting -c for c, (3.26) yields that

f (x) o (r)l | (r), o (y) I + f (x) o (x)l f (y), o (y)) + 2 f @) o (r) lD (r, y), o (,)l

+ I (y) o (r)[f (x), o (U)] + f (a) o (,)l I (v),o (s)l + f (s) o (r)lD (c, u), o (x)l

+2D(x,y)o(t)[/(c), o(z)] + 2D(x,y)o(x)[/(y), 
"(r)] + 4D(x,y)o(x,)[D(r,y),o(y)]

. +f (x)o(s)lf (x),o(x)l + l@)o(u)[/(y),"(")] +2f (r)o(y)lD(",y),"fu)l

+ I (y) o (u)ll @), a(r)l + I fu) " @)ll @),o (o)l + z f (s) o (y)fD (r, y), o (y)l +

zD(r,y)o(y)l,f (r),r(y)l+2D(r,y)o(y)[/(y),"(v)] + 4D.(r,s)o(y)[D(r,y),a(r)] = 0.

Replacing * by 2x and comparing the relatiou, we find that

12 I @) o (x)ll (a), o (y)l + 12 f (y)o (r)l/ (,), 
"(y)l + 15/ (y)o (o) 

[ I (y), o (a)l+

2af (s)o(r)lD(r,s),o(r)l + 24D(x,y)o(r)[/(y), o(a)] + 48D(z.y)o(r)lD@,y),o(y))+

tz I @) o (y)ll (a), o (x)l + 2a | @) o (y)fD (x, y), o (y)l + L2 f (y\ o (a)l/ (c ), a ( r)l +

tsf (y)o(s)lf (v),o(,)l + 30/(y)o(y)[D(t,y),o(y)l + 24D(r,y)o(y)lf (r),o(y)l+

30D(a,y)o(y)ll@),"(y)l + 48D@,y)o(y)[D(r, y), a(c)] = g, for all c,9 € .i.
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Further putting 2r instead of r in the above relatiou, we obtain

e0/(c)o(c) [/( a), o (v)l + e0/(y)o(s) 
[ f @), " 

(,)) + 180/(y)o(y) lD (x, y), o (y))

+180D(r,y)o(y)[/(y), "(c)] = 0, fo1 all c, e € r.

Since the characteristic of B is differeut from 2, 3 aud 5, it follows that

f (r)o(r)ll@),o(y)l + lfu)"(y)ll(v),o(r)l + 2f (y)o(y)lD@,a),o(u)l

+2D(r,y)o{y)lf(y\,"(y)) = 0, for all r,y € 1. (3.27)

Substitutirrg xy for t in (3.27) and using it, we obtaiu

3f (a)o(a)o(r)lf (a),o(a)1+2Jk))o(y)lo(r),"(c)l/(y) : 0, for att r,s e I. (3.28)

Replacing r by yr in (3.28), we get

zl@)o(.u)o(a)o(x)[f (y),o(y)] + zl@)o(y)o(y)lo(r),o(s)l/(s) : 0, for all n,a e I. (3.2e)

Multiplying (3.28) on the left by o(y), we get

3o(y)l(y)o(a)o(t)lf (y),o(s))+20(y)l@)o(s)fo(r),o(y)l/(y):0, for all r,y € I. (3.30)

Subtracting (3.30) from (3.31), we obtain

3lf (s),o(s)lo(y)o(r)ff (y),o(y)l+2[f (y),o(y))o(y)[o(t),oly))l(y) = 0,for all;c.y € 1. (3.31)

Replaciug a by yz in (3.18), we get

5[o(e), a(r)]a(z ) [d(z), a(r)] + 2llo (y), o (r)1, rr (z)lo (z)c(r)

+alo@),o(r)l[o(z). o(z)]d(r) = 0.

Writing y : o-t(f (x))a, we find that

llf (r),o(r)lo(x)o(z)lf (r),o(r)l+alf @),o(r)lo(r)lo(z),o(r)l/(r) :0,for att x,e e L

Let us write y instead of c ancl c instead of z in the above relatiou, to arrive at

sll(y).o(y)lo(y)o@)lf (y),o(y)l + alf (y),o(y)lo(y)lo(r).o(a)ll@) : 0, for atr x,y e I. (3.32)

Relatiou (3.31) and (3.32), gire

lf fu),"(a)1"(a)o@)lf (v),o(v)l : 0, for att r,s € I ' (3.33)

Replacing r by ry aud using prirueuess of .8, we find that either a(y)[/(y), 
"(g)] 

: 0 or [/(9), o(y)]"(y) : O,

for all y € f. Hence in view of (3.14), we have

"(s)Il0),"(y)l = 0, for all e e 1. (3.34)

Agaiu by the usual approach as used to get (3,12) from (3.10). we find that

o(r)lf (y),o(y))+o(y)ll@),o(r)l+2o(y)lD(n,y),o(y)l:0, for all r,ye I. (3.35)

Replacing r by gx iu the above relation, we have

o (s) o (r)ff (s), o (s)l + 
" fu) o (a)lf @), o(z )l + 2o (s) f (s)lo (n), o (y)l

+2o(v)o(a)lD(r,y),o(y)l:0, fol all z,y € /. (3.36)
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Iu view of (3.35), the above relation irnplies that

o(y)f (y)lo(r),o(s)l :0, for all x,,e € I. (3.37)

Now relation (3.37) yields that. yo-t(lb:))1n[c,y] : (0), for alt;r,9 € r. Since B is pr.ime, it follows
that either yo-t171lc11t : (0) or [r,Al :0. Since f + @) is a non-commutative ideal of 8, we have
o(U)f (U)I: (0), for ail y e f. This irnplies that

Linearizing (3.38), we rrave 

o(u)l(y): 0' for all v € r' (3'38)

o(x)l@) + o(v)l@) +2o(x)D(r,s) + o(y)D(t,a) : 0, for a\ y e L (3.39)

Replaciug z by -z iu (3.39), we get

-o(r)f (s) + "(y)f 
(r) +2o(r1D(r,y) - o(y)D(r.y) :0, for all y e I. (3.40)

Cornpariug (3.39) and(3.aO), we obtain

o(r)f (a) +2o(y)D@.9):0. for atl r,y € I. (3.41)

Multiplying (3.41) on the left by [.f(y),o(9)], we have

lf (11),o(y)lo(x)/(y) = 0, for all r,s e I. (3.42.)

Replaciug t by ry and usiug the abore relation, we have

tl(v)'o(v)lo(r)[/(v),"(v)] :0, for aII v € I,r e R.

Tlrat is o-r[l@),o(il)Ro-rll@),o1y)] : (0), for all y e f. Thus the prinreDess of B yields that
lf(y),"@)1: 0 and application of Theorem 3.1 conrpletes the proof.

Vukrnan [13, Theoreur 3] nrored that if .B is a prime ring of characteristic different frorn 2 anci
Dr(.'.) , r? x.R ---+ F and D2(.,.) : B x.R -+ .R are symmetric biderirations with traces /1 anci /2
respectively such that D1ff2@),x):0, holds for al1 r € 8, then either D1 = 0 or Dz = 0. \['e extend the
above result for syrnuretlic (o. o)-Liderirations as follows :

Theorem 3.3. Let :? be a 2-torciorr free prirne ring aud f be a nonzero ideal of .8. Let o and r be
autornorphisms of .8. Suppose there exist syrnrnetlic (o,o)-biclerivation D1(.,.) : .R x r? ----+ .R and
symrnetric(r,r)-biderivationD2(.,.) :,?xft---+EsuchthatD{f2@),r(r))=0,forallxeI,wheref1,f2
arethe tracesof D1 and D2 respectively. Moreorer, if f1o =ofi, lt:rh, fzo:ofz, f2r:rf2,then
either Dl : 0 or Dz : 0.

Proof. We have
D1(f2@),r(t)) = 0, for all z € 1. (3.43)

Linearizing (3.43), we get

D rjz(r), r (u)) + D tUz(y), r (r)) + 2 D y@2(r, y), r(o) ) + 2 D {D2@, y), r(y) ) = 0.

This yields that

D1(f2@),r(s)) +2D{D2(t,a),r(")) +2D{D2@,s),r(sr)) :0, for all r,y e L (A.44)

Substituting in the above equation -o for c, we get

Dtffz@),r(a)) +2Dt(D2@,y),r(r)) -2D1(D2@,y),r(y)) = 0, for all x,y e I. (8.45)

15
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Conrpariug (3.44) and (3.45) aud usirrg the fact that charR I 2, we have

Dy(f2@),r(y)) +2D1(D2@,c),r(z)) :0, for all z,v € 1. (2'46)

Replace y by rA iD (3.46), to get

{ D { f 2\x), r @)) + 2 D Lff 2(r), r ( z) ) }o (z (s) ) + 2 h Q @)) o ( D z@, a))

+o(r(c)){D1( fz(*),r@)) * 2D1(D2@,s), '(r))} + 20(12@))D1(r(y), r(c)) : Q.

Now il view of (3.43) and (3.46), the above expressiou yields that

f {r(t))o(D2(r, e)) + o(f2@))D1Q(y),r(t)) : 0, for art :t,s € L

We write ge instead of y in (3.47), to get

{llr(x))o(Dz(,,c))+ o(f2@))D{r(y),r(r))}o(r(t)) + fJr(r))o(r(s))o(f2(r))

Again usiug (3.46), we n^u" 
*o""')o(r(s))f1(r@)) :0' for all t'v e L

h?@))o(r(s))"(fz@)) + o(f2@)o(r(u))h,(r(")) = 0, for att x,v e I.

Thus,

r-t1o-11r17r1r))))yr-t(f2,(r)) + r-t(fz@))yr-|(o-1(r(/,(r)))) :0, for att r,s € I.

(3.47)

(3.48)

Application of LerDrna 2.2 gives that for each o € 1, either r-1(o-1(r(/1(")))) :0 or r-1(/2(o)) :'0. If
r-1(o-t(r(fi(")))) :0, then "fr(") 

: C. On the other haud, if ,-1(/2(r)) :0, then fz@) = 0. Hence, for

each z € /, either /r(r) :0 or /2(r) :0. Now assunre that /1 aud /2 are both differeut front zero on I i.e.

tlrere exist r1,x2€ l such that l{"t) * 0 and /2(r2) 10. In particular, r: cr in (3.48), yields that

r-1 1o- 
I 
1211 1"r))) )yr-'(/z(rr)) + r-L (t2@ ))yr-1 1a- 

I 
1117, 1rr)))) : 0,

for all z1,y € 1. Again by Lernma 2.2, we find that /z(rr) : O. Sinrilarly, we have /r(zz) : 0 i.e.,

fz@t): h@z) = 0. Since h@z):0, we get lz(rz)Dlr(a),r(:rz))= 0 by usiug (3.47). Since lz(rz) *0,
Lemma2.lyieldsthatDl(r(y),r("2)) :0,forallge f (recallthatapappingyr--9 D1(r(g),r@2))isa
derivation). Inparticular,wehave D/r(x),r(r2)) :0. Similarlywecanobtainthat D2ft@1),r(r2)):0.
Let trs write y for a;1 *zz. Then h@):./i(r, + q): f1@1)+ h@z)+2D(r1,q):.fl(rl) 10. Siurilarly
we carr obtain fzfu) * 0. But /1(g) ard f2(y) cal not be both different frotn zero accordiug to (3.48) and

Lernnra 2.2. Herce we have either fi :0 or /z :0.

Motivated by another result of Posner'[12, Theorem 1] which states that if .R is a prirne riug of charac-

teristic different from 2 and d1, d2 are derivations of,B, such that d1d2 is a derivation, then at least one of
d1, rJ2 is zero, Vukntan [13, Theoren 5] obtaiued the result for symmetric biderivations. Further we extend
the above result for (o,o)-biderivations as follows :

Theorem 3,4. Let.R be a prirne ring of characteristic different from 2 and 3 and .I be a uonzero ideal of .8.

Let o and r be automorphisms of ft ancl D1(.,.) :.R x.E ---+ R, D,j(.,..) :.8 x fi ---+,R be symmetric (a,o)-
biderivation and symmetric (r, r)-biderivation respectively. Suppose there exists a symmetric biadditive
nrappingB(.,.),,?xR---+r?suchthat ItUz(r)):9(e) holds,forallc€l,where/1 and/2arethetraces
of D1 arrd D2 respectively and g is the trace of B such that /14 : oft, ff : rfr, fzo : ofz, fzr = rfz.
Tlten eitlrer Dr : 0 ot D2:0.

Proof. The linearizatiou of the relation

frffz@)): s(z), for all r € .I, (3.4e)
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gives,/1(/2(r))+/r(/r(y))+2D{lz@),lz(vD+ah(Dz@,y))+aPr(/z(c), D2@,s))+4DtUz(v),D2(r'v)):
g(r) + s(y) +28(a,s), for all 2,9 € /'
Now using (3.49) and the fact that charecteristic of R is different from 2, we have

Dlfz@), lz@)) + 2 h(D2@,s)) + zDl fz@), Dz@, a))

+2D1ff2@), Dz@,y)) = B@,s)' for all t,v € I '

Replacing r by -t in (3.50)' we find that

DJfz@), lzfuD - 2 h@z@, y)) - 2D lfz@), Dz@, y))

+2D{fz(y),Dz@,a)) : -B@,y), for all z, v € 1.

Compariug (3.50) and (3.51), we have

(3.50)

(3.51)

(3.52)2D{fz@),Dz@,d) +2Dll2@),Dz@,y)): a(r',v), for att x,v € I.

Let us write in (3.52), 2a instead of r, to arrive at

8D{f2@),Dz(x,il) +2D1ff2(v),Dz@,v)): B(t,v), for all r,9 € f' (3'53)

Agairr comparing (3.52) anct (3.53), we have 6D1$2@), Dz@,y)): 0, for allx,y e /. Since the characteristic

of fi. is different frorn 2 and 3, it follows that

Dllz@),Dz@'s)):0, for a.rl x,Y € I.

Applicationof(3.5a)and(3.52),yieldsthatB(r,y)=0,i.e.,.B:0.Hence(3'49)reducesto

l{lz@D:0, for all x,Y € I'

Now replacing A by yu in (3.52), we obtain

o (Dzb, d) D t(/2(c), z(c)) + D 1$2@), D2@, v))o (r (r) ) + d(?(s)) /1 (/2(') )

+D/f2(x),r(s))o(lz@)): 0, for atr x,v € L

Using (3.54) and (3.55), we get

o(D2@,y))D1(/2(c), r(z)) + D1(f2(t),r(il)o(lz@D: 0, for atr x,v € I ' (3'56)

Again substituting zg for y in (3.56), we have

o ( f 2@\ o {r (y) D r U z@), r (n) ) + D r ( /: (;r )' r (t)) o (r (v)) o ( f 2@))

+o(r(a)){(o(Dz@,y))Dt1z(c),2(c)) + D{lz@),r(v))"$z@))} = 0, for atL t,s € I'

Now (3.56) implies that

o{lz@\o(r(a))D1(/2(r),r(c)) + Dr(.fz(z),r(o))a(r(v))o(lz@)) = 0, for att t,v € L

i.e., l2@)r(y)o-t(D1ff2(x),r(r))) + o-L(ol(lz1:I),r(x)))r(v))!2(,) = 0 and we have r-1(/2(o))vr-l

t"-'(p,tA("1,"(")))) + r-r(o-r(D1(/z(z),r(r))))yr-r({2(rD : 0, for atl x,s € /' Applving Lemma

z.z, *"-rru* "itt". 
r-,11r1o)) = 0 or 7-1(a-1(Dr(/z(r),r(z)))) :0. This implies that for each s € /,

either /z(c) = 0 or.Dr("fz(r),r(c)) = 0. If fz@) = 0, then D{12@),r(r)):0. Hence in both the cases

D1$2@),r(r)) : 0, for all c € .I. Thus by Theorem 3,3' we get the required result'

(3.54)

(3.55)
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Abstract. In this paper, we study some results on exact sequences in the category of BCI-algebra with

regular morphisms.

1. Introduction

In 1966, K.Iseki [1] introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra. The
category of BCK-algebra with regular morphisms has been studied by Zaidi and Khan[3]. In this paper, we
obtain some results on exact sequences in BCI(r).

2. Preliminaries

Definition 2.1.[1] Let X be a set with binary operation ‘�’ and a constant 0. Then, X is called BCI-algebra
if the following axioms are satisfied for all x, y, z ∈ X :

(i) (x ∗ y) ∗ (x ∗ z) ≤ z ∗ y,

(ii) x ∗ (x ∗ y) ≤ y,

(iii) x ≤ x,

(iv) x ≤ 0 =⇒ x = 0,

(v) x ≤ y and y ≤ x =⇒ x = y,

(vi) x ≤ y ⇐⇒ x � y = 0.

Definition 2.2.[5] LetX and Y be BCI-algebras. Then, a mapping f : X → Y is called BCI-homomorphism
if

f(x � y) = f(x) � f(y) ∀x, y ∈ X.

We shall denote the category of BCI-algebras by BCI .

Definition 2.3.[3] A morphism f : X → Y in category BCI is called regular morphism if Im(f) is an ideal.

Now we define the category of BCI-algebras with regular morphisms as follows:

Definition 2.4.[5] A sub-category of the category BCI can be constructed by taking the class of all BCI-
algebras as the class of objects of the category and the class of all regular morphisms as the class of morphisms
of the category. We call this category as the category of BCI-algebras with regular morphisms and it is
denoted by BCI(r).

1 Keywords and phrases : BCI-algebras, regular morphisms,BCI-homomorphism and regular morphism.
2 AMS Subject Classification : 18A20,18D05,06F35.
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3. Main Results

Theorem 3.1. The sequence

A
f
−→ B

g
−→ C −→ 0

in BCI(r) is exact if and only if

(a) gof = 0

(b) If h : B → Y is a morphism in BCI(r), with hof = 0, then there exists a unique homomorphism
µ : C → Y such that µog = h i.e., the diagram,

A
f
−→ B

g
−→ C −→ 0

↘ o ↓ h ↙ µ
Y

commutes.

Proof. Assume that the sequence

A
f
−→ B

g
−→ C −→ 0

is exact in BCI(r), then Im(f)=ker(g) =⇒ gof = 0. If h : B → Y is a morphism in BCI(r) with hof = 0,
then Im(f) ⊆ ker(h)=⇒ ker(g) ⊆ ker(h). The sequence

A
f
−→ B

g
−→ C −→ 0

is exact =⇒ g is epic. Hence, there exists a unique morphism µ : C → Y such that µog = h.
Conversely, if (a) and (b) hold, then to show that the sequence

A
f
−→ B

g
−→ C −→ 0

is exact. By (a) gof = o =⇒ Im(f) ⊆ ker(g). Since f is a morphism in the category BCI(r), so Im(f ) is an
ideal of B =⇒ B/Im(f ) is a BCI-algebra. Therefore, we have a natural morphism η : B → B/Im(f ) with
ηof = 0. By (b), there exists a morphism µ : C → B/Im(f) in BCI(r) such that the diagram,

A
f
−→ B

g
−→ C −→ 0

↓ η ↙ µ
B/Im(f)

commutes i.e., µog = η.
Also, ker(g) ⊆ ker(µog)=ker(η)=Im(f) =⇒ ker(g) ⊆ Im(f). Thus we have Im(f)=ker(g).

Now to show that g is an epimorphism. Let η1, η2 : C → Y be morphisms in BCI(r) such that η1og = η2og :
B → Y .

Now, we put h = η1og = η2og : B → Y =⇒ hof = (η1og)of = η1o(gof ) = 0 (since gof = 0 by (a)). By (b),
it follows that h must be factored through g uniquely. But we have h = η1og = η2og : B → Y =⇒ η1 = η2,
therefore, g is epic.
Which completes the proof.

Theorem 3.2. The sequence

0 −→ A
f
−→ B

g
−→ C

in BCI(r) is exact if and only if

(a) gof = 0
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(b) If h : X → B is a BCI-homomorphism with goh = 0, then there exists a unique BCI-homomorphism
η : X → A such that the diagram,

0 −→ A
f
−→ B

g
−→ C

↖ η ↑ h ↗ o
X

commutes.

Proof. Assume that the sequence

0 −→ A
f
−→ B

g
−→ C

is exact in BCI(r), then Im(f)=ker(g) =⇒ gof = 0.
Now the morphism h : X → B with goh = 0 =⇒ Im(h) ⊆ ker(g)=Im(f) =⇒ Im(h) ⊆ Im(f). Since f is
monic so there exists a unique morphism η : X → A such that the diagram,

0 −→ A
f
−→ B

g
−→ C

↖ η ↑ h ↗ o
X

commutes.

Conversely, if (a) and (b) hold, then to show that the sequence

0 −→ A
f
−→ B

g
−→ C

is exact. By (a), gof = 0 =⇒ Im(f) ⊆ ker(g). Suppose ker(g)=X, then the sequence X
i
−→ B

g
−→ C is

exact, where i is the inclusion map. Thus goi = 0. Hence (b) implies that there exists a unique morphism
η : X → A such that foη = i. So we have, ker(g)=Im(i)=Im(foη) ⊆ Im(f ). Hence Im(f)=ker(g) =⇒ the

sequence 0 −→ A
f
−→ B

g
−→ C is exact at B.

Lastly, to show that f is monic. Let there be two morphisms g1, g2 : X → A such that fog1 = fog2. On
putting h = fog1 we have goh = (gof )og1 = 0, by (b) we have g1 = g2 , therefore, f is a monomorphism.

Theorem 3.3. Let

X
α
−→ Y

β
−→ Z

↓ h ↓ p

0 −→ A
f
−→ B

g
−→ C

be a commutative diagram in the category BCI(r) such that the upper row is semi exact and the lower row
is exact. Then, there exists a unique morphism η : X → A in BCI(r) such that the diagram,

X
α
−→ Y

β
−→ Z

↓ η ↓ h ↓ p

0 −→ A
f
−→ B

g
−→ C

is commutative.

Proof. Let the diagram,

X
α
−→ Y

β
−→ Z

↓ h ↓ p

0 −→ A
f
−→ B

g
−→ C
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be commutative. Then, (goh)oα = (poβ)0α = po(β0α) = po0 = 0 (as the upper row is semi exact
i.e.,βoα=0).
=⇒ (goh)oα = 0 =⇒ go(hoα) = 0 =⇒ Im(hoα) is contained in ker(g)=Im(f). Since the sequence

0 −→ A
f
−→ B

g
−→ C is exact =⇒ f is a monomorphism, there exists a unique homomorphism η : X → A

such that the diagram,

X
α
−→ Y

β
−→ Z

↓ η ↓ h ↓ p

0 −→ A
f
−→ B

g
−→ C

is commutative.

Theorem 3.4. Let

A
f
−→ B

g
−→ C −→ 0

↓ q ↓ h

X
α
−→ Y

β
−→ Z

be a commutative diagram in the category BCI(r) such that the upper row is exact and the lower row is
semi exact. Then, there exists a unique BCI-homomorphism θ : C → Z such that the diagram,

A
f
−→ B

g
−→ C −→ 0

↓ q ↓ h ↓ θ

X
α
−→ Y

β
−→ Z

is commutative.

Proof. Let the diagram,

A
f
−→ B

g
−→ C −→ 0

↓ q ↓ h

X
α
−→ Y

β
−→ Z

be commutative in the category BCI(r). Then, βo(hof ) = βo(αoq) = (βoα)oq = 0oq = 0 (as the lower row
is semi exact i.e.βoα=0).

=⇒ βo(hof) = 0 =⇒ (βoh)of = 0 =⇒ Im(f) ⊆ ker(βoh). Since the sequence A
f
−→ B

g
−→ C −→ 0 is exact

=⇒ ker(g) ⊆ ker(βoh) and g is an epimorphism, thus there exists a unique morphism θ : C → Z such that
the diagram

A
f
−→ B

g
−→ C −→ 0

↓ q ↓ h ↓ θ

X
α
−→ Y

β
−→ Z

is commutative.
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Abstract. This article is devoted to the generalization of the I(an [5] right adjoint functor. \\re have.

constructed right adjoint systems, characterized them and applied to projective structures [7].

1. Introduction

The whole article divided into the five sections. Section 1 deals with characterization ofright adjoint systems,
Section 2 concern with the study ofregularity ofright adjoint system and right adjoint fuuqtor. In Sectiol 3,
we have introduced the product of right adjoint systems and obtained that it is also a right adjoint systems.
In section 4, we induced the projective structure by right adjoint systenm and obtained the existeuce of an
exact projective structure. Lastly, in Section 5, we have constructed an example of a regular right adjoint
systems. The development of this article mainly depends on the material given in Blyth[l], Eilenberg and
Maclane[2], kan[5], Zaidi[6] etc.

2. Right adjoint systems

In this section, we have defiued the right adjoint system of a functor and have obtained its characterization
witlr the help of Hom functor [Theorems 2.1,2.2\. Theorern 2.3 deals with the equivalent conditions of right
adjoint functor obtained through right adjoint system.
Deffnition 2.1. Let S : C -+ Ct be a functor. A function T : obCt -+ obC together with a family of
morphisrns

n: {ne,: S?(Ar) + A'}t,ec,

will be called a right adjoint system of S if and only if for each morphism l : S(A) -+ A' there exists a
morphisrn g : A -+ 7(A') such that the diagram

s(A)- llcl sr(A')
/ \ lne,)A,

is conunutative i.e., 41,^9(9) : /. We shall denote it as Es(?,4)
Theorem 2.1. For every right adjoint system Rs(T,ri of a functor S : C -+ C' there exists a natural
transformation between the functors

Homs(-,7(Bt)), H oms, (S -, B') : C* -+ Ens

for every object B' e Ct.
Proof. Suppose Rs(T,q) is a right adjoint system of the ftrnctor s: C -+ c'. Let.A e c and B, ectbe
arbitrary objects. Define a function

aAB, : Homc(A,T(B')) -+ Homq,(S(A),8')
Keywords and phrases : Functor, natural transformation, right adjoint functor, projctive structure, regular projective
structue.
AMS Subject Classification : 18A20, 18D05, 06F35.
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by taking dAB,{g) : qB,S(g) for all q e Hom(A,T(Bt)).
By definition of right adjoint system it is clear that each function oAB, is surjective. Consider the farnily of
functions aB, : {a4g,}aec. Now we will shovr that aB, is required natural transfornratiou. Let / : A -+ B
be an arbitrary rnorphism in C. Then the followiug diagram

Hom6(B,T(8t1; 
qaat, 

Homs,(S(B), B')
tl

Homl:Q.'r(B')\ I !Hmc,(S(l).a')
Homs(A,T(Bt )) 

-+ 
Hmn.6, (S (A), Bt )

is cornmutative.
For any nrorphism g € Horng(B,T(B')), we have

Hom61,(S(f),B')ass,(s) -- Homs,(S(l),B')(rta,S(d) : (rra,S(s))s(/) : qs,(s(g)s(/)) : \B,S(sf) :

" 
ea, b f ) : d AB, (H on'Lc U, T (B' )) b))'

This gives that above diagram is commutative. Hence,

as, : Homc(-,T(B')) -+ Homs,(S-,8')

is natural transformation.
Remark 2.L. It is obvious that each nB, = aT,(Bt\8,0r@)).
Theorem 2.2. Let S : C -+ C' be a functor. For any function T : obC' -+ obC and natural transformations

as, : Homs(-,7(B')) -+ Homs,(S-,Bt)

for all 8' € C', with surjective aB,(A) for all A € C, there exists a right adjoint system of ,S.

Proof. Suppose T : obC' -+ obC is a function and for each object B' e Ct

aB, : Homs(-,7(B')) -+ Hornc,(S-,Bt)

is a natural transformation such that

aB,(A): dABt : Hom6(A,T(B')) * Hams,(S(A),8')

is surjective for all A € C. For each object Bt e Ct, we set

\B' : ar@t)B'Ur@')): ST(BI) -+ Bt.

Consider the family of norphisms

q: {rlB, : ST(B') 1 Bt];e,6s,.

Now,weshowthatTandq givesarightadjointsystemof S. Let leHorns,(S(A),8') beanarbitrary
morplrism. Since a4s, is surjective, there exists a morphism g e Homc(A,T(B')) such that dAB,b) : f .

By the comnrutativity of the following diagranr

Horns (T (Bt), f @')) ::@):-r Hon6, (ST (B'), B' )

Hmc@,r@\I 
lr*",1s1n1,u,1

Homs(A,T(Bt)) ;; Homs,(S(A),8')

26



A generalization concept ol right adjointness in functors

we deduce that

H oms, (s (g), Bt ) (a7 19) s, (I r(8,) ) ) : H omc, (s (g), B' ) (rt s) : q B, s (s)

aaB, (H uns(g,T(Bt ))I,r@)) : aAB, (g) : f
i.e.,

\a,S(s): f.
This completes the proof of theorem.

Remark 2.2. The Theorern 2.2 is a converse of the Theorern 2.1.
Theorem 2.3. LetT:C'-+ Cand S:C -+C' be fuuctors. lf Rs(obT,2) be aright adjoilt systernof 

^gand for each object B' € C', oa, be the natural transfonnation descriled in Theorem 2.1, then the following
statemeltts are equivalent:
(i) I is a natural transformation from S? to .Is,.
(ii) o : {as,lg,6g, is a natural transformation between functors.

Hom6(-,7-),Homs,(S-,-) , C, x C, --+ Ens.

Proof. (z) -+ (rt) Suppose 11 : ST -+ Ig,, is a natural transformation. Let / : At -> B, be an arbitrary
rnorphism in c'. Since, 4 is a natural transfonnatiou, we get a comrnutative diagrarn

s"(.4/)

,ro,l

A,

For an arbitrary object A e C, consider the diagranr

Homs(A,T(A,)) "AA', Homs,(S(A), At)
rlHm@,rU))! 

!u^1s1t1,yy
Homs(A, T(Bt)) -------+ Homs, (S (A), B, )

For any rnorphism g e Horns(A,T(A,)), we have
[Horn(s(A), f)aee,](d : IIom(s(A), f)ne,s(s) : roe,s(d) : lote,)s(s) : (ne,sr1y1ls(s) : na,s(T(f)ti.e.,la a s, ll 677l|4, f UDlb) : a n a, (T ( f ) s) : rt a, S (T ( f ) dj-''+ IH om(S (A), I)o ea,lb) : laa6, H om(A, T(ID)@).
Sirrce,.g e Homc(A,"(,4')) is arbitrary, this shows above considered diagram is cornmutative. Hence a is
a rratrrral transformatiorr.
(ii) :+ (i) Conversely, suppose that ct is a natural transformation. Let f : At -+ B/ be an arbitrary
rnorphisrn in C'. Frorn the cormnutativity of the <iiagram

27

t'('! 
sr1a,;

1,,,,
------+ B'I

Harns(T(At),T(At))

HmQ@),r(il)l

Homs(T(A'),7(Bt))

qr'(A')A' 
I Homs,(sr(At), A,)

I

lHm4s.r@,),t)

;--t---+ Hom s, (ST (A, ), Bt )a.4a,1st
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we deduce that

lH orn(S T ( A' ), l) or @) e,l(I r 6, ) : H om(ST ( At ), f ) (a7 6' p' (I r 6' ))
: Horn(ST(A'),i)(rt'zJ : trt't
lr,7 1 s, 1 s, H ong (A' ), T ( I )lU r < e, ) : ar @, ) B, (T ( I D : q a' ST { I )

i.e., fqg:llB,SfU).
4 6hg diagram

S.M.A. Zaidi

AT(A.) 
sr(fl, g713r;

,o,l lnu,JT
A' tt 

B'

is commutative.
Since / is arbitrary in C', hence q: ST -+ Ic'is a natural transfornration'

Remark 2.3. When these conditions are satisfied we say that 4 or o defines 7 as a right adjoint functor of S.

3. Regular right adjoint systems

In this section, we have introduced the regularity in right adjoint system leading to regular right adjoint

functor. Theorem 3.1 obtains the existence of right adjoiut functor. In Theorem 3.2, we have shown that

the regular right adjoiut fuuctor is uuique upto equivalence.

Deflnition 3.1. Let S : C -+ C' be a functor. A right adjoint system Rs(T,ri will be called regular if and

only if for each morphisrn / : S(.a) -+. A' there exists a unique morphism g : .A -+ T(At) such that

n'es(s) : f'
Remark 3.1,.Rs(7,4) is regural, if for each object B' € C' the natural transforuratiou a6, deflned in

Theorem 2.1 is composed of biunique and surjective functions'

DefinitionS.2.LetT:Ct-+Cbearightadjointofs:C-+dandq:ST-+16,beanatural
trarrsformation, we will call ? is a regular right adjoiut of .9 and defiued by q 1f fu(obT, q) is a regula'r right
adjoint system of ,S.

Theorem 3.1. Let S : C -+ Ct be a functor. For any riglrt adjoint systern of S, there exists a unique right
adjoint of S.

Proof, Suppose Rs(T,ri is a regular riglrt adjoint systern of S' For auy norphism t : A' -+ B' in Ct,

corxider the following morphism

fry,: S(T(A|))-+ B'.

By definition of regular adjoint system, there exists a unique morphism say 
"(/) 

: T(A') ) T(B') in C such

that the diagrarn

ST(,4,) 
s"(/)r 

ST(a')

,orl I',r,
A' -f B'

is cornmutative i.e., lr1a,: ?B,S("(r)).
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Let us now show that this effecti!,ely defines a fuactor. For elery object ,,1, g ?, since

Ia,qa' : r7a,S(176,)

- T(I,u): Irr,n.
lf f : At --+ Bt and, g : Bt --s Ct are arbitrary composable morphism in C,, theo

7ro' = t1s,s@(d)

and

ar, = tls,S(T(d)

- .,tc,\s\T@ru))) = ?c,(s(r(s))s(?'(r))) = (?c,s(r(e)))s(r(/)) = @c,\s€(il)
= s1tc,)s(T(l)) = s1nt) = bt)nt,.
Again by definition of regular, we get

rbt):rb)r(f\.
Thi-e gives tbat T tCt-+C is a functo! and ? : ST -,+ 16, is a nutural trausformatiou. Hence ?, is a right
adjoiut of S defining by 4.
Theorem 3,2. Any two regular right adjoints ofa functor arc equi.\raletrt.
Proof.LetS:C-+C,beafunctorendT,Tt:C,__sCbe.egula.rightadloiotsof5.Suppose4:ST_+.Is,
and 4' : S?a -+ Ic, are natural tramformation defining f ta fL regular right.aioirt ofS. po, ui,object i{' € C', there exisk unique morphisnrs

gs : r(A') -+ T(A')

r74 : /(l) -+ T(At)

tre, = n'eS(6e), dt, =,tt,S(1t,a,).
Thi6 gi1,€s

,n, = fu'o,5(6e,) = (4A, s(tt,^,))S(dA,) = ,r,t,6(1,t,)S(6t\) : ne,Sbte,6e,)
4a'=ne'slr/ta,)=(tt'A's(0A,))s(tA'\=ttA'$(oAlsllt'^))=rle,s(6e,rbe,)
Now by the property of regu.lar adjoint, wC get

ttflfe, = Ire{ a;r.d OA,tl)A, = Ir,@,).

Thus, {a, and C,q, are isomorphisrns a,nd invers€ to olre aDothet. Now we show that
natural t!&$formetion from ? to ?'. I*t | : At --+ Btbe Bn atbitrery morphism ia Cr.

s(,{,) lllq s"(8,),"1 
1*,

------+ B,

and

such that

d = {6tlt<c is a
Since tbe diagams

srt@,)

r^,1

s7" (J)
s",(a)

lr,,

and
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are cornmutative, we have

\'a,S(6s,T(l)) : n'a,(S(04,)Sr(/)) : (r1tr.,S(Qs'))S"(/) : qB'ST(f) :
(I q' e,) S (6 a,) : rtt r, (STt (f ) S (d a')) : n's, S (T' 

1 7 1 6 o'1'

Furthel by regularty, we get

ds,rj) : T'(l)de'.

S.M.A. Zaidi

fne, : fh'o,316o'11 :

This gives that @ : {d,q,}l,.c,is a natural transformationn fronr T to Tt. Sirnilarly, we call show that

,lr: {rlr,olo,.c, is a natural transformation frorn T'to ?. Hence T andTtare equivalent.

4. Product of right adjoint systems

In the fojlowing we have defined the product of right adjoint systems and showed that the product is also

a riglrt adjoint systenr. Further, we point out that product of regular right adjoint systerns also preserves

regularity.
lJ s , C -+ C,and .gt : Ct -+ C't be two functors. If Rs(7,4) and fl!(?',4') are right adjoint systems of

S and ,9' respectively, and if for each object A" € C" we take

q'), : qto,,S'(q7,14,,1 ; StSTT,lAtt) -+ Att.

Theorem 4.1. The pdr- (TTt,4") is a right adjoint system of the cotnposite functor S'S : C -+ C' .

proof. Let / : S,S(A) --+ Attbe an arbitrary morphism with .4 € C and A" e C". Since Et(?',4') is a

right adjoint system of S', there exists a morphism g : S(A) -+ T' (A") such that

I : 
'l'e" 

S' (g)'

F\,rrtlrer, siuce .Rg(?, 4) is a right adjoint systenr of S, there exists a morphism h : A -+ TT' (A") such that

g :111',(A,,)S(h).

Thus, we have

7:q'o,,St(W,1a"yS(h)) -qto,,(S'q7,1t,;)S',S(h)) :(q'o,Str7r,1n"))S'S(h) :q'),,5'S(h)'
Hence, R5,s(?Tt,qtt) is a right adjoint systenr of SS/. This right adjoint system will be called the product

of the right adjoint system RsQ,ri and -R5,S(?r,4').
Theorem 4.2, If oa, and a'8,, are the natural trausformations associated with Rs(T,4) and.Rg,(?t,4')

repectively, then a'u,a7,16,; is a natural transformation associated with .B5'S(??' ,r1") fot every object

B't € Ct'.
Immediately follows from the construction of 4" and Theorem 3'1.

Now assume that the functors T '. Ct -+ C and T' : Ctt -+ Ct are right adjoint of S : C -+ C' and

S, ; C' -+ C" defined by natural transformatiol r7 : ST -+ -16, and q' : S'T' --) 19" lsspgstively and let

a: Hom6(-,T(-)) -+ Homs,(S(-),-) and at : Homs'(-'7'(-)) -+ Homct"(S'(-),-) be a natural

transformation corresponding to 4 and 4/ respectively. Therefore, we get TT' is a right adjoint system of

tlre functor S'S defined by the natural transformation, q'(S' *q *Tt) : St STT| -+ 16" which is associated to

tlre natural tratsforrnation o/(a * T') : Homs(-,TT'(-)) -+ Homs"(St S(-)' -)'
Theorem 4.3. Tlie product of two regular riglrt adjoint systerns(functors) is again regular.

tivially follows frorn the definitions of regular and products of right adjoint systems(functors).

5. Applications to projective structures

We mailly exhibit here the relationship between right adjoiut system and projective structure. We have

found out that, for every projective structure there exists a riglrt adjoint systern ofthe inclusion functor from

a full subcategory whose class of objects is the bases of projectives in the projectives structure [Thoerem
4.3]. We show that regular, right adjoint systems induced by a given projective structure are equivalent
.[Theorern 5.1]. Further, we obtained a criteria for the fineness of a projective structure. Finally, we deduce

that projective structure induced by the an epic functor, preserves the exactness. Suppose P' is a set of

objects of a category C which is a basis of projectives of the projective structure PU;I, P)c. Let / denote

the full subcategory of C whose objects are the objects iu P' and S : ,4, -+ C be the inclusion functor.
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Theorem 5.1. The inclusion functor.9: .A -+ C has a dght adjoint system.
Proof. For any object.A € C there exists an object P_€ P and a morphism J: p -+ AinM. furtler, by
defuritiou of bases, therc exists an object say ?(A) in .P witb a retraction ft : T(A) + p in rz. This gives
a functiol .I : obC -+ obA and a morphism

qa: f f :T(A) + A in M.

Let O I Pt ) Abe an arbitrary morphsm in C v,rith p/ € P, C P. By defiDition of rl7_projective there exisLs
a morphism g : p --r ?(,4) sucb that 4,a9 = d
This shows that the futctionT : obC -+ obA together with the fa,mily ofmorphism 4 = l\a:T(A) + Ala.s
represents a right adjoiut system of S.
Remark 5.1. Ifthe inclusion functor 5:,4 --r C has a right adjoint ? defrned be a natural transfonnation
4, we will say that E5(7, a) is a fuuctorial iuducement of -P.

Remark 5.2' A funtorial inducemelt of a projective structure i6 called regular If its corresponding ritlrt
adjoint system is regular.

Theorem 5.2. Aoy two regular ioducerDent of a projecti\€ structule are equil,alelrt.
Follows imro6diately from Theorem 3.2.

Theorem 5.3. If the projective strudures p(M 
, P)c arrd p,l[t, 

, 
p,)g of C are induced by fis (t a) andRi,(f' ,n') respectively and if for each object :4 of C there exisis u ,ro.phts* 6a , ffll _+ i(A)s."i, tlat

4'o - 7t0a, then P is a finer l,han P.
Proof, let / : .4 -,+ B be an arbitrary morph.iso in M. Again let ? : p, _+ B in C with p, € p/ be arbitrary.
Comider the diagra.m

AJ+

T(B)
!,ta

Since, ?(E) < P, there exists a rnorphism g : T(B) _+,4 in C such that 46 : /9. Further, by
hypothesis of tlre theorcm theE exists a morphism d s : T,(B) ) lI(B) such that 4sl6 = a;. .Lguio, 

"in"untB:T'(B) --r B is in.47'and P, € F,, there exists 
" -o"phi"rn n, i,_+f1q in C such that

,l'ah = l.
Thus, we have

1.: d-C! = (rtade)h - ((l s)de)n : lbLsn\ i.e., P/ is projective with respect to ,. This shows thatM C M/ atrd heuce P is finer than l',, Now, let ,g, C -+ Ci be any functor and assume that it ha.s a rightadjoint system .Rs(?,r7). Then by Theorem 3.1 the class of obje; {S(,4)}A€. i" " 
U""* 

"f " 
proi""-t'i*

structure P/ of c/ we now ge,eralize this situatior. I'er p64, D; be a proiective structue of c. As
above P determine a fulI subcategory .4 of C and il St t A _+ C jenotes the inclusion functor of :i intoc, s' has a right adjoint so that sst rras a right adjoint system *hich determine a projective structule
P'-QV', P')c, ot Ct , S(P) being a ba.Bes of proj"J'," oi p,. fi" *iU ""yii" 

p is inducea Ly p r;r;; iTheorem 5.4. The crass rkl contaius any morphism J: At --+ B' i b,for w.ich there exists 
" -orpii.-g : T(At) -+ lf(Bt) in M such that the diagram

sr(,4,) -Ig\ s?"(B')
lrn^'! l,n

At ---------) B'

is conrrnutatir.e.
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proof. Let@:S(p) -+BtbeamorphisminC'withh PeP. Bydefinitionof rightadjointsystemthere

exists a morphism rlt: P -+ 7(B') in C such that

0: qa,S(rh).

Furtlrer,sincegeMand Pe P,thereexistsamorphism 1:P-+ ?(A') inCsuchthatthediagram

T(A',) : + T(B')
7 \ l,l,\r

is comtnutative. Thus we have

0: na,S(rl,): nB,S(s^i_: (?s,S(s))S(r) = (/4.a')S(z) : /('la'S(r))' Therefore, S(P) is projective with

."rp".i to /. But, p e P is.rUit*.v a"a S1P; is the bases of projectives of Pt(M'Pt)g,' This gives that

I < trv'.
Corollary 8.1. If 4 is a natural transformation defining a right adjoint functor ? of S, tlte Mt CT-r(M).
Corollary 5.2. lf. ? is a regular riglrt adjoint of S, then IiIt : T-tQiI)'
proof. iut y , ,1,-+ B' be an arbitrary morphism in M' . Take an arbirary object P from P and a morphism

g : P -+ ?(B') from C. Now consider the diagram

s(P)
I s(d)

T(8,)
I qB'

A' J. Bt

Since S(P) € P', there exists a morphism $ : S(P) -+ A' in C/ such that

lrl, : r1B'S(Q).

Furtlrer, by definition of right adjoint system there exists a morphism 'y i p -+ ?(.4') in C such that, the

diagrarn

s(P)- 14 sr@')
.l \ rqe,\4r

is cornmutative. Thus, we have

qs,S(d): t1b: l\h,S(i): (/"re,)S(r) : OB,STUDS(r) : na,S(rU)t).
Again, since ? is a .egular right a.djoint of ,S, we 'ger O-: T(!)1 i.e., f(/) e Il[ or, f e T'rlf[ i'e',
pt 97-r(fu). Hence, by Corollary 5, we get-I7': T-r([[).
Corollary 8.3. If ? is a1 epic functor aud P(M, P)5,is the exact projective structure of C, then P(\il' , P')s,

is the exact projective structure of C'.

6. Construction ofa regular right adjoint system

In this section, we mainly coustruct a regular right adjoiut system on the categories of modules, which

verifies the problem of existence of right adjoint system.

Let .R and E' be two commutative rings with unity and lt : R' -+ R be a ring homomorphism which maps

urrit element onto unit elerneut. Any module A e Mod,p can be considered as R'-module by the scaler

multiplication defined as

/6:lt(rt)aforallr'eRt,a€A,andeveryR-homomorphisrnf:A-+Bmaybeconsideredasa
fi,-homomorphism of the correspouding ft'-modules, Ttris defrnes a functor, S : Moda -) Mod,p, for any

R'-module A' € Mod'p, we define T(A') : Hamp'(R,A'), the set of all 8'-homomorphisms from E into

.4'.. This can be considered as a .R-nrodule, as follows:



A generalization concep-t oJ right adjointness in tunctors

lffeHornp,(R,.4/)andr€.E,thenrfeHomp,(R,,4')givenas(r/)(r1):f(rr)forallrr€,B.
Further, we define

q1' :T(A'): HornR'(R,A') -+ At

such tlrat na,$): l(l) e A'for all / € Homp,(R,A/). Now we can show that the pair (?,r7) is a regular
rightadjointof S. Let AeModpand@:S(,a)+ Atbeafl'-hornomorphismin Mod,a.Defineafunctibn
g:A-+T(At):Hams(R,l),suchthat S@):S":R-+At and9o(r) :d(") forallr€E. Itisclear
tlratgisa.R-homomorphism. Thus,wehaveo-+ go-+rle,(go):g"(1) :0(") foranyoe ,5(A). This
gives that the diagrarn

s(.4) 19 sr(A')
\

d \ !,t.c,
\

A'

is commutative. Since by construction, g is unique, this shows that the pair (?,4) represents a regular riglrt
adjoint system of S.
Remark 6,L. lf P(li,P) is a projective structure of Mod,p, then as we have seen above P induces a projec-
tive structure P'(M' , P') of. Mod,p, through ,g, wirere M' is the class of all 8'-honromorphisms f : At -+ B'
in Mods such that T(f):T(At) -+T(Bt) is in M and where P'has basis of proijectives consisting of all
E-modules in P considered as .R'-modules.
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1 lntroduction

Kasahara [1] ud6ed several unknown characte zation of compact spaces and /i - closed spaces by intro-

docirrg ceririn operatioD or a topology Umehara [7] introduced some new separation axioms Lrsing the

,otiori of (,7,.y')-open sets a.ud investigared their relatioDships. Sai Sundara KrisLoan and Balachandra.u [5]

introduced the corlcept of ?-semi-oPen sets by using 7-opetr sets in topological space [3]'

Iu this paper, iu Section 2 we introduce the notior ot rr^,,r',-SO(X\ using (7,'y')-semi- oPen sets ir
a topological space. Also, we intrcduce the notion of r1r,r';-selni-closure and 11,i'fsemi.iDtelior operators

and study sorne of theil properties.

In Section 3 we introduce the notio'n of (7, ?')-semi-?,(i = 0,1/2,1,2) spaces and characterize ('y,7')-

semi?l spaces using (7,7')-semiopen sets or (7,'y')-semi-closed set6 and study the rclatiooship between

thenr.

In Section 4 we introduce the concept of ('7, 'y')-semi-?6, (t,f')-?a space using the notion of ('y,7')-

generalized-serni-closed sets ard study the toPological properties on the '

In Section 5 we introduce the notiou of 'y-semi-comPact spaces using 'Y_semiopetr sets and study some

of its prcperties.

2. ('y,'y')-Semi-Open Sets

Deflnition 2.1 [3]. Let (X,t) be a topological space Theo aD operation'Y on the topology 7 is a mapping

from r onto power set P(X) of X such that v lv1 for each / € r, where y1 denotes the lalue ol1 at v
It is denoted by 7 : r --+ P(X).

Deffnition 2,2 14, O) Let (X,r) be a topological space, A be a subset X and'y,7' are the oPerations

defroed on r. The.,A is said tobe a (,y, "y')-open set if for each, € r4 there exists open neighborhoods U'V

of a such tlrat t|l UVl C A,11,.r,) denotes set of all ('y,'y')-open sets in (X,r).
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(ii) L.et (x'r) be a topological space and 1, / 8* the operarions defined oD r. Then for a subset A of x, ch ,y )(A)
is defincd as c[,,y1(A; = {x e X: t/ u V?'* O holds for every open scts U and V conraining x}.

(iii) t t (X,r) be a topological space and T,/ are the operations defined on r. Ther for a subser A of X, r0r ) -cl
(A) =n { F: A gF, X-Fetlr/)}.

(iv) lrt (x,r) be a topological space and y,/ are the operations defined on r. Then a subset A of x is said to be a
(1,/)-generalized-closed if ct1r9(A) e U whenever A q U and U is (T,y)-open in (X,r).

Definition 2.3. bt (x,r) & a topological space and r,y are the operations defined on t. Then a subset
A of X is said to be (1,^/lsemi-open set if and only if there exists a (1,/)--open set U such that
U e A g t(l.r1-cl(U). The family ofalt (y,/)-semi-open sets in (X,t) is denoted by trr.rr_SO(X).

Example 2.4. Let X = (a,b,c),t = { {,X,[a],t c ], [a,c],{ a,b} }. Irt T,/ are the operations defined on r
such rhat AY=Au{a}and e/= ]a '/'4=la}.*"n

lA,Jlcl iI A+ {ol
t11,1.y-SO(X) = { Q,X,Ia],Ia,b],(a,c] ].

Definition 2.5. Irt (x,r) be a topologicar space and 1,/ are the operations on r. Then for a subset A
of X, r1r1-interior of A is defined as union of all (1,/)-open sers contained in A. It is denotcd by qr,yy-
in(A).

That is 1.r,"/rint(A) = u [G:Ge r(l,/rSO(X) and c cA].

Remark 2.6. t t (X,r) be a topological space and y,./ are the operations defined on t and A be a
subset ofX. Then

(i) t1r9 -inr (A) is a (1,/)--open set contained in A.
(ii) A is (1fl-open set if and only if r1r,v,-int (A) = A.
(iii) kr)-int (A) c rrinr(A).

Proof. Proof of (i) follows ftom the Definition 2.5 and proposition 2.2(iii) of [?].
Proof of (ii) foltows from the Definition 2.5 and (i).
Proof of (iii) follows from thc Dcfinition 2.5 and proposition 2.2(iii).

Remark 2.7. If (X,r) is a (I,/)-regular space and A b€ a subset of X, then in(A) = r(r,.|,rin(A) = ,kint(A).

Proof. Proof follows from thc Definition 2.5 and proposition 2.6(i) and (ii) of [7].

Aeorem 2.8. fet 1X,t) te I topological space, A and B 8re the subsers of X and y,/ arc th€ oFrations
defined on r-

(i) A q B implies q11,rint (A) g 1r,l)-int (B)
(ii) r0,r- int(A) u qnlrint (B) s t (r,/rint(AuB)
(iii) If 1 and /are thc rcgular opcrations on t, thcn q./, /rint(A) n t 11,yy_int@) =

qr.y )-int(A^B).
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Proof. Proof of (i) and (ii) are follows from the Definition 2.5.

Proof of (iii) follows from (i) and koposition 2.7(i) of [7].

Theorem 2.9. tet (X,t) be a topological space and T,/ are the operations defined on 1' If /'4i "i€", 
is

a collection of (T,/Fsemi-open sets in (X,t), then -y. ,4r is also a (T,/Fsemi-open set'

Proof. Since each Ai, ieJ, is a ("y,/!semlopen set, implies there exists a (T,y)- open set Ui such that

Ui cAi G t1x1 1-cl(U). Hence Y,u , e tY rAi I ,l/ t11y)rcl(U) g t1r.lvcl( Y 
rU ,). By ProPosition

2.2(iii) of t7l .Y,l), is a (|,f)-open set in (X,t). Therefore I /ris a (1,/fsemi-open setin (X"E)'

Remark 2.10. kt (x,t) be a topological space and 1,^/ are the operations on t. Ther the following

example shows that, if A and B are two (T,/Fsemi-oPen sets in (X,t), then A n B need not be a

(T,/)-semi-open set.

I,eri= {a,b,c}, t = t0,X,{a},tb},{a,b}} and 1,/ are the operations on t such thatAr= A and

Av=int(cl(A)). ffA={4c} ard B={b,c}, then A and B are (1,/fsemiopen sets butA^B={c} is

not a (T,y'Fsemi-open set in (X,t).

Theorem2.11. A subset A of (X,t) is (T,/Fsemi-open set ifand onty ifA q t11v;-cl(t11' f-int (A))'

Proof. L€t A c t("r,11-cl(t1x6int(A)) Take U= rtr,/rint (A) then by Remark 2.6(i) we have U g Aq
q. 1-cl(U). Hence A is a (7,/Fsemi-oPen set.

Conversely, A is a (l,yFsemi-open set, then there exists a (Y,/FoPen set U such

that U qA g t(ty)-cl(U). Since U q: trr.r )-int (A), hence we have t1"11ct(U) g 11,y1+l(t111'1-int (A))'

Therefore A g q11-cl(t(1,"/rint (A)).

Theorem 2,12. tnt (X,1) be a topological space and 1,/ are the operations on t. Ifa subset A of X is

(1,/)-open set in (X,t), then A is (t/Fsemi-open set.

Proof. Given A is a (Y,/)-open set in (X,{), therefore by Remark 2.6(ii) we have A = t1111-int (A)'

Since A g t1rr1-cl(A), impties A g t(i.11+l(t 11r1-int(A)). Hence by the Theorem 2.11' A is a (I'y'F
semi-open set.

Remark 2.13. Converse ofthe Theorem 2.12 need not be true.

In Example 2.4 {a,b} is a (T,/)-semi'open but not a (T,^/}-open.

Remark 2. 14. By fneorem 2.12 and Remark 2.13 we have tlnr r c trr.r r-SO(X).

Theorem 2.15. If (X,t) is (1,/!regular space then every (1,/FsemioPen set in (X,t) is a semi-

op€n set.

Proof. Proof follows from Proposition 2.6(i) and 3.1 I (ii) of t71.

37



38 G. Sai Sundara Krislrnan and K. Balacbandran

Remark 2.16.ln the previous Theorem 2.15 the condition (X,t) is (1,y')-regular is necessary. If we

remove that condition then the concept of semi-open sets and (y,y')-semi-open set becomes
independent.

lrt X= {a,b,c}, t = {Q,X, {a},{b},{a,b}}and y,y'are the operations defined on t such that
AT= cl(A) and A1'= in(cl(A)) for every Aet, then {a} is semi-open but not (y,y')-semi-open.

lrt X = {a,b,c},r = { 0,X, [a],{c},{a,b}, {a,c}}and y,^{ arc the operations defined on t such

rhatAT=J1'{"^.=1", !and AT' = A, forevery A in t. Then {b,c}is (y,y') -semi-open but nor a
[A u{c} if A+ lal

semi-open set.

Definition 2.17 .l*t (X,t) be a topological space and T,^( we the operations on r. Then a subset A of
X is said to be a (1,y')-semi-closed set if and only if X - A is (y,y')-semi-open.

Definition 2.L8.tnt (X,t) be a topological space, A be a subset of X and y,^/ re the operations on r.
Then t1.y,y;semi-closure of A is defined as intersection of all (y,y')-semi-closed sets containing A. It is
denoted by tlryy-scl(A).

That is r11,p-scl(A) = n { F: X - F e tq,p-SO(X) and A c F}.

Remark 2.19. kt.y1-scl(A) is a (1,y')-semi-closed set containing A.

Proof. Proof follows from the Definition 2.17 andTheorem 2.9.

Theorem 2.20.tet (X,t) be a topological space and T,^( are the operations of r. Then
(i)apointxeX,x€ t(r,,/)-scl(A)if andonlyif VnA +Qforevery(y,y')-semi-opensetV

containing x.
(ii) A is (1,y'!-semi-closed if and only if t1.y,yy-sc1(A) = 6.

Proof. (i)trt F0 be the set of all ye X such that VnA*Q for every Ve t1r,y;SO(X) and ye V. Now to
prove this theorem it is enough to prove that Fs = T(y,y)-scl(A). Let x e c1111-scl(A). Let us assume that
x € Fs. Then there exists a (y,y')-open set U of x such that UnA=Q. This implies AcX-U and so r1y,yy-

scl(A)cX-U. Therefore xe r(7,0-scl(A). This is a contradiction. Hence t11,y;scl(A) c Fe. Conversely,
Let F be set such that A c F and X-Fe I11,11-SO(X). Irt xe F. Then we have xe X- F and (X-F)nA=Q.
ThisimpliesxEFo.ThereforeFocF.HenceFsCt<r,r,)-scl(A).ThereforeFo=t<r,y;-scl(A).
(ii) Proof follows from the Definition 2.18 and Remark 2.19.

Remark 2.21 . tet (X,t) be a topological space and y,,/ are the operations on r. Then from the

Definition 3.2 of l7), Remark 2.14 nd Definition 2.19 we have for any subset A of X. A g r ry,r) -
scl(A) c t 1xy1-+l(A).

Definition 2.22. I*t (X,t) be a topological space, A be a subset of X and y,^{ are the operations
defined on t. Then r1,y,yy-semi-interior of A is defined as union of all (y,y') -semi-open sets contained in
A.

That is qxy; -sint(A) = u { G : A g G and G e tq,yy-SO(X)},
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Theotem2.23- t t (x,r) be a topological space and 1,/ are the operations on t. Then for any subset

A of X, the following hold good:
(i) 1x./) -sint(A) is a (7, -semi-open set contained in A.
(ii) t16y-sint(A) = A if and only if A is a (1,/)-semi-open set.

. (iii)1(y,),rsint(A) =X - lr,yrscl(X - A).
(iv)t11yy-scl(A) = X - 10,, -siDt(X - A)..
(v) t(r."r,) -int(A) C t(y,./rsint(A).

Proof. Proof of (i) follows from the Definition 2.22 and Theorem 2.9.

Proof of (ii) follows from (i) and Definition 2.22.
Proof of (iii) and (iv) follows from 2.22 and2.l'l ar.dz.lg.
Proofof(v) follows from Theorem 2.12 and Definition 2.22.

Theorem 2.24. l*t (x,r) b€ a topological space and y,/ are the operations on t. Then for any
subsets A and B of X the fotlowing hold good:

(i) If A e B, then t(r.1,rsint(A) E t0./)-sint(B).
(ii)qr.r- sint(AuB) = 3rr./rsint(A) u trrrrsint(B).
(iii) 1r.7;-sint(AnB) g lr./rsint(A) n f(?.^0 -sint(B).

Proof. Proof of (i) follows from the Definitiot2.22.
Proof of (ii) fotlows ftom (i) and Theorem 2.9.
Proof of (iii) follows from (i).

3. (T,O-Semi-Tr Spaces

Definition 3.1. Irt (X,t) be a topological space and 1,/ are the operations defined on r. Then a

subset A of X is said to be a (1,/Fsemi-generalized closed (wrinen as (T,/)-sg.closed) if t11,7;scl(A)
g U whenever A gU and U is a (T,/Fsemi-open set in (X,t).

Definition 3.2. A space (X,t) is said to be a (1,/!semi-T6 space if for every (1,/!sg.closed set in
(X,t) is (1,/lsemi-closed.

Theorem 3.3. t€t (X,t) be a topological space and y,/ are the opcrations on r. Then a subset A ofx
is (y,/Fsg.closed if and only if t(y..r4-scl((x)) n A + 0 for every x € t(xyrscl(A).
Proof. Irt U b€ (1,/fsemi-open set such that A q U. lrt x€r(1,r-scl(A). Then by assumption there

exists a z €ro..r1-sct({x}) and zeA e U. It follows from Theorcm 2.20(i) that U^{x} *Q, impties x e
U. Hence t(r,y,)-scl(A) C U. Therefore A is a (1,/)- sg.ctosed set.

Conversely, suppose x€lxl ,rscl(A) such that t(r,./)-sct( {x }) ^ A =0, then A g X-t1r.7;
scl({x}). By Remark 2.19 and assumption it foltows that r(.r,.n -scl(A) E X- 16-scl([x]). This
implies that x e tlxyy-scl(A). This is a contradiction.

Theorem 3.4. Let (X,t) be a topological space, A be a subset of X and 1,/ are the operations on t. If
A is (T,/Fsg.closed in (X,t), then qr.r,rscl(A) - A do€s not contain a non empty (T,/Fsemi-closed
set.
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Proof.Supposethereexistsa(T,/Fsemi-closedsetFsuchthatFgq.H,rsct(A)-A.frtx€F.Then
x €t(r1t-scl(A) holds hence it follows from the Theorem 2.20(i) and (iii) that F n A = rfio-scl(F) 

^ 
A J(rrl-

scl({x}) 
^ 

A+0. Hence FnA + O. This is a contradiction.

Theorem 3.5. I-et (X,r) be a topological space and y,/ are the operations on r. Then for each point
x € X, {x } is (y,yFsemi-closed or X-{x } is (1/) -sg.closed.

Proof. Suppose [x] is not (y,y')-semi-closed, then X-(x] is not (T,/Fsemi-open set. This implies X
is the only (T,yFsemi-open set containing X- {x }. Hence X- {x} is (y,^/)-sg.closed.

Theorem 3.6. A space (X,t) is (y,/)-semi-T|r space if and only if for each x€ X,{x}is (T,/Fsemi-
open or (1,/lsemi-closed.

Proof. Suppose for x€X, {x} not a (y,/)-semi-closed, then by Theorem 3.5 and assumption we have
X-{x} is (T,/Fsemi-closed and so Ix] is (1,/fsemi-open.

Conversely, Irt A be (y,'/Fsg.closed set. Then to prove that r(^/14- scl(A) = A. IJt xe r(1,y )-
scl(A) then by assumption [x ] is (T,y')-semi-open or semi-closed.

Care(i). Suppose {x} is (T,'/Fsemiopen. It follows from the Theorem Z.zO(i) that {x}n A+Q. This
implies that xe A.

Ccse(ii). Suppose {x} is (y,/)-semi-closed. Then by Theorem 3.4 r(.F ) -scl(A) - A does not contain
{x }. This implies x e A.

Definition 3.7. A space (X,t) is said to be a (y,/Fsemi-T: space if for each distincr points x,y e X,
thereexists(T,/)-semi-opensetsUandVcontainingxandyrespectivelysuchthatU^V=0.

Definition 3.8. A space (X,r) is said to be (T,/)-semi-Tr space if for each distinct points x,y €X,
there exists (y,/)-semi-open sets U and V containing x and y.espectively such that y E U and xe V.

Definition 3.9. A space (X,r) is said to be (1,/!semlTs space if for each distinct points x,y€ X,
there exists ('J,y)-semi-open set U such that xe U and yeU or x E U and yeU.

Theorem 3.10. (i) If a space (X,r) is (T,T'Fsemi-T2, then it is (y,y)-semi-Tr.
(ii) If a space (X,t) is ( tT'Fsemi-Tla then it is (T,/F semi-To.

Proof. 11 froof follows from the Definition 3.7 and 3.8.
(ii) l-et x and y be two distinct points ofX. Then (x) is (T,^/Fsemi-open or (1,/)-semi-closed

by Theorem 3.6.

Case (i).lf lxl is (y,/lsemi-open then ye (x), then this implies (X,t) is (1,/)-semi-Te.

Carc (ii).lf (.xl is (1,/) -semi-closed, then U= X-{x} is a (1,/!semi-closed set such that xE U and y
€ U. This implies that (X,t) is (T,/Fsemi-Tq space.
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Remark 3.1 1. (i) I-et X= [a,b,c],t = {0,X. ta},tb} { a,b }, {a,c } } and T,/ are the operations defined on

t sucrr rrrat ey={1. .. l":. : *o N=til:t:,:t'to^^=';",' 
*'

lcl(A\ il bc A

rhen (x.r) is a (T,/t-r"*ito rp"". brt l.'1," nr,-,{,1,]l?;lllll'''
(ii) tet X= [a,b,c],t = {0,X.{a},{b}{a,b},ta,c}} and 1,./ are the operations define on l such that

o' = 
{1,, o, 'lriii *a er = {!un 

'tnti.7 
'n""(x,I) 

is (T,/)-semi-rv1 but not a ('v,/)-semi-r1

(iii) Let X= [a,b,c],t = {o,X.(a},tb}ta,b},{a,c}} and y,/ are the operations defined on t such that

a'= ]1... !.b.* 
A 

undA/ = A u {a}. Then (X,t) is a (T,/)-semi-Trspace but not a (1,/)-semi-T1a
lcl\A) iI be A

space.

Remark 3.12. By Theorem 3.10 and Remark 3.1I we have the following diagram implications:

(T,^/Fsem!Tz 1= (T, Y') -semi-Tr * ('y,Tl-semi-Tr+ (T, Y')-semi-To

where A-----+ B represents A imply B and A -\B represents A does not imply B.

4.(1,^/)- Generalized-Semi-Open Sets

Definition 4.1. kt (x,r) be a topological space and y,y' are the operations on t. Then a subset A of
X is said to be a (7,/>generalized-semi-open sets (written as (1,/)-gs.open set) if F e r6y;-sint(A)
whenever Fe A and F is (y,]z)-closed in(X,t). 

:

Definition 4.2.|*t (X,r) be 
^ 

topological space and y,y are the operations on t. Then a subset A of
X is said to be (T,y)-gs.closed if and only if X -A is (1,/)-gs.open in (X,t).

Theorem 4.3. I-et (X,t) be a topological space and 1^/ are the operations on t. Then a subset A of X
is ('y,^/)-gs.closed ifand only iftlryy-scl(A) g U whenever A cU and U is (1,/)-open in (X,t).

Proof. Proof follows from the Definition 4.2 andTheorem2.23 (iii) and (iv).

Remark 4.4. IJt (X,t) be a topological space and 1,/ are the operations on t. Then from Theorem
2.12, 4.3 and the Definition 3.1 we have the following diagram implications:

(T,/)-closed ---------+ (y,/)-semi-closed ----) (T,/)-sg.closed ---------| (1,/)-gs.closed.
Where A------) B denotes A impties B.

Theorem 4.5. t€t (x,r) be a topological space, A be a subset of X and 1,/ are the operations on t. If
A is (y,y')-open and (T,y)-gs.closed, then A is (1,/)-semi+losed.

Proof. Since A is (1,fl-open and (1,/)-gs.closed, r(y.yrscl(A) E A. This implies that A is (y,/)-semi-
closed.

Theorem 4.6. I-et (X,t) be a topological space, A be a subset of X and y,/ are the operations on t. If
A is (T,/)-gs.closed, then t16-scl(A) - A dose Dot contain any nonempty (1,/)-closed set.
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Proof. l,et F be a (y,y)-closed subset of t(r..r'rsc(A) - A. This implies that A c (X - F). Therefore by
assumption t(r/rscl(A) e (X- F) hence F g (X -,qry)-scl(A)) n (trr.yrscl(A)) = 0. This implies that F
=0

Theorem 4.7. l,et (X,1) be a topological space and 1,/ are the operations on r. Then for x eX, {x} is
(T,'ll)-closed ofX - {x} is (y,/)-gs.closed.

Proof. Suppose {x} is not (y,y)-closed. Then X-{x} is not a (T,/)-open set. Therefore X is the only
(Y,/)-open set containing X-{x }. Hence X-{x } is (1/)-gs.closed.

Theorem 4.8. l,€t (X,r) be a topological space and y,/ are the operations on r. Then the following
are equiYalent:

(i) Every (1y')-gs.closed set of (X,,E) is (T,y)-semi-ctosed.
(ii) For each xe X, [x ] is (1,/)-closed or (1,/)-semi open.
(iii) For each xe X, (x ) is (1,/)-closed or (1,/)-open.
(iv) (X,r) is (T,y)-T !a .

Proof. (i) + (ii) Suppose that {x} is not (T,,/)-closed. Then by Theorem 4.7 X - {x} is a (T,y)-
gs.closed. Therefore, by assumption X-[x] is (T,y)-semi-closed and hence [x] is (T,./)-semi-open.
(ii) + (iii) It is shown that {x } is (T,y)-semi-open if and only if {x } is (y,/)-open.
(iii) * (iv) The proof follows from (iii) and Proposition 4.1I [7].
(iv) --+ (i) trt A be a (T,y)-gs.closed set. Now to prove that A is (1,/)- semi-closed set in (X,r). That

is to prove that t(T."/)-scl(A) =A. [,et xeq7r-scl(A). Then by assumption {x) is (1,^/)-open or (1,^/)-
closed.

Case(i). Suppose that {x} is (T,y)-open, then {x} is (1,^/)-semi-open. This implies [x] n A * O. Hence,
x€A.
Case(ii). Suppose that {x} is (T,y'>closed, then it follows ftom Theorem 4.6 that {x} does not contain
in t11y;scl(A) - A. This implies that xeA.
Hence A is.a (1,./)-semiclosed set in(X,f).

Definition 4.9. A topological space (X,r) is said to be a (T,y')-Tb space (respectively (y,./)-T6 space)
if every (y,/)-gs.closed set is (1,/)-closed (respectivety (y,y)-g.closed).

Theorem 4.10. (i) If (X,r) is (T,y)-Tb, then for each x€ X, {x ) is (T,y)-semi-closed or (y,^/)-open.
(ii) If (X,r) is (T,y)-Ta, then for each xe X, {x } is (T,y')-closed or (1,^/)-g.open.

Proof. (i) Suppose for x6x,{x} is not (y,/)-closed. Then by Theorem 3.5 and Remark 4.4 we have
X-(x) is (1,y')-gs.closed. Therefore, by assumption we have [x] is (y,/)-open.
(ii) Prcof of (ii) is similar as (i).

Remark 4. I 1 . Let CX,r) be a topological space and T,y are the operations on t. Then every (T,y)-Tb
space is (y,/)-T6 and (T,^/)-T r,r space.

Proof. Proof follows from the Definition 4.9 and Theorem 4.8.



On (1,1' )-semi-open sets and, 1-semi-compact spaces

5. y- Semi-Compact Spaces

Definition 5.1. A collection 3 of subsets of X is said to be a T -semi-open cover of X if the union of
elements of 3 is equal to X and its element are'y-semi-open sets.

Definition 5.2. A topological space (X,r) is said to be a 'y-semi-compact spaces if for every y-semi-

open covering of 3 ofX contains a finite sub collection that also covers X.

Definition 5.3. Let (X,t) be a topological space and 1be an operation on r. A subset K of X is said

to be T -semi-compact set if for every y -semi-open cover 3 of X there exists a finite sub family of

{G1, Gz, G:, ...., G"} of 3 such that K e 0 Gi.

Remark 5.4. ff (X,r) is a (1,y')-regular space then semi-compactness and 'y-semi-compacmess
coincide,

Proof. Proof follows ftom the Theorem 3,1 lof [6]

Remark 5.5. If (x,r) is T-compact then it is tsemi-compact.

Proof. Proof is fotlows from the Theorem 3.8 of [6].

Remark 5.6. If (X,f) is a T -regula-r and compact then it is ^1 semi-compact.

Proof. Proof follows from Remark 5.5 and Proposition 2.4 of [3].

Theorem 5.7. Every y-semi-closed subset ofa lsemi-compact space is T-semi- compact.

Proof. l,et C be a y -semi-closed subset of 1 -semi-compact space K and {Go}*r be an 'y-semi-open

cover for C. Then {Gou (X - C)}s.1 forms an'y-semi-open cover for K. Since K is lsemi-compact,
this open cover has a finite subcover. If that finite subcover contains X-C discard it otherwise leave
the subcollection alone, then this remaining subcollection forms a finite subcover for C. This implies
C is y-semi-compact.

Theorem 5.8. kt f: (X,r)*(Y,o) be a (T,pFsemi-continuous map and if X is a .y -semi-compact
then f(X) is p-semi-compact.

Proof. t-et tG,)*r be the collection of p-semi-open covers for f(X). Let x€X then f(x) e f(X), implies
f(x)eGi for some i e J. Since fis ('y,plsemicontinuous, there exists T-semi-open set Ui containing x
such that f(J;) gG; and this true for every xe X. Therefore, [Ui] forms a T-semi-open cover for X. Since

X is y-semlcompact, there exists a finite subcotlection such that X e i,Ui, impties (X) ci( lr U) c

.)2, f(Ui)c ,/, G;. Hence f(10 is p-semi-compact.

43
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Abstract. We give a new proof of the classical result due to Rodney Y. Sharp and Peter Vamos on the

dimension of tensor product of a finite number of field extensions of a given field.

1. Introduction

Let K be a field. In this note, we prove some results on K-algebras. All rings and algebras are commuta-
tive with identity �= 0. By the dimension of a ring A we mean the Krull dimension and denote it by dim
A. The transcendence degree of a field extension L/K shall be denoted by trdegKL. The results in this
note grew while trying to understand the classical result on dimension of the tensor product of two field
extensions proved in [6]. We first prove [Theorem 1] : Let R ⊂ A be rings where R is an integral domain
with its field of fraction K. Then (1) If X1,X2, ..., Xn are algebraically independent over A and A contains
t1, t2, ...tn algebraically independent over R then for L = K(X1, ...,Xn), dim(L

⊗
RA) ≥ n + dim S−1A

where S is the multiplicatively closed subset R[t1, ..., tn] − {0} of A, and (2) If X1,X2, ...,Xn, ... are al-
gebraically independent over A and A contains t1, t2, ...tn, ... algebraically independent over R then for
L = K(X1, ...,Xn, ...), dim(L

⊗
RA) = ∞. In Corollary 2.3, it is shown that equality holds in Theorem

1 under certain conditions. These results are used to find the dimension of the tensor product of a finite
number of field extensions of a given field proved in [7]. Further, we give [Theorem 2.7] an alternative proof
of the well known result that for an affine K-algebra A over a field K, for any non-zero-divisor f ∈ A,
dimA = dimA[1/f ].

2. Main Results

Before we prove that main results, let us recollect :
(i) [5, Theorems 7.3 and 9.5]: If B is a faithfully flat A-algebra then dimB ≥ dimA.
(ii) [5, Exercise 9.2] If a ring B is an integral extension of a ring A then dimA = dimB.

We shall use these facts, whenever required, without further mention.

Theorem 2.1. Let R ⊂ A be rings where R is an integral domain. Let K be the field of fractions of R.
Then
(1) If X1, · · · , Xn are algebraically independent over A and A contains ti, i = 1, · · · , n algebraically inde-
pendent over R, then

dimK(X1, · · · ,Xn)⊗R A ≥ n+ dimS−1A

where S = R[t1, · · · , tn]− {0}. Further, if A is Noetherian, then

dimK(X1, · · · ,Xn)⊗R A ≤ dimA+ n.

0 Keywords and phrases : Tensor product, field extensions, algebraically independent localization.
0 AMS Subject Classification : .
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(2) If X1, · · · ,Xn, · · · are algebraically independent over A and A contains ti, i = 1, 2, · · · , n · · · algebraically
independent over R, then

dimK(X1, · · · , Xn, · · · )⊗R A =∞.

Proof. (1) Let P ′0 � P
′
1 � P

′
2 � · · · � P

′
m be a chain of prime ideals in S−1A. Then there exist prime ideals

P0 � P1 � P2 � · · · � Pm in A such that Pi ∩ S = φ and S−1Pi = P ′i . Note that

P0 � P1 � P2 � · · · � Pm � (Pm, X1 − t1) � · · · � (Pm,X1 − t1, · · · , Xn − tn)

is a chain of prime ideals in A[X1, · · · ,Xn]. If for T = R[X1, · · · ,Xn]−{0}, T∩(Pm,X1−t1, · · · ,Xn−tn) �= φ,
then there exist f(X1, · · · ,Xn)(�= 0) ∈ R[X1, · · · ,Xn] such that

f(X1, · · · ,Xn) = g(X1, · · · ,Xn) +
∑

(Xi − ti)hi(X1, · · · ,Xn)

where hi ∈ A[X1, · · · , Xn] and g(X1, · · · ,Xn) ∈ Pm[X1, · · · , Xn]. This implies that f(t1, · · · , tn) = g(t1, · · · , tn) ∈
Pm. Since ti’s are algebraically independent over R, f (t1, · · · , tn) �= 0 ∈ Pm ∩ S. This contradicts our as-
sumption on Pi’s. Therefore T ∩ (Pm, X1 − t1, · · · , Xn − tn) = φ, and

dimT−1(A[X1, · · · , Xn]) ≥ n+ dimS−1A

where T = R[X1, · · · , Xn]− {0}. Now, note that

R[X1, · · · ,Xn]⊗R A ∼= A[X1, · · · ,Xn]

as R[X1, · · · ,Xn]-algebras. Hence

K(X1, · · · , Xn)⊗R[X1,··· ,Xn] A[X1, · · · ,Xn]
∼= T−1A[X1, · · · , Xn]

⇒ dim(K(X1, · · · , Xn)⊗R A) ≥ n+ dimS−1A.

The final part of the statement is immediate since K(X1, ...,Xn)⊗RA is a localization of R[X1, · · · ,Xn]⊗RA
which is isomorphic to A[X1, · · · ,Xn].
Further, as A is Noetherian, dimA[X1, · · · , Xn] = dimA+ n [5, Theorem 15.4]
(2) Let us note that

K(X1, · · · , Xn, · · · )⊗K(X1,··· ,Xn) (K(X1, · · · , Xn)⊗R A) ∼= K(X1, · · · , Xn, · · · )⊗R A

Hence K(X1, · · · ,Xn, · · · )⊗R A is faithfully flat K(X1, · · · ,Xn)⊗R A - algebra.
Therefore

dimK(X1, · · · , Xn, · · · )⊗R A ≥ dimK(X1, · · · , Xn)⊗R A

≥ n (use(1))

⇒ dimK(X1, · · · , Xn, · · · )⊗R A =∞.

�

Remark 2.2. In above Theorem, if B is any K(X1, · · · ,Xn)-algebra, then

dimB ⊗R A ≥ dimK(X1, · · · ,Xn)⊗R A

≥ n+ dimS−1A

Further, if B is K(X1, · · · , Xn, · · · )− algebra, then

dimB ⊗R A =∞.

These observations are immediate sinceB⊗RA is faithfully flatK(X1, · · · , Xn)⊗RA(K(X1, · · · ,Xn, · · · )⊗R
A)− algebra.



Some results on K-algebras 47

Corollary 2.3. Let K be a field and A be a K-algebra. If X1, · · · ,Xn are algebraically independent over
A and A contains a field extension of K of transcendental degree ≥ n, then

dimK(X1, · · · ,Xn)⊗K A ≥ n+ dimA.

Further, if A is Noetherian, then

dimK(X1, · · · ,Xn)⊗K A = n+ dimA.

Proof. By assumption on A, there exist t1, · · · , tn algebraically independent overK such thatK(t1, · · · , tn) ⊂
A. Hence for S = K[t1, · · · , tn]− 0, S−1A = A. Therefore, by the Theorem 1,

dimK(X1, · · · ,Xn)⊗K A ≥ n+ dimA.

Further, let A be Noetherian. Then as

K(X1, · · · ,Xn)⊗K A ∼= T−1A[X1, · · · ,Xn]

where T = [X1, · · · ,Xn]− 0, it is immediate that

dimK(X1, · · · ,Xn)⊗K A ≤ dimA[X1, · · · ,Xn]

= n+ dimA

Consequently
n+ dimA = dimK(X1, · · · , Xn)⊗K A.

Theorem 2.4. Let Li, i = 1, · · · , n be a field extension of a given field K and let trgdegKLi = ti. Assume
t1 ≤ t2 · · · ≤ tn−1 ≤ tn. If tn−1 <∞ then

dim(L1 ⊗K · · · ⊗K Ln) = ti + t2 + · · ·+ tn−1,

otherwise
dim(L1 ⊗K · · · ⊗K Ln) =∞.

Proof. We shall consider the two cases separately.
Case 1. t1 ≤ t2 ≤ · · · ≤ tn−1 <∞.
Let Bk = {xk1 , xk2 , · · ·xktk} be a transcendental basis of Lk over K for k = 1, 2, · · · , n − 1. Put Ek =
K(xk1, xk2, · · ·xktk). Then Ek/K is purely transcendental field extension of transcendental degree tk and
Lk/Ek is algebraic. Hence

E1 ⊗K E2 ⊗K · · · ⊗K En−1 ⊗K Ln
i1⊗···⊗in−1⊗Id

↪→ L1 ⊗k L2 ⊗K · · · ⊗K Ln,

where ik : Ek ↪→ Lk is inclusion map for k = 1, · · · , n − 1 and Id is identity map, is an integral extension.
Therefore

dim(L1 ⊗K · · · ⊗K Ln) = dim(E1 ⊗K E2 ⊗K · · · ⊗K En−1 ⊗K Ln).

Let Y11, Y12, · · · Y1t1 , Y21 · · ·Y2t2 , · · · , Y(n−1)1, · · · , Y(n−1)t(n−1) be algebraically independent elements over K.

Then for Fk = K(Y11, · · · , Y1tk), k = 1, · · · , n− 1, we have

F1 ⊗K · · · ⊗K Fn−1 ⊗K Ln ∼= E1 ⊗K · · · ⊗K En−1 ⊗K Ln

Therefore
dim(F1 ⊗K · · · ⊗K Fn−1 ⊗K Ln) = dim(L1 ⊗K · · · ⊗K Ln)

Let us note that F2 ⊗K · · · ⊗K Fn−1 ⊗K Ln is a localization of

Ln[Y21 · · ·Y2t2 , · · · , Yn−1,1, · · · , Y(n−1)t(n−1) ]
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over a multiplicatively closed subset, hence is a Noetherian ring. Therefore by Corollary 2.3,

dim(F1 ⊗K · · · ⊗K Fn−1 ⊗K Ln) = t1 + dim(F2 ⊗K · · · ⊗K Fn−1 ⊗K Ln).

By successive application of the Corollary 2.3 or by induction it is immediate that

dimF2 ⊗K · · · ⊗ Fn−1 ⊗K Ln = t2 + · · ·+ tn−1

Hence in this case the result follows.
Case 2. tn−1 = tn =∞.
First of all, note that for any σ ∈ Sn

L1 ⊗K · · · ⊗K Ln ∼= Lσ(1) ⊗K · · · ⊗K Lσ(n).

Therefore
L1 ⊗K · · · ⊗K Ln ∼= Ln ⊗K Ln−1 ⊗K · · · ⊗K L2 ⊗K L1.

Put B = Ln−1 ⊗K · · · ⊗K L2 ⊗K L1. Then

dim(L1 ⊗K · · · ⊗K Ln) = dimLn ⊗K B.

By assumption B contains infinite algebraically independent elements over K. Hence the result is immediate
from Theorem 1(2).

�

Remark 2.5. If Ai, i = 1, · · · , n denote integral extension of Li, then

dimA1 ⊗K · · · ⊗K An = dimL1 ⊗K · · · ⊗K Ln.

Further, if Ai is any Li − algebra, then

dimA1 ⊗K · · · ⊗K An ≥ dim(L1 ⊗K · · · ⊗K Ln).

Lemma 2.6. Let K[X1, · · · ,Xn] = K[X] be a polynomial ring in n-variables Xi, i = 1, · · ·n over a field K.
Then for any f( �= 0) ∈ K[X], dimK[X, 1/f ] = n.

Proof. Let K be the algebraic closure of K. Then, since K[X, 1/f ]is integral over K[X, 1/f ], we have

dimK[X, 1/f ] = dimK[X, 1/f ].

Hence, to prove the result, we can assume that K is algebraically closed. Note that dimK[X] = n and for
the multiplicatively closed subset S = {f t|t ≥ 0}, S−1K[X] = K[X, 1/f ]. Since f �= 0, f does not vanish on
Kn. Thus, if for λ = λ1, · · · , λn in Kn, f(λ) �= 0, then for the maximal ideal M = (X1 − λ, · · · , Xn− λn) in
K[X],M ∩ S = φ. Therefore S−1M is a maximal ideal in S−1K[X]. Clearly, height of M, i.e. htM = n =
htS−1M . Therefore dimK[X, 1/f ] = n.

Theorem 2.4. Let A be an affine algebra over a field K. Then for any non- zero-divisor f in A,
dimA[1/f ] = dimA.

Proof. Let A = K[X1,··· ,Xn]
I

. Since f is a non- zero-divisor in A, f lies in no prime ideal associated to I in
K[X1, · · · , Xn]. Let p be an associated prime ideal of I in K[X1, · · · , Xn] such that

dimA = dim
K[X1, · · · ,Xn]

p
.

Then f , image of f in K[X1,··· ,Xn]
p

, is non-zero. Note that dimA[/f ] ≤ dimA. Further, as K[X1,··· ,Xn]
p

.[1/f ]]
is a quotient ring of A[1/f ] in a natural way,

dimA[1/f ] ≥ dim
K[X1, · · · ,Xn]

p
[1/f ].
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Thus to prove Theorem, it is sufficient to show that

dim
K[X1, · · · , Xn]

p
= dim

K[X1, · · · , Xn]

p
[1/f ].

Let us observe that

θ :
K[X1, · · · ,Xn][Y ]

(p, fY − 1)
→
K[X1, · · · ,Xn]

p
[1/f ]

Y �→ 1/f

is K[X1,··· ,Xn]
p

algebra isomorphism. Therefore

dim
K[X1, · · · ,Xn]

p
[1/f ] = dim

K[X1, · · · , Xn][Y ]

(p, fY − 1)
.

We note that fY − 1 �∈ p[Y ]. As A K[X1,··· ,Xn]
p

[1/f ] is an integral domain, the ideal (p, fY − 1) is prime
in K[X1, · · · , Xn, Y ]. Now, note that K[X1, · · · ,Xn, Y ] is a Cohen-Macaulay ring of dimension n + 1. By
[4,Ex. 19,page 104], ht(p, fY − 1) = htp+ 1. Therefore

dim
K[X1, · · · ,Xn][Y ]

(p, fY − 1)
= (n+ 1)− (htp+ 1)

= n− htp

= dim
K[X1, · · · , Xn]

p
.

Thus dimA = dimA[1/f ]. �

We, now, deduce the following well known result:

Corollary 2.8. Let A be an affine algebra over a fieldK which is an integral domain. Then dimA = trdegKL
where L is the field of fractions of A.

Proof. Let {y1, · · · , ys} be a maximal algebraically independent set of elements in A over K. Then every
a ∈ A is algebraic over K[y1, · · · ys]. Since A is an affine algebra over K,A = K[a1, · · · , at] for some
ai, i = 1, 2, · · · , t. Since each ai is algebraic over K[y1, · · · ys] there exists an element f (�= 0) ∈ K[y1, · · · ys]
such that A[1/f ] is integral over K[y1, · · · ys][1/f ]. Thus

dimA[1/f ] = dimK[y1, · · · , ys][1/f ]

= s (Lemma2.6)

Therefore by Theorem, it is immediate that dimA = trdegKL. �
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Abstract. Let R be an associative prime ring with center Z(R) and extended centroid C, f(x1, .., xn)

a non-zero multilinear polynomial over C in n non-commuting variables, d a non-zero derivation of R,

m ≥ 1 a fixed integer, � a non-zero right ideal of R. We prove that if f(x1, .., xn) (d(f(x1, .., xn)))
m

is a

differential identity for � then either [f(x1, .., xn), xn+1]xn+2 is an identity for � or d(�)� = 0. Moreover

if there exist y1, .., yn ∈ � such that f(y1, .., yn) (d(f(y1, .., yn)))
m
�= 0 and f(x1, .., xn) (d(f(x1, .., xn)))

m

is a central differential identity for �, then either f(x1, .., xn)xn+1 is an identity for � or f(x1, .., xn) is

central valued on R.

1. Introduction

Let R be an associative prime ring with center Z(R), extended centroid C and Martindale quotient ring Q.
Recall that an additive mapping d of R into itself is a derivation if d(xy) = d(x)y + xd(y), for all x, y ∈ R.
In [3] M. Bresar proved that if R is a semiprime ring, d a nonzero derivation of R and a ∈ R such that
ad(x)m = 0, for all x ∈ R, where m is a fixed integer, then ad(R) = 0 when R is (m − 1)!-torsion free. In
[16] T.K. Lee and J.S. Lin proved Bresar’s result without the (m− 1)!-torsion free assumption on R. They
studied the Lie ideal case and, for the prime case, they showed that if R is a prime ring with a derivation
d �= 0, L a Lie ideal of R, a ∈ R such that ad(u)m = 0, for all u ∈ L, where m is fixed, then ad(L) = 0
unless the case when char(R) = 2 and dimCRC = 4. In addition, if [L,L] �= 0, then ad(R) = 0.

Later in [5] C.M. Chang and T.K. Lee established a unified version of the previous results for prime
rings. More precisely they proved the following theorem: Let R be a prime ring, � a nonzero right ideal
of R, d a nonzero derivation of R, a ∈ R such that ad([x, y])m ∈ Z(R) and (d([x, y])ma ∈ Z(R)), for any
x, y ∈ �. If [�, �]� �= 0 and dimCRC > 4, then either ad(�) = 0 (a=0 resp.) or d is the inner derivation
induced by some q ∈ Q such that q� = 0.

Recently, in [8], the properties of a subset S of R related to its left annihilator AnnR(S) = {x ∈ R : xS =
(0)} were studied. More precisely it was considered the case when S = {d(f (x1, .., xn))

m : x1, .., xn ∈ R},
where f(x1, .., xn) is a non-central multilinear polynomial in n non-commuting variables and m is a fixed
integer and it was proved that if a (d(f(r1, .., rn)))

m = 0, for any r1, .., rn ∈ R, then a = 0. By a differential
polynomial g(x1, .., xn, d(x1), .., d(xn)) we mean a generalized polynomial with coefficients in Q and with
variables acted by d, that is

g(x1, .., xn, y1, .., yn)

is a generalized polynomial in variables x1, .., xn, y1, .., yn and with coefficients in Q. A differential polynomial
g(xi, d(xi)) is called a differential identity for a subset S of R, if g(a1, .., an, d(a1), .., d(an)) = 0 for all
a1, .., an ∈ S. Also g(xi, d(xi)) is called a central differential identity for S if

g(a1, .., an, d(a1), .., d(an)) ∈ C

for all a1, .., an ∈ S, but f(b1, .., bn, d(b1), .., d(bn)) �= 0, for some b1, .., bn ∈ S.

0 Keywords and phrases : Prime rings, derivations, left Utumi quotient rings, two-sided Martindale quotient ring,

differential identities.
0 AMS Subject Classification : 16N60, 16W25.
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In light of these definitions, in this paper we wish to continue the above line of investigation and show
the following:

Theorem 1. Let R be an associative prime ring with center Z(R) and extended centroid C, f(x1, .., xn) a
non-zero multilinear polynomial over C in n non commuting variables, d a non-zero derivation of R, m ≥ 1
a fixed integer, � a non-zero right ideal of R. If f(x1, .., xn) (d(f(x1, .., xn)))

m is a differential identity for �
then either [f(x1, .., xn), xn+1]xn+2 is an identity for � or d(�)� = 0.

Theorem 2. Let R be an associative prime ring with center Z(R) and extended centroid C, f(x1, .., xn) a
non-zero multilinear polynomial over C in n non commuting variables, d a non-zero derivation of R, m ≥ 1 a
fixed integer, � a non-zero right ideal ofR. If there exist y1, .., yn ∈ � such that f(y1, .., yn) (d(f(y1, .., yn)))

m �=
0 and f(x1, .., xn) (d(f (x1, .., xn)))

m is a central differential identity for �, then either f (x1, .., xn)xn+1 is an
identity for � or f(x1, .., xn) is central valued on R, unless when R satisfies the standard identity S4.

To prove these theorems we need some notations concerning quotient rings. As stated above, we denote
by Q the two-sided Martindale quotient ring of R and by C the center of Q, which is called the extended
centroid of R. Note that Q is also a prime ring with C a field. We will make a frequent use of the following
notation:

f(x1, .., xn) = x1 · x2 · · · ·xn +
∑

σ∈Sn

ασxσ(1) · · · xσ(n)

for some ασ ∈ C and we denote by fd(x1, .., xn) the polynomial obtained from f(x1, .., xn) by replacing each
coefficient ασ with d(ασ · 1).

Thus we write d(f(r1, .., rn)) = fd(r1, .., rn) +
∑
i f (r1, .., d(ri), .., rn), for all r1, .., rn ∈ R. We recall

that any derivation of R can be uniquely extended to a derivation of Q, moreover by [15] any two-sided ideal
I and Q satisfy the same differential identities. For this reason whenever R satisfies a differential identity,
by replacing R by Q we will assume, without loss of generality, R = Q, C = Z(R) and R will be a C-algebra
centrally closed.

To obtain the conclusions required we will also make use of the following result: ([11]) Let R be a prime
ring, d a non-zero derivation of R and I a non-zero two-sided ideal of R. Let G(x1, .., xn, d(x1), .., d(xn)) a
differential identity in I, that is

G(r1, .., rn, d(r1), .., d(rn)) = 0 ∀r1, .., rn ∈ I.

Then one of the following holds:

1) either d is an inner derivation in Q, in the sense that there exists q ∈ Q such that d = ad(q) and
d(x) = ad(q) (x) = [q, x], for all x ∈ R, and I satisfies the generalized polynomial identity

G(x1, .., xn, [q, x1], .., [q, xn]);

2) or I satisfies the generalized polynomial identity

G(x1, .., xn, y1, .., yn).

2. The results

Lamma 1. If f (r1, .., rn) (d(f (r1, .., rn)))
m = 0, for any r1, .., rn ∈ �, then R is a GPI-ring unless when

d(�)� = 0.

Proof. Assume R is not commutative and f (x1, .., xn) is not central in R, otherwise we conclude trivially
that R is a GPI-ring. Suppose that d is a inner derivation, d = ad(b), for some b ∈ Q, d(x) = [b, x], for all
x ∈ Q. Since d(�)� �= 0, there exists r ∈ � such that {br, r} are linearly C-independent. Then

f (rx1, .., rxn) ([b, f (rx1, .., rxn)])
m = f (rx1, .., rxn) ([b, f (rx1, .., rxn)])

m
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is a non-trivial GPI for R.

Let now d an outer derivation of R. If for all r ∈ �, d(r) ∈ RC, then [d(r), r] = 0, that is R is
commutative (see [2]). Therefore there exists r ∈ � such that d(r) /∈ RC. Write

d(f (rx1, .., rxn)) = fd(rx1, .., rxn) +
∑

i

f (rx1, .., d(r)xi + rd(xi), .., rxn).

Thus

f(rx1, .., rxn)

(

fd(rx1, .., rxn) +
∑

i

f(rx1, .., d(r)xi + rd(xi), .., rxn)

)m

is a generalized differential identity for R. In particular, by Kharchenko’s theorem in [11] (see Claim 1),
since d(r) /∈ RC, we have that

f (rx1, .., rxn)

(

fd(rx1, .., rxn) +
∑

i

f(rx1, .., d(r)xi, .., rxn)

)m

is a non-trivial GPI for R.

Lamma 2. Let R =Mk(F ) be the ring of k×k matrices over the field F , with k ≥ 2, d a non-zero derivation
of R, f(x1, .., xn) a multilinear polynomial in R. Assume d the inner derivation or R induced by the element
A ∈ R, that is d(x) = [A, x], for all x ∈ R. If f (x1, .., xn) (d(f(x1, .., xn)))

m is a central differential identity
for R then f(x1, .., xn) is central valued on R.

Proof. Suppose k ≥ 2. Let eij the usual matrix unit with 1 in (i,j)-entry and zero elsewhere. By the
assumption

[f(r1, .., rn) ([A, f(r1, .., rn)])
m , rn+1] = 0 ∀r1, r2, .., rn+1 ∈ R.

If assume f(x1, .., xn) not central in R, by [18, Lemma 2, proof of Lemma 3] there exist r1, .., rn ∈ R such
that f(r1, .., rn) = aeij , with 0 �= a ∈ F and i �= j. Since the subset {f (r1, .., rn) : r1, .., rn ∈ R} is invariant
under any F-automorphism, then for any i �= j there exist t1, .., tn ∈ R such that f(t1, .., tn) = aeij . Thus,
for any i �= j,

aeij ([A, aeij ])
m ∈ F

that is

aeij (Aaeij)
m ∈ F

It follows that the (j,i)-entry of the matrix A is zero, for all i �= j and this means that the A is diagonal, that
is A =

∑
t αtett, with αt ∈ F . Now denote d the inner derivation induced by A. If χ is a F-automorphism

of R, then the derivation dχ = χ−1dχ satisfies the same condition of d, that is

f(r1, .., rn) (dχ(f(r1, .., rn)))
m ∈ F for any r1, .., rn ∈ R.

Since the derivation dχ is the one induced by the element χ(A) = χ−1Aχ, then χ(A) is a diagonal matrix,
according to the above argument. Fix now i �= j and χ(x) = (1 + eij)x(1 − eij), for all x ∈ R. Since
χ(A) = (1 + eij)A(1− eij) must be diagonal then

∑

t

αtett − αieij + αjeij is diagonal

that is αi = αj and we get the contradiction that A is a central matrix. Therefore f(x1, .., xn) must be
central in R.

Lamma 3. Let R be an associative prime ring with center Z(R) and extended centroid C, f(x1, .., xn) a
non-zero multilinear polynomial over C in n non commuting variables, d a non-zero derivation of R, m ≥ 1
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a fixed integer. If f(x1, .., xn) (d(f(x1, .., xn)))
m is a central differential identity for R then f(x1, .., xn) is

central valued on R.

Proof. Let

G(x1, .., xn, d(x1), .., d(xn)) = f(x1, .., xn) (d(f (x1, .., xn)))
m =

f(x1, .., xn)

(

fd(x1, .., xn) +
∑

i

f(x1, .., d(xi), .., xn)

)m
.

If d is not inner then, by Claim 1, R satisfies the differential identity

[G(x1, .., xn, y1, .., yn), xn+1] =

=

[

f (x1, .., xn)

(

fd(x1, .., xn) +
∑

i

f(x1, .., yi, .., xn)

)m
, xn+1

]

.

In particular, the blended component [fm+1(x1, .., xn), xn+1] is an identity for R, that is f (x1, .., xn)
m+1

is central valued in R. In this case since R satisfies a polynomial identity, there exists a suitable field F
such that R and Mk(F ) satisfy the same polynomial identities. In particular Z(R) �= 0. Let α ∈ Z(R) and
a ∈ R− Z(R). Since

f(x1, .., xn)

(

fd(x1, .., xn) +
∑

i

f (x1, .., yi, .., xn)

)m
∈ Z(R)

we have

f (x1, .., xn)
(
fd(x1, .., xn) + α[a, f(x1, .., xn)]

)m
=

f (x1, .., xn)

(

fd(x1, .., xn) +
n∑

i=1

f(x1, .., [αa, xi], .., xn)]

)m+1
∈ Z(R).

By a Vandermonde argument, we get f(x1, .., xn)[a, f(x1, .., xn)]
m ∈ Z(R). By Lemma 2, since a /∈ Z(R),

we have that f (x1, .., xn) is central in R.

Now let d be an inner derivation induced by an element A ∈ Q. Then, for any r1, r2, .., rn ∈ R,
[f(r1, .., rn)([A, f(r1, .., rn)])

m, rn+1] = 0. Since by [1] (see also [6]) R and Q satisfy the same generalized
polynomial identities, we have [f(r1, .., rn)([A, f(r1, .., rn)])

m, rn+1] = 0, for any r1, r2, .., rn+1 ∈ Q. More-
over, since Q remains prime by the primeness of R, replacing R by Q we may assume that A ∈ R and
C = Z(Q) is just the center of R. In the present situation R is a centrally closed prime C-algebra [9],
i.e. RC = R and H = soc(R) �= 0. By Martindale’s theorem in [19], RC = R is a primitive ring which
is isomorphic to a dense ring of linear transformations of a vector space V over a division ring D. Since
R is primitive then there exist a vector space V and the division ring D such that R is dense of D-linear
transformations over V .

Assume first that dimDV =∞. By Lemma 2 in [20], sinceR satisfies the generalized polynomial identity
[f(x1, .., xn)([A, f(x1, .., xn)])

m, xn+1], R also satisfies [x([A, x])m, y]. Let e, g be orthogonal idempotent
elements of H, i.e. eg = 0. Thus, for all r ∈ H,

0 = [erg([A, erg])m, e] = −erg(Aerg)m

which implies that (rgAe)m+1 = 0. By [10] it follows rgAe = 0 and since r is arbitrary in H, we get gAe = 0.

In particular for any idempotent e ∈ H, (1− e)Ae = eA(1− e) = 0, that is ed(1− e) = d(1− e)e = 0.
From this we have

ed(e) = 0 and d(e)e = 0

and so d(e) = d(e2) = ed(e) + d(e)e = 0. Therefore for any t ∈ E, the additive subgroup generated by the
idempotent elements in H, d(t) = 0, i.e. d(E) = 0. Since E is a Lie ideal of H, d must be zero in H and so
in R, a contradiction.



On some central differential identities in prime rings 55

Therefore dimDV must be a finite positive integer. In this case R is a simple GPI ring with 1, and
so it is a central simple algebra finite dimensional over its center. From Lemma 2 in [12] it follows that
there exists a suitable field F such that R ⊆ Mk(F ), the ring of all k × k matrices over F , and moreover
Mk(F ) satisfies the generalized polynomial identity [f(x1, .., xn)([A, f(x1, .., xn)])

m, xn+1]. As in Lemma 2
we conclude that f(x1, .., xn) is central-valued in R.

Remark 1. In all that follows we prefer to write the polynomial f(x1, .., xn) by using the following notation:

f(x1, .., xn) =
∑

i

gi(x1, .., xi−1, xi+1, .., xn)xi

where any gi is a multilinear polynomial of degree n − 1 and xi never appears in any monomial of gi.
Note that if there exists an idempotent e ∈ H = Soc(Q) such that any gi is a polynomial identity for
eHe, then we get the conclusion that f(x1, .., xn) is a polynomial identity for eHe. Thus we suppose
that there exists an index i and r1, .., rn−1 ∈ eHe such that gi(r1, .., rn−1) �= 0. Now let f (x1, .., xn) =
gi(x1, .., xi−1, xi+1, .., xn)xi + h(x1, .., xn) where gi and h are multilinear polynomials, xi never appears in
any monomials of gi and xi never appears as last variable in any monomials of h. Without loss of generality
we assume i = n, say gn(x1, .., xn−1) = t(x1, .., xn−1) and so f(x1, .., xn) = t(x1, .., xn−1)xn + h(x1, .., xn)
where t(eHe) �= 0.

Theorem 1. Let R be an associative prime ring with center Z(R) and extended centroid C, f (x1, .., xn) a
non-zero multilinear polynomial over C in n non commuting variables, d a non-zero derivation of R, m ≥ 1
a fixed integer, � a non-zero right ideal of R. If f (x1, .., xn) (d(f(x1, .., xn)))

m is a differential identity for �
then either [f(x1, .., xn), xn+1]xn+2 is an identity for � or d(�)� = 0.

Proof. If [f(r1, .., rn), rn+1]rn+2 = 0 for all r1, .., rn+2 ∈ �, the proof of Theorem 6 of [14, page 17, rows
3-8] shows that there exists an idempotent element e ∈ Soc(RC) such that C� = eRC and f (x1, .., xn) is
an identity for eRCe.

Suppose by contradiction that [f(x1, .., xn), xn+1]xn+2 is not an identity for � and also d(�)� �= 0.
Since by Lemma 1 R is a GPI ring, so is also Q (see [1] and [6]). By [16] Q is a primitive ring with
H = Soc(Q) �= 0, moreover we may assume that [f (x1, .., xn), xn+1]xn+2 is not an identity for �H, otherwise
by [1] and [4] it should be an identity also for �Q, which is a contradiction. Let a, b, a1, .., an+2 ∈ �H such
that [f (a1, .., an), an+1]an+2 �= 0 and d(a)b �= 0. Since H is a regular ring, then for all a ∈ H there exists
e2 = e ∈ H such that eH = aH + bH + a1H + a2H + ..+ an+2H, e ∈ eH, a = ea, b = eb and ai = eai for all
i = 1, .., n+2. Therefore we have [f(eHe), f(eHe)] �= 0. By our assumption and by [15] we also assume that
f (x1, .., xn) (d(f(x1, .., xn)))

m is a differential identity for �Q. In particular f (x1, .., xn) (d(f (x1, .., xn)))
m is

a differential identity for eH. It follows that, for all r1, .., rn ∈ H,

0 = f(er1, .., ern) (d(ef(er1, .., ern)))
m =

f(er1, .., ern) (d(e)f(er1, .., ern) + ed(f(er1, .., ern)))
m .

As we said above, write f(x1, .., xn) = t(x1, .., xn−1)xn+h(x1, .., xn), where xn never appears as last variable
in any monomials of h. Let r ∈ H and pick rn = r(1− e). Hence we have:

0 = t(er1, .., ern−1)er(1− e)(d(e)t(er1, .., ern−1)er(1− e)+

ed(t(er1, .., ern−1))er(1− e) + et(er1, .., ern−1)d(e)r(1− e)+

et(er1, .., ern−1)ed(r)(1− e) + et(er1, .., ern−1)erd(1− e))m =

t(er1, .., ern−1)er(1− e)(d(e)t(er1, .., ern−1)er(1− e))m

that is
((1− e)d(e)t(er1, .., ern−1)er)

m+1 = 0

((1− e)d(e)t(er1, .., ern−1)eH)m+1 = 0
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and, by [10], (1− e)d(e)t(er1, .., ern−1)eH = 0 which implies

((1− e)d(e)t(er1e, .., ern−1e) = 0.

Since eHe is a simple artinian ring and t(eHe) �= 0 is invariant under the action of all inner automorphisms of
eHe, by [7, Lemma 2], (1−e)d(e) = 0 and so d(e) = ed(e) ∈ eH. Thus d(eH) ⊆ d(e)H+ed(H) ⊆ eH ⊆ �H
and d(a) = d(ea) ∈ d(eH) ⊆ eH. If denote I = eH, this means that d(I) ⊆ I. Therefore the derivation d
induces another one δ, which is defined in the prime ring I = I

I∩lH(I)
, where lH(I) is the left annihilator in

H of I, and δ(x) = d(x), for all x ∈ I. Moreover we obviously have that f(x1, .., xn) (d(f (x1, .., xn)))
m is a

differential identity for I. So, by Lemma 3, one of the following holds: either δ = 0, or f (x1, .., xn) is central
in I.

If δ = 0, we have d(I)I = 0 which contradicts with d(a)b = d(ea)eb �= 0; on the other hand if f (x1, .., xn)
is central in I, it follows that I satisfies

[f(x1, .., xn), xn+1]xn+2 = 0

which contradicts with

[f(a1, .., an), an+1]an+2 = [f(ea1, .., ean), ean+1]ean+2 �= 0.

Finally we study the central-case. We need to premit the following:

Lemma 4. Let R be a prime ring, � a non-zero right ideal of R and m a fixed integer m ≥ 1. If
f(x1, ..., xn) is a multilinear polynomial over C such that f(x1, ..., xn)

m ∈ Z(R) for all x1, ..., xn ∈ �, then
either f(x1, ..., xn)xn+1 = 0 for all x1, ..., xn ∈ � or f(x1, .., xn)

m is central valued on R.

Proof. Since f (x1, ..., xn)
m ∈ Z(R) for any x1, ..., xn ∈ �, R satisfies the non-trivial generalized polynomial

identity [f(ax1, .., axn)
m, xn+1], for a suitable a ∈ � − C. Suppose by contradiction that f(x1, .., xn)xn+1

is not an identity for �. Say f (a1, .., an)an+1 �= 0, for a1, .., an+1 ∈ �. As remarked above, there exists an
idempotent e ∈ H, such that eH = a1H + a2H + .. + an+1H, e ∈ eH and ai = eai for all i = 1, .., n + 1.
Thus, for any r1, ..., rn+1 ∈ R,

0 = [f (er1, ..., ern)
m, rn+1(1− e)] = f (er1, ..., ern)

mrn+1(1− e)

and, thanks to the primeness of R, either (1− e) = 0 or f(er1, ..., ern)
m = 0. In the first case e = 1 and H

satisfies [f(x1, .., xn)
m, xn+1], that is f(x1, .., xn)

m is central valued on H as well as on R.
In the other case, f(x1, ..., xn)

m is an identity for eH, and by main theorem in [7] we have that
f(ex1, .., exn)exn+1 is an identity for H. This last conclusion contradicts with f(a1, .., an)an+1 =
f(ea1, .., ean)ean+1 �= 0.

Theorem 2. Let R be an associative prime ring with center Z(R) and extended centroid C, f(x1, .., xn) a
non-zero multilinear polynomial over C in n non commuting variables, d a non-zero derivation of R, m ≥ 1 a
fixed integer, � a non-zero right ideal ofR. If there exist y1, .., yn ∈ � such that f(y1, .., yn) (d(f(y1, .., yn)))

m �=
0 and f(x1, .., xn) (d(f (x1, .., xn)))

m is a central differential identity for �, then either f (x1, .., xn)xn+1 is an
identity for � or f(x1, .., xn) is central valued on R.

Proof. Since � satisfies the central differential identity

f(x1, .., xn)(d(f (x1, ..., xn))
m

by Theorem 1 in [5] R is a PI-ring and so RC is a finite dimensional central simple C-algebra. By
Wedderburn-Artin theorem RC ∼= Mk(D) for some k ≥ 1 and D a finite-dimensional central division
C-algebra. By Theorem 2 in [13] f(x1, .., xn)(d(f (x1, ..., xn))

m ∈ C for all x1, .., xn ∈ �C. Without loss of
generality we may replace R with RC and assume that R =Mk(D). For any x1, .., xn ∈ � and r ∈ R:

f (x1r, x2, .., xn)



fd(x1r, x2, .., xn) + f (d(x1)r + x1d(r), x2, .., xn) +
∑

i≥2

f(x1r, .., d(xi), .., xn)




m

∈ C.
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If d is an outer derivation, fix d(r) = y, r = 0 and obtain

f(x1y, x2, .., xn)
m ∈ C, for all x1, .., xn ∈ �, y ∈ R.

By Lemma 4 either f(x1, .., xn)xn+1 = 0 or f(x1, .., xn)
m is central valued on R. In this last case, if

f (x1, .., xn)
m = 0 for all x1, .., xn ∈ �, as reduction of main theorem in [7], it follows that f(x1, .., xn)xn+1 = 0.

In the either case there exists b1, .., bn ∈ � such that 0 �= f(b1, .., bn)
m ∈ C, that is � contains an invertible

element of R, and so � = R. Hence we conclude by Lemma 3.

Suppose now that d is an inner derivation, say d(x) = [q, x] = qx − xq. Let F be a maximal subfield
of D, so that Mk(D) ⊗C F ∼= Mt(F ) where t = k · [F : C]. Hence the derivation d can be extended to
Mk(D)⊗C F and f(x1, .., xn)(d(f (x1, ..., xn))

m ∈ Z(Mt(F )), for any x1, .., xn ∈ �⊗F (Lemma 2 in [13] and
proposition in [17]). Therefore we may assume that R ∼= Mt(F ) and � = eR = (e11R + .. + ellR), where
t ≥ 2 and l ≤ t.

Suppose that t ≥ 2, otherwise we are done and denote q =
∑
r,s qrsers, for qrs ∈ F . If f (x1, .., xn) is not

an identity for �, then by Lemma 3 in [4], for any i ≤ l, j > l, the element eij falls in the additive subgroup
of RC generated by all valuations of f (x1, .., xn) in �. Since the matrix eij(qeij − eijq)

m has rank 1, then it
is not central. Therefore eij(qeij − eijq)

m = 0, i.e. eij(qeij)
m = 0. This means that qji = 0 for any i ≤ l and

for any j > l, that is q� ⊆ �. This implies that d(�) ⊆ �. Since 0 �= f(y1, .., yn)(d(f (y1, .., yn))
m ∈ � ∩ F , it

is invertible and � = R. Thus we conclude again by Lemma 3.
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Abstract. A study of composition operators between Orlicz spaces is made in this paper. It is shown

that if φ1 is not stronger than φ2, then no composition operator exists from Lφ1(µ) into Lφ2(µ).

1. Introduction

Let X and Y be two non-empty sets and let F (X) and F (Y ) be topological vector spaces of complex valued
functions on X and Y respectively. Suppose T : Y → X is a mapping such that f ◦ T ∈ F (Y ) whenever
f ∈ F (X). Then we can define a composition transformation CT : F (X)→ F (Y ) by CT f = f ◦ T for every
f ∈ F (X). In case CT in continuous we call it a composition operator induced by T. These operators received
considerable attention over past several decades especially on Lp−spaces and they played an important role
in the study of operators on Hilbert spaces. For more details about these operators we refer to Carlson
[1], Cowen [2], Feldman [3], Halmos [4], Komal and Shally[5], Rao and Zen [6], Singh([7],[8],[9]), Singh and
Komal [10], Takagi and Yokouchi [11], Whitley [12].

The main purpose of this paper is to study composition operators between Orlicz spaces.

2. Preliminaries

Let φ : R→ R+ be such that
(I) φ(x) = 0 iff x = 0 (II) lim

x→0
φ(x) = 0 (III) lim

x→∞
φ(x) =∞

Such a function φ is known as N-function. The N-function φ1 is called stronger than the N-function φ2 if
φ2(x) ≤ φ1(ax) for all x ∈ R+ and for some a > 0 . In this case we write φ1 > φ2 or φ2 < φ1. If φ1 < φ2 and
φ2 < φ1 then φ1 and φ2 are called equivalent functions and we denote it by φ1 ≈ φ2. Let (X,S, µ) be a non

atomic sigma finite measure space. Define Lφ(µ) = {f |f : X → R is measurable and

∫

X

φ(∈ |f |)dµ <∞ for

some ∈> 0}. It is well known that Lφ(µ) is a Banach space under norm ||f ||φ = inf
X
{∈> 0 :

∫

X

φ[
|f |

∈
]dµ ≤ 1}.

If we take φ(x) = xp, 1 < p <∞, then Lϕ(X,S, µ) becomes Lp-space.
A measurable transformation T : X → X is called non singular if µ(E) = 0 ⇒ µT−1(E) = 0. The

Radon Nikodym derivative of the measure µT−1 with respect to the measure µ is denoted by f0. For more
information concerning Orlicz spaces we refer to Rao and Zen [6].

3. Bounded Composition Operators Between Orlicz Spaces

In this section we characterize bounded composition operators between Orlicz spaces.

Theorem 3.1. Let T : X → X be a non singular measurable transformation. Then
CT : Lφ1(µ)→ Lφ2(µ) is continuous if and only if there exists M > 0 such that

1 Keywords and phrases : Composition operator, Fredholm operator, Young function, Orlicz space.
2 AMS Subject Classification : 47B38, 47B99.



60 B.S. Komal, Shally Gupta and Tejinder Kour

f0(x)φ2(y) ≤ φ1(My), for almost all x ∈ X and y ∈ R. (3.1.1)

Proof. Assume first that condition (3.1.1) is satisfied. Take f ∈ Lφ1(µ). Then

∫

X

φ1(αf)dµ <∞ for some

α > 0. For β = α/M, we have ∫

X

φ2(βCT f)dµ =

∫

X

f0φ2(βf)dµ

≤

∫

X

φ1(αf )dµ.

This proves that CT f ∈ L
φ2(µ) and CT is continuous.

Conversely, assume that CT is continuous. If the condition (3.1.1) is false, then for each n ∈ N , there
exists yn ∈ R and a set Fn of positive measure such that

f0(x)φ2(yn) > φ1(2
nn2yn) for all x ∈ Fn.

Since µ is non atomic, we can choose a sequence of disjoint measurable sets {En} such that for every
n ∈ N,En ⊂ Fn and

µ(En) =
φ1(y1)

2nφ1(n2yn)

Take f =
∑
∞

n=1 2
nynχEn . It is easy to check that f ∈ Lφ1(µ) but CT f /∈ L

φ2(µ). This contradicts our
assumption. Hence condition (3.1.1) must hold.

Theorem 3.2. Suppose φ2 < φ1. Then the following are equivalent:
(I) CT : Lφ1(µ)→ Lφ2(µ) is a bounded operator.
(II) f0 is a essentially bounded measurable function.
(III) There exist M > 0 such that µ(T−1(E)) ≤Mµ(E) for every E ∈ S.
Proof. (I) ⇒ (II): Suppose CT is a bounded operator. Taking y = 1 in the inequality (3.1.1), we find that
f◦ is essentially bounded.
(II) ⇒ (III): If f0 is essentially bounded, then

µ(T−1(E)) =

∫

E

f0(x)dµ ≤ ||f0||∞µ(E)

where ||f0||∞ is the essential supremum of f0. This proves the inequality III.
(III) ⇒ (I): Since φ2(y) ≤ φ1(ay) for some a > 0 and for all y ≥ 0. Now from the given condition
µ(T−1(E)) ≤Mµ(E) for all E ∈ S, we have f0(x) ≤M for almost all x ∈ X and for some M ≥ 1. Hence

f0(x)φ2(y) ≤Mφ1(ay)

≤ φ1(May)

≤ φ1(by)

for almost all x ∈ X and all y ∈ R. The continuity of CT now follows from Theorem 3.1.

Theorem 3.3. If φ2 �< φ1 then there does not exist any bounded composition operator from Lφ1(µ) into
Lφ2(µ).
Proof. Assume the contrary. Let CT : Lφ1(µ)→ Lφ2(µ) be a bounded composition operator. Then we can
find some positive integer n such that the set G = {x ∈ X : |f0(x)| ≥ 1/n} has positive measure. Let E
be a measurable subset of G such that 0 < µ(E) < ∞. Now φ2 is not stronger that φ1. Therefore we can
find a sequence {xn} in X such that φ2(xn) > φ1(2

nn2xn) and xn ↑ ∞. Choose a sequence {En} of disjoint

measurable subsets from E such that µ(En) = φ1(x1)
2nφ1(n2xn)

. Take f =

∞∑

n=1

nxnχEn . A simple composition
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shows that f ∈ Lφ1(µ).
But

∫

X

φ2(CT f)dµ =

∫

X

f0φ2(f)dµ

≥

∫

X

1

n0
φ1(f)dµ >

∑

n=n0

φ2(xn)µ(En) =∞

which is a contradiction . This completes the proof.

4. Fredholm and invertible composition operators between Orlicz spaces

This section studies Fredholm and invertible compositon operators between Orlicz spaces.

Theorem 4.1. Let CT : Lφ1(µ)→ Lφ2(µ) be a bounded operator, where φ1 and φ2 are two Orlicz functions.
Then CT has closed range if and only if there exists δ > 0 such that f0(x)φ2(y) ≥ φ1(δy) for each y ∈ R
and for µ− almost all x ∈ supp f0 = {x ∈ X : f0(x) �= 0} = (X0 say).
Proof. Assume first that the condition of the theorem is satisfed. For f ∈ Lφ1(µ), consider

∫
φ1

[ δf

||CT f ||φ2

]
dµ ≤

∫

S

f0(x)φ2

[ f

||CT f ||φ2

]
dµ

=

∫

S

φ2

[ CT f

||CT f ||φ2

]
dµ ≤ 1.

Therefore

δ||f ||φ1 ≤ ||CT f ||φ2, for every f ∈ L
φ1(S). (4.1.1)

Since Ker CT = Lφ1(X|S), it follows from (4.1.1) that CT has closed range. Conversely suppose, CT has
closed range. Then there exists δ > 0 such that

||CT ||φ2 ≥ δ||f ||φ1 , for every f ∈ L
φ1(S) (4.1.2)

For each n ∈ H, define

Hn = {x ∈ S : φ1

[ |y|

(n+ 1)2

]
≤ f0(x)φ2(y) ≤ φ1

[ |y|
n2

]
for y ∈ R}

Set H = {n : µ(Hn) > 0}. Let f =
∑

n∈H

φ−11

( 1

µ(Hn)

)
CTχHn . Then
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∫

X

φ2(f)dµ =
∑

n∈H

∫

X

φ2

[
φ−11

( 1

µ(Hn)

)
CTχHn

]
dµ

=
∑

n∈H

∫

Hn

f0φ2

[
φ−11

( 1

µ(Hn)

)]
dµ

≤
∑

n∈H

∫

Hn

φ1

[ 1

n2

(
φ−11

1

µ(Hn)

)]
dµ

≤
∑

n∈H

1

n2

∫

Hn

φ1

[
φ−11

( 1

µ(Hn)

)]
dµ

≤
∑

n∈H

1

n2

∫

Hn

1

µ(Hn)
dµ

=
∑

n∈H

1

n2
<∞

Using (4.1.2) we infer that f1 ∈ L
φ1(S), where f1 =

∑

n∈H

φ−11

( 1

µ(Hn)
χHn

)
. But

∫

X

φ1(f1)dµ =
∑

n∈H

∫

X

φ1

[
φ−11

( 1

µ(Hn)
χHn

)]
dµ

=
∑

n∈H

∫

Hn

1

µ(Hn)
dµ =

∑

n∈H

1 =∞,

if H is an infinite set. Hence H must be a finite set. In other words, there exists n0 such that µ(Hn) = 0
for n ≥ n0. This implies that

f0(x)φ2(y) ≥ φ1[
1

n20
y] = φ1(δy)say.

This proves the theorem.
Corollary 4.2. Suppose φ1 ≈ φ2. Then CT : Lφ1(µ)→ Lφ2(µ) is Fredholm if and only if CT is invertible.
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Abstract. we study Fl-extendiug ring and Fl-extending pseudo riug hulls for a class of generalized

2 x 2 upplr triangular uratrix rings. We construct an example of a ring which hae three distinct right

Fl-exteDding ring hulls with properties and behavior that can be quite difierent from each other' It is also

show, that the intersection of two right Fl-extending ring hulls is not necessaxily right Fl-extending The

example illustrates various properties of ring hulls and pseudo ring hulls for a certain type of generalized

triangular matrix ring.

1' Introduction

Throughout this paper, riDgs are associative with identity and all modules are assurned to be unitary'

Since the useful discovery of injective hulls in 1953 [15], for a given ring B, "hulls" or "minimal" overlying

structures havilg certail properties, have been of wiie interest' Although the injective hull, E(M), of a

module M is a mar<im"l 
"s."rrii.l 

extension of M, there may not be a rich transfer of information between M

and E(M). Ibr example, ,"t ,Vl : Zr@V'os (Zo and Zr" ienote the integers modulo 7'r and p3, respectively'

wlrere p is" a prime). 'fhen as a Zmod,rft, 
-E(M) 

='Z,p* @ Zp-.- O_bserve that M is finite, but E(M)

is not eveu finitely generated. This provides motivation to look for "hulls" satisfying conditions weaker

tha' i*jectivity which may then be 'Lloser" to the base module M and thus afford a better infor,ration

excha,ge between these lulls and the base module. Anrong the various generalizations of the injective

hull of a rnoclule, the quasi-injective hull [17], the continuous hull [19], [22], and the quasi-continuous hull

[16] have been defined and investigated.-ih.,s for M : %9_2o".!T above), the quasi-injective hull
'Hqt(M), 

continuous hull Irs".(M), ard quasi-continuous huli Aoe".(AZ), all coincide and are finite (i'e''

H,fl(M) = Henn(M): rr.ra*(ivr) : Zpz @ Zp')' 
seudo ring hulls which belongIn [9], [10], and [11], we have initiated a detailed study of ring and p

to uo 
"rUiir*y 

class Lf rings. In our work we have found that certain classes of rings are closed under

essential extensions. For extple, the classes of right Fl-extending and extending rings are closed under

right essential overrilgs and right rings ofquotieuts, respectively. Recall that a ring I is right (FI-) eatend'ing

iflvery (icleal) right ideal is essential in a direct summand of .R. Observe that injective =+ quasi-injective

+ coltinuous + quasi-coutinuous+ extending + Fl-exteuding. classes with the type of closure property
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[rentioned, highliSht the usefuheqs of the llull concept in obtaiDirg a descliption of all essential overings
flom these classes for a give, ring 8. See [12], [14] for deta s ou right extendirg rings anci arso see [sl, [-6]for detaG ou riSht Fl-€xte[didg rirgs.

In this paper, we des."ibe ring hull6 and p.eudo riog hulls from the class of ritht Fl-extending rings for
valious generalized triangular matrix.ings. Motivation for this 6tudy is Osofsky,s wel t<nown eximpli {20]of the genelalized 2 x 2 uppe! triangular matrix ring

P= (
Z4 2z,4 \o & ),

whos€ injective hull has no possible riDS nrultiplicatiou extending its 8-module scalar multiplication over B.
Among other results, v,,e Provide details of proofs of various properties of an example which exhibits three
distinct dght Fl-extendirg fing hulls of a generalized triangular matlix ring R havilg differeDt behaviols.
This shows that the iote*ectioil of right Fl-exteDding rin8 huls of a riu! ,R is, i, ge.eral, not a light
Fl-exteldiog absolute ritrg hull of .it. Our results provide a step toward tie characterization of tle right
Fkxtending ring or pseudo ring hutls for the class of generalizEd 2 x 2 triangular matrix rin8s.

A ring I iE cslled {oosi-Baer il the right aDuihilator of every noneurptjr subset of R is generated by
ar_ idempotert. See {4], [13], ard I2l] fo! details oD quaslBaer rings. Next, a fiug Il is called right siroagly
Fl-eatending if every ideal is esseDtial as a right idesl iD ao ideal ge[erated by a central ide'rpotert in rg.

An overring 
-T,of 

a ring.l? is carred a right essentiar oten ing of Rif gp is esseutial i'rp. For a modure
M' we use.4p les Mp and:44 ;< Ma (or simply,4.< M) to denote thai,4 is an e'sential submodule and
a tully iavariant suborodule of ,11, rcspectively. It M = R, tben :{ (!s .E (resp. A Sfls a, ,l 

=<es" 
6;y

denotes that /4 is riSht ideal (rcsp. left ideal, ideal) esseutial in E. For a module M. Oil,tl , u"a Z1U| *.
used to deDote the iDjective hull, aDd the singular subrrodule of M, respectively.

For a ring r?, we tet tr, detrote End(.g(Ba)). Also, for a ring R, Ceu(.E), I(n), aud B(ft) doaote the
cetrter' the Eet of all idempote't., aDd the set of a[ central ideurpotelts, respectively. Arso for a riug E,
Q(.8) delotes the Eaximal right ring of quotieDts of rB. Recall ftom [1, p.569], an idempotent e e E is-reft
(resp. right) semicentral i\ R iJ Re = eRe (resp, ei = e.Re). We 

"". SlJni ana S" 1R; for ttre set of all teft
and right semiceDtral idempotents, rc€pectively. Note that B(.R) = Se(A) n S,(,t) and if B is semiprime,
tlten B(P) = S(fi) : S,(E) [l]. For a riug B aDd a pqsitive iDteger n, 

-lr,tat"ii) 
and 

".(fi) 
denote the

a x n netrix riDg aDd the r! x ,I upper taiangula! []atrix dDg over R, respectively. For a aonenrpty subset x
ofa riug -R, la(X) and ra(X) denote the left and right. amrihilators of X iu E, respeciively. The syurbols Z
and z- with a positive integer n > I are us€d to denote the ring of integers and the ring of integers moduro
,r, respectively.

We u6€ €, 3:I, 63f,, qE, end qcon to deDote the classes of right exteading, right Fl{xteDdiDg, right
sttongly Fl-exteoding, quasi-Baer, atrd riglrt quasi-coDtinuoua riDgs, lespectivery. Idears without adjectives
"ri8ht" or "Ieft" meaD two-sided ideals.

2. Tbiangular matrix rings

I,, thi' s€ction, we study Fl'exte[ding ring afld Fl-exterding pseudo riug hur6 for a crass of generaliz€d 2 x 2
upper tridrgular matrix rirgs. we aasurne that arl right e6se[ti6l ovenirus of R arc in I6x;d idectil€ hull
E-(Ra) of Ra sud sll right ri.gs of quotietrts of i are subrings of a fixed uraximal right riDg of quotie,t'
Q(,?) of R.

Deffnltlon 2.1. (F0, Deffnition 2.1]) Let ,n deDote e class of rings. For a ring g, let S be s right ess€ntisl
overriDs of i aud ? an overriug of .8, Comider the followiDg colditioDs.
(i) s€f.
(ii) If ? e .t and ? is a subring of S. then I = S.
(iii) U I and I are subrinSs of a ring y aud ? € n, then S is a subring of ?.
(iv) Il ? € .( 6trd ? is a right ess€trtidl oveniru o, l?, thetr g i6 a sub ng of T.
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. If ,9 satisfies (i) and (ii), then we say ,s is a R right ring h,ullof R, deDoted bv o's(ft)' If s satisfies (i)

and (iii), tlren we 
""v 

S i" ti" i abroluti to^V right ing hutt of. R, deuoted by QX(E); for the '6 absolute to

e(.R) right ring hull, we use the,otation CI.e(n). If .9 satisfies (i) and (iv), then we say '9 is t\e A obsolute

right ring hutlof R,denoted by Qn(E). Thus when Qa(B) e{sts it is the intersectiou of all right essential

overrings of R iu 6. observe th'-t'ir'Atnl : o@a)' then Ori(R) : Q.,r(R)' Left sided versious can be

defined similarlY.

Definition 2,2. (i\I,DefiDitioD1.6]) Let9tbeaclassof riugs,6asubclassof fr,andr-aclasscontaining

all subsets of every ring. We say th;l 11 is a class detertnined by a property on right id'eals lf there exist a,

assignment D 6 : ,i -r I such tiat On(B) t {right ideals of E} and a property P such that 96(E) has P

if and only if E € A.
If.E is such a class where p is the property that a right ideal is essential in an idempotent generated

right ideal, then we say that .R is a 0-€ closs ancl use c to designate a o-€ class'

Some exarnples illustrating Definition 2'2 arc

(1) A is the class of riglrt Noetheriau rings, 06(8) : {right ideals of E}, and P is the property that a

right ideal is finitelY geuerated;" (2) Ris the class of regular rings, o6(R) = {principal right ideals of -E}' and P is the proPerty that a

right ideal is geueratecl by au idelnpoteut as a riglrt ideal;

(3) .6:ils,ono{ni:{"r(x) lA+x <R}, andPisthepropertvthatarightidealisgeneratedbv

an idelnPotent;
(4) € : o (resp., € : $:I),' o€(fi) : lI I Ia 186) (resp', os:(R) = U I r :< n))'

Next, we consicler generating a right essential overrittg in a class '6 from a base ring 'R and some subset

of ta. By usi,g equivalerr.u ."f,riorri, we call efiectively reduce the size of the subsets of tp needed to

generate a riglrt essential overring of R itl '8'

Deffnition 2.3. ([10]) Let fr cleDote a class of riugs alitl -I a class of subsets of rings such that for each 'R € ,4

all subsets of tR arc coDtainecl in I. Let C l;e a fi-C subclass of fr sucll that there exists an assigument

6€:rt+.rsuchttratda(ft)et(tz) anddu(R)(l) !RimpliesE€c,where6,g(E)(1):{h(1) €E(88) |

h € d.(E)). Let S be a right esseutial overri'g of .E arrcl p an equivalence relation on ds(B)'

(i) If 6€(R)(1) e ,9 ancl (R U 6a(8)(l))s € tf , then rve call (R U da(E)(1))s the C pseudo right rins hull

o! R with res.teet.to,S antl clenote ii uy n(c. S). If S = B(0,,9), then we say that S is a € pseudo right ring

n"" 
"(uf 

;rd-6(RXt) e s aucl (R u d6(E)(1))s € c, uren we call (E u d6(E)(1))s a t p pseudo risht rins hutt

ol R'with ,'"."1,"it' to S arrcl denote ii Ur' ;,0', ,, S), there dg(ft) is a 
"et 

of representatives of all equivalence

"i**, oip aua a(1n)1r) : {h(1) e E(ftn)lt e a[(n;]'-If s: E(e,p,'5), then we sav that s is a €p

pseud,o right ring hull of R'

Note that if q(E) : E(Ea) aud we take C: €, then bv [16] dc(^B) = I(6a) and (EUdc(R)(l))otal =

Qqcn"(E)'

The iudepenclence of DefiDition 2.1 aDd Definition 2.3 will be illustrated in Exarnple 2'10'

Tlrenextequivalencerelationispartictrlarlyinrportanttoourstudy.

Definition 2.4. ([10, Defiuition 2.14(i)]) (i) Let A be a ring aud let d q I(A). We define an equivalence

relation o on 6 b5' e a c if and only lf ce : eand ec : c'

ForasemiprimeringE,itwasshowtrin[11]thatthesubrin-g-BB(Q(s))ofQ(a)gencratedby.R
and B(e(R)) is a right Fl-extending aud a .1uasi-daer absolute to Q(E) right ring hull as well as the right

Fl-extending pseudo right ring hull of B as stated below'

Theorem 2.5. For a semiprime ring E, EB(q(E)) :Qrr(n) : @qr(E) : R($l'8(n))'

One of the importalt aspects of the study of ring hulls is the availability of transfer of useful iuformation

betwee' the base ring B ani a .ft, right ring hull. Our uext result exhibits this iuformation transfer between

E and Qqrn(R)
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Theorem 2.6, ([11, Lemma 3.1, Theoreur 3.2 and Theore* 4.12]) Let E be a se'ipdee ring. Then webave the followiug.

, .. t1)^t f,.p. !"e1 Coitrg Up and lDcomparability hbH between _R and O{rr(E); consequently kdiEl(ft) =kdin (Qqs(E)), where kdim (-) doaotes the classical Krull dimenaioo of a riag.
(ii) p(S) = p(Oq!s(S)) n 8, vhele p is a special radicat.
(iii) rg is right ?r-regular if aud only if Qq2e(g) is right r_reguLar,
(iv) R is vou Neumatrn regular il and ouly if @qs(g) ir von- Neumanu regular.
(v) rl is b-ouoded itrdex of oilpoteEcy at most a if and if Oqre(E) is bounded iDdex of nilpoteocy stntost n. In particular. .R is reduced if snd only ii Qoo1R1 i" .uau""a.

A !iE8 is called right Uturni [23] if it dgbt nousingular and right conoDainsular.

lTllsition 2..!: (11, Corollary 4.141) A reduced ring .R is right Utuni if 6nd only if AB(e(E)) =Q€(R) = Qic!"(i).
Let KR = {k e ta | ft(fi) G R}.(note rhat ,Ca is a subrirg of €3) and Sp = {e € l(ra) 

|e&e =-*cforall ,t e f,a). we use sf(r) ro denote ie e I("jlh;= eRe), where T is an over_

:::jr^:. 
,r5ti.f,rlT,"l:ppearin se\.erar or o,'. 

""",ri".' 
'ro.-"*"n,pr", ret a.= ?2(z), then

:i'o-'tl 
: 

t0' ( ; ; )) u t ( r. ;"). l': *l a'd (R! sI(Q(a))) o*, = (1 3 ) = o-,*, o*
fl0, Coroltary 3.9 iii)l), ",rr!* Cl' il the 6!ld of ratiouat nuurbers. Note tbat E(R = e@) = Matz(e) iEa-Bimple Artiuiau !ing, Hence there is vittually no exchange of iuformatiou rcfati\re to the ideal structuresof a oud Q(R) = E(Ea). However there b a fruitful exch"ig" u"r**;;t*Jd;i;i;ffiffi il::[:istructule6.

The followiug lesult relates sei€ral subsets of t2 which are important in flre sequel.
Progoftion 2.8. (, B(r.&) I s(ra) I Se E dr:(a).

l::l,lf- 
Z (!ll = 0, tlen Sa = dy5(A); heuce e e dyj(E) if audo yif oe(t) = e(1)ae(1) fo! each o € It(iii) Let ? be a right essential owrrjug of .E ande-e 

^Sf1f1. 
ffi i ?, tUeo thete exists trn Ses Basuch thai (et - fe)tre = (et - tl Le = O. Eeice le(et _ te) 7)2 

"=' g.'
(iv) A"esuare that I i8 s€hiDrime aDd f is a right riug of quotients of g. Theu Sf(") = B(O. IDpsrticular, sf(e(R)) = B(O(fi)i.

Proof.(i)Clearly,B(Ca)GSz(€e)ESc.LeteeS4.Takea€gandleto.:En-+gRwitho((r)=or
for r€ .n. rheD there js / e ra such ibar /la =";. 6; i;;;.;;i;; 

"fi 
n tt with o € E. rhen

o(e(a)) = ot?@)) = (fe)(o) = (el e)(r) = e(cle(r)) e eR n R.

Thus ein I :l R atrd (er9 n g)a 56 e&p. Heace e e d37(,t).
(ii) I,6t e € dJ,(fi). Then there exists X _< E sucb that X4 !e$ eRp. Let J = {r e X I e(r) e X}.

Tlotr.J.{.Se88 .Ra. Tbke & € fp. We caD s€e that ((l _ {e;(J) = 
jJl etrtet"rt) S ((r _ e)rXX) =(t - e)(i(x)) = (r - e)(ft(r)x) c , - e)(x) = 9,. 

rl* z(i;-: i, iietil^l'= b l)i t _;;':;.
consequeutly, e.€ sa and dr:(R) G sa: By part (i). sn = riJ;il ii*" ii ,a such rhat .fla = ar as inp8rt (i). Floo, rhe fact th8r e(R) = E(,Ra) and 1ro, L"n." i.rb1i1i11, ."iil = f"frl = "y"1rj = "1*1r11 =e(loe(r)) = e(l)ae(t).

(iii) FiEt assuee that d-te = O. L€to € &. ThetrO = (er_re)re = etae_teue = etae_t e= (ett)ae.Thus the rssutt hold6 for , = B. Now as6uEe that et - te * O. Therc exi.sts XE <es ER such that0l(a-te\x 98. L*o€x. Then (a - u)* = e(a _ ieyir. = i|"'_)r*" = etae _ etxe : 0. Aho(et - t)ze = etae - tte = etae - teae = (el_rejre=ol So,r,Jl"ririia" io, z, = x.
. (iv) Iret e € sr(?). siuce ? is a right ring of quotieDts of E, tu" ip-io parr (iii) caD be takeD to bede_ue in 8s. TheE, by part (iii), e(er -ie) = o: So; € s,til. S]r* i lr'*_iprime, S,(I) = B(T). Thussi(r) _c B("). Ctearry, B(r) q sf(r). rrrerefore sfirl = ifiJ.-- 

- * *" 
o

Plopo6itiotr 2,8(ii) i8 useful iD cslculatiog dp(g) for a rcnsingular rilg .8, ss in Exanrple 2.10,
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Recall from [3] tbat atr ordered set {dr,.. .,b.} of lorzero disti'ct idernpotents iu a riDg E is called a
set of le.ft tridnWlating idelnpotents of R i! all of the followitrg coDditious hold:

(i) 1=01 + .,. + 68;
(ii)h€S,(8); aod
(iii) 01..1 e Sr(cr8ct), where c* = 1 - (h +. . + 6r) fo! 1 < t < n - 1.

Similarly we de6De a set of ight tiewlLtathg idelnpotents ol R using condition (i), h € S,(E). end
01.'1 € S,(c1Ec6). From part (iii) of the above definition, a set of left (right) trian8ulstiDg idempotents is
a set of pairwise orthogonal idempoteflts. A set {61, . . . ,6"} of left (right) triaDgulatilg ideurpoterts is said
to be complete if each di is also .€miceDtral reduced. Note that if R is Abelia[, theu a complete set of left
trianSulating idempotents is a complete set of primitive idempotents.

Observe from {3, Corollary 1.7 aDd Theorem 2.101 thst tlre Dumber of elements in a contplete set of left
triaDgulatirg ideurpoteuts is udque for a gireu ring B (which h&s such a set). This is also the Duurber of
elements in any complete set of riglrt triansulatiru idempoteuts of 8. This motiyates the followinS defiDition:
R l\as trianrylating dimension fl, 'rritten 7 dirn (A) = ", if R has a conplete 6et of left triaryulatiug
ideurpoteEts with exactly n eleureuts. Note that .E is seDriceDtral reduced il aud oDly if Z dinr (E) = 1 If
B has no complete set of left triaDgulatios idempoteEts, ttren we say .R has iafaife trion$tlatirlg dirnenliot|,
denoted 7 dim (,R) = oo.

Also fronr [3], a ring .R has a geaeratized tiongtlor mahia rcprelentation if there exists a ling isomor-
phism

69

;)

/R, R'
lo R,*=l , :

\o o

where each Ei is a ri[g aud each r;.; is au (.R., .E;)-binodule a'd th€ mstrices obey the usual rules for matrix
addition &nd multiplicatiou. The geueralized triaugular Bratlix represeutation is called complete if each ,Ri
is semicentral reduced. By [3, Propositio. 1.3], n has a (complete) set ol Ieft triaugulatiDg idempotents if
and only if-R has a (complete) Seneralized triangular matrix r€pre6eDtation. Flom i3, 

proposition 2.14] one
cau see that most of tbe staudard fiDiteDess couditions imply fiDite triangulating dimemion.

In the rcmainder of the paper we focus on the cla€ses qE, trf, and gFf, ard on generalized tri.ngular
mat ces of the ,... ( f Y ), 

where A is a rine and M is att (:4,,4)-bimodule.

Proposltion 2.9. (U0, Pmpo€itiol 3.15]) Let AeSX, M =W = $i=rAi, Ai =:{ for each i, and S a
subriug of W cortairirg D = ((or,. .. , a") € I/ | for sorne o e A,o,i = a for all i = 1,...,n). Then the

riaer= (T Y )*.r,rhtFl-exteudingrightriughutlofn= (; Y )
The [ext example illustrates PropositioD 2.9 as w€ll as l.rious properties of ring and pseudo ring hulls

for a type of generalized triangular ,'attix riugs of the fornr o, which we focus in this paper. The example
was meutioned iu [10] but fot brevity matry detail. and 6upporti'g calculation. were o[ritted. we Dow
prcsetrt additional properties of tltis o(arnple with supportiDg calculations for the new ploperti€6 as well as
those xqeationed in the afolerneDtiotred earlier papere [10] aod [t1].

Exemple 2.10. Let ,4 be a ring and R = f 14 '4 O / \
(i) UsiDg [8. CorcUary 1.6 

"ua 
rleo."],3.r, * tJ tbat p is not right Fl-€xteDding for any choice

of,4; however if u{ is quasi-Baer theD -R is quasi-Baer.

(ii) Flom Propositiol 2.9, if/ is right Fl-extenditrg, thenwe cansEe thar H. - ( A@A /e/4 \ '.
a rislt Fl-extendiog right ring hull of R, vhere we idertify r4 in ,lr" tf , f n*frf.llf\ ,r,ll *" "flrtf i/4 e ,4 whose elemerto are of the form (c, o) for a e :4. Again, by [g, Ttreoreur 3.2], if A is quasi_Baer (but 

-not
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Decessarily right Fl-exteudiDgL then .[/1 is quasi-Baer. HeDce if -4 is right Fl-extending ring wlfch is a].so

quaslBaer (e.g., .A is right Fl-€xterdiDg aDd either semipli[re or right lrollsingular, see [10, Proposition6 1.2

and 1.3]), then 4 = Qoo(E) 9Qa@) = Ht.Ir particular. if A is a simple dornain which is trot a division

riug, then E is right aud left Dolsiugular and quaslBaer; but R is reither Baer, tror right Fl-exter(liug, nor

left Fl-extendinS {5, Example 4.111.

(iii) We have the followiug ring isomorphisms:

(1)d:a-+{(: ; l)'''''''",.}dennedbv'l(; 
(";') 

)l = (l ; l) "'
e,: H, "+( 

S f 1) 
o"o*oo,'[('1'''";'' )] = (l I i) i hencerorthweiderrtirvF

with O(-R) and fir with fi(flr).

Q) A2 : Hr -+ Ilz defined bY

( / o+b a t\ )
*r,-" n, = ll o 0 u lla,6,c,r,v€,1 !. lot" that ltat3(,A) is s right ess€ntial overri,g of- [\ o o;l )
E. So when .4 ls ;ight Fl-eitending, ff1 and II2 are distinct ri*ht Fl-extending ri,ht ring hulls of -E 6uch

that B = Ilr o llz. Thus, in general, the intersection of dght Fl-extending right ring llulls is not a right

Fl-€xteDdiDg absolute li8lrt ring [ull

We use Ei5 to denote the matrix in Mat3(,4) with I irr the (i'j)-position end 0 elsewhere

(iv) Note that Hr : R* Et 8. Siuce 811 e st(Ilr) n 6s:(E)(l), F/r is geDerated a-s a ring by I aud

a subset of St(I{r). FYom [10, Lemma 2.22], taking d = {Err}, there exists an equivalence relation p on

d31(E) such that I1l is a right Fl-extending p pseudo right drrg hull of R
(v) Now assume that .4 is a divisioD tiug. Note that Q(8) = Mat3(.4).

(l) usitr8 PropositioD 2.8(ii) we can show that the DoDtrivial elerrents of ft1(.8)(1) have the following

form:

.[(lll)](:"r"'')

" (i: ;)- (is+)- (i:;)" (i Is)
atl \

",2'{ 
t - "r,)or 

,)

,,"(i : l), -"(l : I), ""(i i l)"(i i

/0 m mn \ / an an
,u=lo t , l, 16= { c,2r(l-a11)orr l-arr

\o o o / \ o o

with b,c,d, J,g,h,h,n e A; e,n,aL;Q - orr) e Cen(A); h l0,m l0,a12l O, aDd orr - o?r I 0'

(2) We see that ,a = A(A) Gr"e isomorphic) sircn Z(Rfi = 0. Hence we ideDtify d3x(R) with

d37(E)(1). Using DefiDition 2.4 ald Part (1) we calculate:

o\
sl

ife = 0 in c2, theu s2Qs4i if e I 0 iu J2, then 62ds5 if aud only if e = rn-t; and ssctso if ald only if
oi2r(l -orr) =m-r. 

/A A A\
(3) Nore rhst a(S1,0(P)) =l o o,4 I I Mah(A) =Qq€(ft) =E(aR).

\o o,r/



Ring hull"s ol generalNzed triang lar mahis rtngs

(4) Using (l) aud (2), it caD be seeD urat Ii1 aud If2 are ploperly contained in
n@) = n.R(SJ,a,Q(E)). Thus, w€ have right Fl-extending right riDg hulls prcperly contained in the
iDters€ction ol all right Fl-€xteudiEg o pseudo right ring hulls.

_ (5) Sioce {qr + E2b &r3} aqd { Er r, &2, .Es3 } are complete s€ts of left t.iangulatiDg idemporetris
for E and flr, rcspectively, it follows that 7 dim (A) :2 < 3 = Z dim (IIr).

(6) Note that .R. Erl n -R = 0 and En € }Ir E Mat3(.4). So both Il1 ond Mat3(.4) are not left
riuts of quotie.ts of R. Hence even wheD I is reft a,,d riglrt uonsingular, B nray have q.asi-Baer right lings
of quotients which ere Dot left rings of quotieDts.

(vi) Next assume that .4 is a field. Let

we will show that under certain conditioDs on ,4, ri3 can be a right Fl-extending right ring hull of .B such
that II3 is not SeDelated by .R and any sub€et of dp(A)(t), and 7 dim (ilr) = 2. Horvever, under celtain
othet co[ditions otr /, II3 has behavior similar to II1.

(1) If 7 is an iltermediate rinS betwee! r? and lls, then _E = ? or T = Ir3. In fact, assume that

R/r. rhen thercexisrs ('It : i ) ."**thar r+0.
\ o o;l

'*"(r B i)" *'("i' ; i)," n**("1' ; :)=
/c o .\ /b b o\ /btd o o\

[: ;:/.Ill:/( : ";" l)., rlererorer=r/s

- . (2) ftom parts (v)(l) and (v)(2), ir can be seen that s6 is the ot[y possible t]?e of element from
631{B)(l)whichisnotinRthatcaDpossiblyb€itrIl3,Weseethats6€.E3ifandontyifol2A(l_olr) =arl
and ari( I -orr]ar^r = or2 ifand only if op=2ay-1and (1 - c11)o11 = o?z ifond only if all the solutions
of the equation 5r2 - 5r + 1 = 0 are in A.

" = 
{ 

( 
"i"; 

i)' "'''"''',' ^l

(3) .tI3 can be writteu by the generali?€d triarrgular uratrix n * ( |" \0 )

:'l:*'.= {( ";' : )'"'u"} isariDsiaDd 
" = {( ; ) r""} n''''',0'.,"0'"*o"

2dinrensiorral vector spsce over ,4 aDd BM is faitbful.

Flom 18, Corollary 1.6] ard part (vi)(t), f3 i6 a right Fl-extending right ring bull of g ii and only if
either:

(a) 6M,a has 0 as its only proper (.B,.4)-bisubmotlule; o!
(b)there exist 0* BNeS sMaaDd,f et(B) such thar N = rM aud dim (-tr'1) = t, where dim(_)a

is the vecto! space dimeasioo over the field .4.

For example, if .4 = Zr then sM1 has 0 es its only proper (g,.4)-bisubmodule. Hence Ir3 is a right FI_
exterdiDg right riDg hull of E. By palt (vi)(2) Il3 is not generat€d by g and auy subset of 631(A)(l). Thus
Irr is rot a light Fl-exterdilg p pseudo dght riug hull of R for a.y equilBr€rce reration p on a31ii!. sio""
lEn-l Ezz, Estl is a complete set of left triaugulating idempoteuis fir Il3, we have that f aiii{l = Z.
Thur Ify and II3 are uot iso&orphic as dngs when A = Zz because I dirrr (II1) = 3 in part (vXsi.

(4) Assume that char (-4) l2 aud char (.,{) 15. Then the following conditions are equivalelt:(') y'S e 'n'
(b) fl3 coutaius an eleruent e e d31(R)(1) such tlBt e E g.
(c) there existE 0 I aN,q ! aM.A such that diEr (Na) = l.

M
A



Proof of (a). (a)+(U) Assume that r,/5 € /. Using part (2), we take

/ (i+ Jt)/to ,/5/s o \
":l \fbft (b-/5)/ro o l.\ o o ol

Tlren e e Hsndstr(n)(l) and e ( fr.
- (b)+(a) By part (2), the equaiion 5r2 -5t + 1:0 has all solutions in.A. Hence the solutions are

(5 + /5)/lo aucl (5 - ,/5)/to.so /5 e a.

(c)=+(a) Assume that there exists 0 I aNe 3 BMt,such that dim(Na) : 1. Let 
{(l; )} 

t"
a basis for N4 aud a,D € A. Since N is a (B,A)-bisubmodule of 8fu14, there exists c € A such that

(';u I)(:,;) : (i;)": (n ) 
Hence(o+b)'v1 +btz- cJ1 and b1,*a1z:c'v2 Note

that the previous equations irnply that both ?r and 72 are nonzero. Furthermor'e by elimination of 72 and

cancellation we obtain c2 +(-b-Za)c*(a2 +ab-b\:0. Then s: (ba2a*r/5)12: (2a+b(l+Ji))12.
From&zr :@-a)fu,we har.e 61r:(2a+b(l +,/S)-2")/Z)gz. So'y1 : (t+rt)fi)tz. Hencewehave

u*, ((, +'/5)/2 
)"r (,'-"8)12 )ir"u*i,forN4. 

rrrerefore ,fre,a,.

t 1t + 
'/s) /2 ) r. ,n", a routiDe a,rSument shows that N is a (B, A)-bisubrnodule(a)+(c)LetN=( , /

of BMt and dirn(Ne): t.
(5) Assume that char(z{) 12, char(A) f 5, and Ji e e (u.8., Zrr, Q[fr], R' etc.). Then:

(a) rrs is a rigrrt Fr_exte"d*c/.icdy,.Xl)ii * *.,/rl,

(b) II3 :ft+eR, wheree: l,/5/5 (5-,/5)/L0
\00

(c) " € Sr(IIl) aud {e,/, Ess} b a complete set

/ $_,,fil/Lo _,/il| o \
where / = | -'/5/5 (5+ \,B)/LO 0 I. Hence Tdim(Ir3) = 3.

\ o o ol
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€ dstr(l).

ft triaugulatiug idempotents,
t)
of Ie

Proof of (5). Bypart (vi)(a),theonlyDoDz,eroproper(B,A)-bisubmodule of. aMt*" ( t' + '/5)12 
), 

,"0

(o-\/il/2 ),,,u"
tto 

o {lA\no) *o ,, = ( " -ff)!* ai{./rf,,o)o:("./#
rhen /1M = (,'+'/5)/z )r"ro lzM = ((1-l5)/2)o. *"*part (vi)(3), fi3 isaright Fr-

extending right ring hull of L
(b) and (c) These parts cau be verified by routine calculations.

Flour part (b) and [10, Lemma 2.22], taking 0 : {e}, there exists an equivalence relation p on dp(.R)
such that fls is a right Fl-extending p pseudo right riug hull of B.

(6) Assume that char(.A) { 2, char(A) I 5, and Ji / A (".g., ,{ = Zs,27, Q, etc'). Theu:
(.) Ire is a right Fl-extending right ring hull of fi;
(b) I/s is not generated as a ring by B and a subset of dp(E)(l), hence II3 is not a right

Fl-extending p pseudo right ring hull of R for any equivalence relation p on dp(E);
(c) Irs g E(Sl,Q(fi)), but IIs ( fl.8($l,a,Q(it)).
(d) {81 * Ezz, Eeel is a complete set of left triaugulating ideurpoteuts for .I13, hence

7 dim (.EI3) = 2.
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Proof of (O). (") This follows frorn parts (r'i)(3) and (vi)( ).

(b) It is a consequence of part (iv)(4).
(c)-(d) These parts follows fronr routine calculations'

It is worth noting that the deterurination of whether or not the riglrt ring of quotients of.R, f/3, in
Example 2.10 is a right Fl-extendiug p pseudo right ring hull of R depends on whether a certain quaclratic

equation is sohable or not in .4.

Theorem2.11. Let 0leeI(A), B:eAe,anclX-<AsuchthatXe eA. Take h:(i 1)\U A/
(i) A is quasi-Baer if and ouly if B is quasi-Baer (i.e., 6 : Qqr(B)).
(ii) Let A be right Fl-exteuding and X4 (ess eAa. Theu

(a) E is riglrt Fl-extending if and only if sX is faithful.
(b) If A has DCC on ideals aud eA < A (".g., if A is right strongly Fl-exteuding), then QS:(R)

exists.

Proof. (i) This part is a direct cousequence of [8, Theoreur 3.2]'

(ii)(a) Assume that .E is right Fl-extendirrg. By [8, Corollary 1.5], ts(x) = tB = teAe for some

.f € S{(B). Inthiscase tB(X): feAe= 0. For, if feAe l0,then feael0forsomea€,4. So

0l feaeA:efeaeA, hencee/eoeAnX lO. Thusthereexists0l r =efeaeb € X withll e A. So

Q = fx : fefeaeb: feaeb: ,, a contradiction. Therefore 6X is faithful'
conversely, suppose that sx is faithful. Let sNa S axe. Now take o € ,4. Then aN : aeN e X e

e-A,soaN=e1LeNgBNeN.HenceN<.4.Thusthereexistsc:CsuchthatNlSesscA,4.Take
f:ece.Then(;- 12)X:(ece-eceece)X:e(c- ceec)eX:(c-cec)X:(c-c2)X:0.SinceaXis
faithful, f ei(B). Notethat fX:eceX=ecX:cXe cAandalsonotethatN:cNe cX' Nowsince

N.q (ess cAe,it follows that Na ("tt cXa: lXa. Thus by [8, Corollary 1.6], E is riglrt Fl-extendiug.

(ii)(b) We see that seA is faithful, heuce ( f, "f ) 
is a right Fl-exteu<Iing right esseutial overring

of R. Let Yt<eAe. Thel notethat Y <Aif auclonly if BY ! Y. Toseethis, notethat e€ Sa(A),hence

AY.: AeY : eAeY : BY. This part is now a consequence of part (i) and the finiteuess coudition on A.E

Inourrernainingresultsthering": (f f )*rrplayacrucialrole. 
Weobservethatthisisthe

sDecialcase "f( l {),rTneorem2.ll,wheree:1. NotethatfromTheorem2.ll(i), (* T ) is"'\0 A)-' ---"'\0 Al
quasi-Baer if and only if A is quasi-Baer.

Theorem 2.12, Ler Abe aright strougly Fl-extendiug ring with DCC on ideals and Sz(/) : B(,4). If
/ A X\
\U A/

Proof. There exists e € B(.4) such that Xa Sess eAn. *"* (f

73

eA
A

is a right essential overring of

(l-e\A 0 \
'' o-'" (l - e)A J 

are riclttB. Also e.A has DCC on ideals.

strongryFl-extencringrings. rhus (t 'l ) = ( "f Zi).( 
t';"'' 

(r -0")A ) 
tarishtstrongrv

/ eA eA\.
Fl-extendiug riug siuce ( ; ; ) 

is a riSht strongly Fl-extending ring by [8, Theorem 2.8]' The result

is now a direct consequence of the fiuiteness condition on eA. tr

Examples of right strongly Fl-extending rings A with S2(A) : B(A) include: (1) right strongly FI-
extending QF-rings [18, p.421, Exercise 16] (e.g., Matn(Z^)); (2) Abelian riglrt Fl-exteudiug rings; and (3)

semiprirne right Fl-extending rings.

Flom [11, Definition 2.1], a class of riugs is au f,C class'if IIC is the O-€ class with Orc(R) = {X -< 
R I

x n (.R(x): 0 and (R(x) n (.R((.R{J{)) :01.
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Proposition 2.13. Let ,4 be a right strctrgly Fl-extending ring and X :-1,4. Then the followiDg co[ditions
are equivalent:

(i) /1(X) : sa 1o, 
"otDe 

e € I(/).
(ii) tA6) = cA for some c e B(:{).
(ii, 1,4(x)nx:0.
li"' ( f I ) isrishtFl-extending'

(v) X € o1c(1).
Proof. (i)=+(ii) Assrme that ttt(X\ = e,l for some e e I(.4). Since IA(X) 3 A, it foUows that e €
S1(,4). Again si[ce ,4 is right strongly Fl-exteDdin8, therc is , € S1(A) such that Xa les J,4^. Note
that /,4n(1 -e),4=(l-e)f.A and (l e)f e I(,4) hecause 1-e e S,(.4) and, € Sr(A). TrrN
xA<6s(1 - e)fA,a <""" lAo.So(t e\IA: f A (i.e.,(1 ,e),4n/A:JA). Therefore JAe i.1-e\A,
henceX! lA9(1-e)4. Thus it follows tbat l,a((1 -e),4) I leUA) 9le(X), so Ae e A0- f)9eA.
Florr.4e 9 .4(1 - f), we have that e, =0. Also from,4(1 - l) 9eA, we have that 1-.f = ea for some
a €,4. Herce 1--f = e(1 - l): e-"1. Since e/:0, it follows that 1-J = e, so, = 1-e. Thus
7 - e = I e S!(,{), helce e € S.(,4). Therefore e e B(.4).

(ii)+(iii) It is obvious.
(iii)=+(iv) Let 1, N:1 ,4 with N E X and IX C N. SiDce.4 is right stroDgly Fl-extending, there exjsts

De S2(.4) such that Ne Ses 6/e. Also I:bI@(1 -b)1. By 12, Lemma2.1l, (1 -b),{(t-D) is right
Fl-extendiDg. Hence (1 - 6)I,a les c,4e e (1 -b),4 forsomecel((1 - 6)2{(1 b)\. Let f: r+c. SiDce
bc-- cb=\ l=12. AIso IgJ,{andNE Xn(r+c)i{: (6+c)X =bX@cX. ThusN!DX,so
N1 16 bX,a. Now (1 -b)IX_CNn(l-6),4:0. Thus (l , D)I ( la(X). Stuce la(X) n X = 0, we trave
that 0 : l(1-D)InXl1 3es(c,{nX),a=cX.SocX=0.ThusN43sDX4=bX+cX=(b+c)X=lX.
ObseNrc tlrat blA(X) = 0. Otherwise, 0 + blA(X) n N e fA(X) n X = 0. So by the modular law, *'e have
that

r.\t.A(x) = [r1o (1 - b)r] nl,4(x) = (l - b)r o [6.r nl,{(x)l g

lt-b)r +b{.A(x) = (1 - 6)1.

Now /An11(X) =,(b+c)ta(x)=ble(X\+cleq)=c(.a(X)lcA. Since Inll(X) gJAnlA(x\rcA
ard (1 - b)I,a 5N c,4e, then lI a ta(X)]e 5es ll.{ n l,a (X)],r. Consequentty, [8, Theorem 1.4] yields the
re6ult.

(iv)+(i) Using [8, Theorem 1.4(2)], take 1= 0 and N = M - X. Then there exists f € I(A) such rhat
Xa 3e* fXt ana O = 11 n l,q(X)le 3es [J,4 n l,a(X)],r. Herce Xota(X)g fAntA6) =0. since A
is right Fl-extending, therc exists e € I(4) such that /,r(X)e J6 eAl. Now teke ea € eA witL a € /, If
eal la(X), then eao + 0 for some, € X. So therc exists r € / such that O + ea$ e l1(X). But since
eour e Xt we Bet a coDtradictiou because lAq)nX -0, Therefore le(X) = eA.

(iii)<+(v) This equirzlence follows frorD (ii)<+(iii) and the definiiion ofO76(:{). O

Corollaqr 2,14. Ler ,{ be a semipdme rins sDd E: ( f i ),vl** " 
n r.

(i) ,l? i6 right Fl-exterdiDg if aod outy ii u{ is right Fl-extendirg.

(ii) Let ? deDote the idempoteot closure of .A (i.e.. 
"= 

AB(Q(A))), and tet S= ( I f'; tO",
s = ft(8r, rt, Q(a)).
Proof. (i) Assume that t? i6 right Fl-exteDding. Then by 18, Theorem 1.41, / is right Fl-exterding.
Conlnersely assume that,4 is right Fl-extending. Then rl is riSht Fl-extending from {10, propositions 1.2,
1.3] and PropositioD 2.13.

(ii) Since f is a right ring of quotients of -A, I is a riglrt ring of quotients of B. Tbe proof that
,9 = A(S:, o, 8(.R)) is snnibr to the proof of U1, Tlteorem 5.10(ii)1. tr

Note that Theorcm 2.15 aDd Corollary 2.16 shoa the generality of Defiuitio[ 2.1(iii) atrd that ]IJ€ may
get some "absolute" exteDsion of a plope y to overriugs which are beyond right esse[tial overriags since
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": 
(f f ) 

isriglrtesseutial hT2(A)if artdonly if X isright essentialin/'

Theorem 2.15. Let A be a right strongly Fl-extencling ring with a complete set of centrally primiti'r,e

idempotents {"r,...,""} and S7(,4) : B(A). Then the following conditions are equivalent:

(i) tA(M) I 0 for all marcirnal ideals M of A.

(ii) foreach O+X 3A,R=(t ;) n*.riglrtFl-extencliugabsolute toT2(A)riglrtriughull,

O[il')ta):(t "l ),*r,"r" 
e=Djetciancl"Iq{1,...,n}such thatcjxl0foralljeJ.

Proof. (i)+(ii) First note that there is / e B(A) with Xe <"* .f.4e because A is right strongly FI-
extending arrd S7(,4) : B(A). Since X; < eAe,Xa <es efAa. So e/: /, hence (D14c1)7 :
Dietcif : I. If there iscif :0forsoure i € J, then0: crfX: ciX,a contradiction. Thus
cif l0 for each j e J. Since c; is centrally primitive and 0 I cil e ciA, it follows that cjt : cj. Thus

l:.1 :Dietcif = DTe.rcj =e. HenceX4 <esseA4. Therefor" (t "i ) 
isarislrtesseutialoverring

of E.

It X: A,we are finished by [5, Corollary 2.5]. So assume X * A. By PropositioD 2.13, ( t "l) 
"

riglrtFl-extending. LetY(AsuchthatXe Yand *:(t \)isrightFl-extendiug. Firstassurne

that Y ! eA. Let cpY :Y1" and c;..A : At for all ,t e {1,...,n}. Note that there exists i e "I such that
0 * "iY ! ci.4. So there is a ma>cimal ideal Mi { At such thaf Y e Mt.

By Proposition2.LS, {,/Y) : bA: @i=(a*(Yy) for some 0 € B(A). So l1o(Y;) : b;,4t for some

br € B(Ar). We see that Mie(1 -c,),a is amaximal idealof A. Hence 0 * (,.q(M;e(l-c1)A):
le(M)r\ Ai: ten(Mn) e te,(Y).Since A; is indecomposable, /a.(Y;) : .r4r. Hence Yi : 0, a contradiction.

/ ^ "f ). No* assunre that Y is not necessarily contained irr e.4. Since W €SX,ThereforeAsr(R):(; A /
the above argurneut shows that W : Qn(W), so Y = y.4 where U € B(.4). Then Xa <ffi eA OgA:
eyA: yeA : eA gsA :y.Therefore O3(^)rAl = ( t'i )

(ii)+(i) Assume that M is a ma:<imal ideal of A such that h(M) :0. By Proposition 2.13, (t y)

isrightFl-exteuding. Byhypothesis": (f X):qT)@)@1. HenceM :eAforsornee€B(.4), a

coutradiction. Therefore (n@) l0 for all ma:<imal ideals M of A. tr

observe that in rheorem2.r5, o!,(o\{il= (o"{( ; ; )})o;,,,,,r,,,,,

(; ;)€s{(83(r)(^E))

From [10, Lemrna 2.22(i)l,takius d = {( i 6 )i,,r*. 
exists au equivalence relation pon ds1(R)

suclr that eTi@ @) is a right Fl-extending p pseudo riglrt ring hull.

Recall from [18, Corollary 8.28], a ring ,B is right Kosc[ if the left annihilator of every ma:<imal right
ideal bf E is norrzero.

Corollary 2.16. Let A be a right strongly Fl-extendiug ring with a conrplete set of ceutrally primitive
idempotents {cr, . . . , q,} and Sa(A) = B(A) (e.g., a local right Fl-extendiug ring). If A is right Kasch and

X < A,theDr?= (f X)u*arightFl-extendilgabsolutetoT2(A)rightringtruu,qp(A)1R; 
:
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(t "l ) 
where e = !r., c, and J ( {1, . . . , n} such that crX I 0 for alt i € J.

Proof. Let M be a maximal ideal of ,4. Therc exists a maximal right ideal f of .A with M e Y, Hence
0 + fAV) e IA(M) siuce .4 is riEht Kasch. Now the result follows ftom Theorem 2.15. O

'We rcmark that iD Theore[r 2.15 alrd Corollary 2.16, Q]('){R) i" rtglrt strongly Fl{xrending (see the
proof of TheorerD 2.12), so it is also a right strcngly Fl-exteDdilrg absolute to ?2(,4) right ring hull of fi.
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Abstract. In this survey paper, we present an historical account on derivations, (θ, φ)-derivations,

Jordan derivations, generalized derivations, generalized (θ, φ)-derivations, generalized Jordan derivations

and other kinds of derivations in rings, based on the work of several authors. Moreover, recent results as

well as some possible directions for future researches on the subject has been discussed in details. Finally,

some applications of derivations have been given.

1. Introduction

Ring theory is a showpiece of mathematical unification, bringing together several branches of the subject
and creating a powerful machine for the study of problems of considerable historical and mathematical
importance. Rings with derivations are not the kind of subject that undergoes tremendous revolutions.
However, this has been studied by many authors in the last 50 years, specially the relationships between
derivations and the structure of rings.

One of the natural questions which often appeared in algebra and analysis is whether a map can be
defined by its “local” properties. For example, the question whether a map, which acts like a derivation on
the Lie product of some important Lie subalgebra of prime rings, is induced by an ordinary derivation, was
a well-known problem posed by Herstein [112]. The first result in this direction was obtained in unpublished
work of Kaplansky (cf. Herstein [112], p. 529), who considered matrix algebras over a field. With the
presence of idempotent, this question has been examined by Martindale [168] for primitive rings. Herstein’s
problem was solved in full generality only after the powerful technique of functional identities was developed
(see for example; [25], [27], [30], [54], where further references can be found). In the year 1993, Bres̆ar [48]
solved this problem for prime rings. Further, Beidar & Chebotar [28] solved this problem for Lie ideals of
prime rings. The problem whether a Lie derivation is induced by an ordinary one related questions were
also discussed in analysis viz. Banning & Mathieu [23], Villena [220], where further details can be looked.

This paper is an attempt to present the derivations and its variants in such a light, and in a manner
suitable for everybody who have some basic knowledge in ring theory. In order to make the treatment as
self-contained as possible, and to bring together all the relevant material in a single paper, we have included
several references. Much of the motivation for this paper is historical, and we have taken the opportunity
to weave historical comments into the body of the text where it seems appropriate.

0 Keywords and phrases : Derivations, (θ, φ)-derivations, Jordan derivations, generalized derivations,
generalized Jordan derivations, generalized Jordan (θ, φ)-derivations.

0 AMS Subject Classification : 16W25, 16N60, 16U80.
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Throughout the discussion, unless otherwise mentioned, R denotes an associative ring having at least
two elements, with extended centroid C and symmetric quotient ring Q (see Beidar, et al. [30]). However,
R may not have unity. The symbol Z(R) stand for the center of R. Recall that a ring R is said to be prime
if the product of any two nonzero ideals of R is nonzero. Equivalently, aRb = {0} with a, b ∈ R implies
a = 0 or b = 0. A ring R is called semiprime if it has no nonzero nilpotent ideals. Equivalently, aRa = {0}
with a ∈ R implies a = 0. For any x, y ∈ R, using its associative product one can induce two new products
viz. the Lie product [x, y] = xy− yx and the Jordan product x ◦ y = xy+ yx. An additive subgroup U ⊂ R
is said to be a Lie ideal (resp. Jordan ideal ) of R if whenever u ∈ U and r ∈ R, then [u, r] (resp. (u ◦ r)) is
also in U . Let S be a nonempty subset of R. A function f : R −→ R is said to be a centralizing function
on S if [f(x), x] ∈ Z(R), for all x ∈ S. In the special case if [f(x), x] = 0, for all x ∈ S, f is said to be
commuting on S.

A map d: R −→ R is a derivation of a ring R if d is additive and satisfies the Leibnitz’ rule; d(ab) =
d(a)b + ad(b), for all a, b ∈ R. A simple example is of course the usual derivative on various algebras
consisting of differentiable functions. Basic examples in noncommutative rings are quite different. Note that
[a, xy] = [a, x]y + x[a, y], for all a, x, y ∈ R. For a fixed a ∈ R, define d: R −→ R by d(x) = [x, a] for all
x ∈ R. The function d so defined can be easily checked to be additive and

d(xy) = [xy, a] = x[y, a] + [x, a]y = xd(y) + d(x)y, for all x, y ∈ R.

Thus, d is a derivation which is called inner derivation of R associated with a and is generally denoted by
Ia. It is obvious to see that every inner derivation on a ring R is a derivation. But one can find plenty of
examples of derivations which are not inner.

If R is a commutative ring with identity 1 and d a derivation of R, then a skew polynomial ring R[x; d]

is defined as the set S of all polynomials
n∑

i=0
rix

i with usual addition and the multiplication by the rule

xr = rx + d(r), for all r ∈ R. A derivation d of R is said to be X-inner if there exists a ∈ Q such that
d(x) = [a, x], for all x ∈ R. Derivations that are not X-inner are called X-outer. Denote by Der(R), the set
of all derivations of R and let Inn(R) = {d ∈ Der(R)C | d = ad(A), for some A ∈ Q}. Elements of Inn(R)
are called X-inner derivations and other elements of Der(R) are called outer derivations. Assume that R is

an algebra over the rational field IQ and d: R −→ R is a derivation. Then, if we put dn(x) =
dn(x)
n! , for every

n ∈ IN , we have that

dn(ab) =
∑

i+j=n

di(a)dj(b), for all a, b ∈ R and, n ≥ 1. (1.1)

So d defines a sequence d0, d1, . . . , dn, . . . such that d0 = idR, d1 is a derivation and equation (1.1) holds. A
sequence of additive mappings D = {d0, d1, . . . , dn, . . .} is said to be a higher derivation of R if the above
relation (1.1) holds ([128], Exerc. 4, p. 540). More precisely, higher derivation in a ring R is a sequence of

additive mappings D = (di)i∈IN of R satisfying the conditions d0 = idR and dn(ab) =
n∑

i=0
di(a)dn−i(b) for all

a, b ∈ R and for all n ∈ IN . For details study and examples we refer to readers ([90], [91], [104]).
Many questions on derivations have been considered during the development of the theory. For example:

• powers (or products) of derivations and commutativity of rings (Posner’s theorems) were considered
in ([1], [20], [37], [67], [79], [84], [123], [133], [148], [149], [152], [154], [171], [172], [196], [208], [224]);

• algebraic derivations were considered in ([3], [21], [32], [40], [56], [72], [86], [142], [143], [147], [148],
[150], [153], [164], [170], [194]);

• the relationship between the associative, the Jordan and Lie structure of associative rings (Herstein’s
question) were considered in ([95], [98], [104], [108], [111], [112], [114], [180]);

• integral derivations were considered in ([3], [87], [94], [95], [190], [202], [203], [204]);

• derivations in many types of rings were considered in ([5], [21], [24], [25], [26], [42], [65], [70], [71], [76],
[77], [93], [150], [161], [166], [167], [168], [170], [210], [220], [230], [233], [234]).
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They were already generalized in several directions.
Finally, let us say that the historical approach of this paper is partially based on work of several authors,

while the most of the sections were strongly based on the authors background and researches. We present
some recent applications of derivations, as well as some problems that could be searched. We do not have
the pretension to list here all the possible results and problems, neither to affirm that the cited results are
the most important. One more time, the interested readers can consult the innumerable references cited here.

2. Historical Note

Following Nowicki [190], the fundamental relations between the operation of differentiation (=derivation)
and that of addition and multiplication of functions have been known for a long time as the notion of the
derivative itself. The relations were deepended when it was found that the operation of differentiation of
functions on the smooth varieties with respect to a given tangent field not only has the formal properties of
differentiation but also conversely; the tangent field as fully characterized by such an operation. Therefore,
it was possible to define e.g. the tangent bundle in terms of sheaves of functions.

The notion of the ring with derivation is quite old and plays a significant role in the integration of
analysis, algebraic geometry and algebra. In the 1940’s it was found that the Galois theory of algebraic
equations can be transferred to the theory of ordinary linear differential equations (the Picard-Vessiot theory,
including Picard-Vessiot theories for differential equations and for difference equations). In the usual sense,
“Picard-Vessiot theory” means a Galois theory for linear ordinary differential equations (cf. Van der Put &
Singer [217] for details). The filed theory also included the derivations in its inventory of tools. The classical
operation of differentiation of forms on varieties led to the notion of differentiation of singular chains on
varieties, a fundamental notion of the topological and algebraic theory of homology.

In the 1950’s a new part of algebra called differential algebra was initiated by the works of Ritt & Kolchin.
In 1950, Ritt [197] and in 1973, Kolchin [143] wrote the well-known books on differential algebra. Kaplansky
[139] also wrote an interesting book on this subject in 1976.

3. Chronological Development

The study of derivations in rings though initiated long back, but got impetus only after Posner [195] who
in 1957 stablished two very striking results on derivations in prime rings. The result under reference state
that; (i). In a 2-torsion-free prime ring, if the iterate of two derivations is a derivation, then one of them
must be zero; (ii). A prime ring R admitting a nonzero centralizing derivation d must be commutative. The
notion of derivation has also been generalized in various directions such as Jordan derivation, left derivation,
(θ, φ)-derivation, generalized derivation, generalized Jordan derivation, generalized Jordan (θ, φ)-derivation,
higher derivations, generalized higher derivations, etcetera. Also, there has been considerable interest in
investigating commutativity of rings, more often that of prime and semiprime rings admitting these map-
pings which are centralizing or commuting on some appropriate subsets of R. Being important ring theory
tools (see for example [37]), these results are one of the sources of the development of such as the theory of
differential identities (see [143]), theory of Hopf algebra action on rings (see [179], [213]) and Galois theory
for linear ordinary differential equations (cf.; Van der Put & Singer [217]).

3.1. Posner’s Theorems

The specific statements of Posner’s theorems, to which we shall referer frequently, are the following:

Posner’s First Theorem. Let R be a prime ring of characteristic not 2 and d1, d2 be derivations on R
such that the iterate d1d2 be also a derivation, then one at least of d1, d2 is zero.

Posner’s First Theorem tells us that the composition of two nonzero derivations of a prime ring R can
not be a derivation provided that characteristic of R is different from 2. Thereafter, a number of authors
have generalized this theorem in several ways (see for example Bergen [37], Chebotar [66], Chuang [68], [69],
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Hirano et al. [120], Hvala [127], Jensen [133], Krempa [147], Lanski [154], Martindale [170] and Ye et al.
[229] where further references can be found).

Generally speaking, a composition of inner derivations can be a nonzero derivation. For example; if e is a
nonzero idempotent in R i.e., e2 = e �= 0, then (ad(e))2k−1 = ad(e) for any positive integer k (see in Lanski
[155] for more interesting example). If d is any derivation of the prime ring R, then dp is a derivation of R
provided that char(R) = p. However, it was not clear in general whether a composition of derivations could
be a nonzero derivation if some of them are inner and some of them are outer. Some progress was achieved
by applying result of Kharchenko [143] on independence of outer derivations. The result on composition of
three derivations was obtained by Lanski [155] in 1992 as follows:

Theorem 3.1.1. Let R be prime ring of characteristic different from 2 and d1, d2,D ∈ Der(R)/{0} so that
d1d2D = E ∈ Der(R). Then either d1, d2, D ∈ Inn(R), or else char(R) = 3, d1 is outer, d2 = d1z1,D = d1z2
and (z1)

d1 = 0, where zi ∈ C, so E = d1
3z1z2.

In the same paper, Lanski posed the question whether a composition of fewer than char(R) derivations,
or any product in case char(R) = 0 be a nonzero derivation if some are inner and some are outer. Further,
in 1995 Chebotar [66] obtained the necessary condition when the composition of derivations, including both
inner and outer ones, could be a derivation (see Beidar et al [30] for more details). However, Lanski [155]
question remained open till date. Very recently, Chebotar & Lee [67] present the partial answer of Lanski
question by means of following example:

Example 3.1.1. Let F be a field of characteristic different from 2 and let R = M2(F [x]) be the ring of
2×2 matrices over the ring of polynomials in indeterminate x over F . Take d ∈ Der(R) defined by applying
formal differentiation to each entry. Set d1 = d3 = d5 = ad(e12), d2 = d+ ad(e21), d4 = d− ad(e21). Then d2
and d4 are outer derivations and d1d2d3d4d5 = ad(−4e12).

Moreover, Posner’s First Theorem was rediscovered by Creedon [79] to semiprime algebras. In fact, he
proved that if the product of two derivations in an algebra A is a derivation, then the product maps the
algebra into the nil radical nil(A) (the intersection of all prime ideals of A). Thus, if the product of two
derivations in a semiprime algebra is a derivation, then the product is zero. Further, Creedon obtained
conditions proving that the product of two derivations maps the algebra into the Jacobson radical ([79],
Proposition 9).

Many authors have investigated the invariance of certain ideals under derivations. It is known that
bounded derivations on Banach algebras leave primitive ideals invariant [208] and derivations on characteristic-
free rings leave minimal prime ideals invariant ([84], 3.3.2). Creedon showed that if P is a prime ideal of
a ring R, where the characteristic of R/P is not two, such that the product of two derivations leaves P
invariant, then one of the derivations must leave P invariant. He also proved that, if d is a derivation on a
ring R and P is a semiprime ideal of R, such that R/P is characteristic-free and dk(P ) ⊆ P , for any fixed
positive integer k, then d(P ) ⊆ P . For more related results see e.g.; Bell [31], Bell & Argaç [32], Hirano et
al. [111], Jensen [133], Krempa [148], Lanski [154] and Wang [224].

Posner’s Second Theorem Let R be a prime ring. If there is a nonzero centralizing derivation of R,
then R is commutative.

This theorem says that the existence of a nonzero centralizing derivation on a prime ring R implies that R
is commutative. Considering this theorem from some distance it is not entirely clear to us what was Posner’s
motivation for proving it and for which reasons he was able to conjecture that the theorem is true. Any how
it is a fact that the theorem has been extremely influential and at least indirectly it initiated the study of
commuting derivations i.e., the topic arising directly from Posner’s Second Theorem. It should be mentioned
that Posner in fact proved this theorem under the more general condition that d satisfies [d(x), x] ∈ Z(R),
for every x ∈ R. Maps satisfying this condition are usually called centralizing in the literature. It has turned
out that under rather mild assumptions a centralizing map is necessarily commuting (see for example [45],
Proposition 3.1).

Remark 3.1.1. It is evident by the following example that Posner’s Second Theorem can not be extended
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for arbitrary rings. Consider a ring R = R1×R2, where R1 and R2 are nonzero rings. If R1 is a commutative
ring having a nonzero derivation d1 and R2 is a noncommutative ring, then R is a noncommutative ring
and d(x1, x2) = (d1(x1), 0) is a nonzero commuting derivation on R. However, R is not commutative. This
is a trivial example, but it explains well why the assumption of primeness is natural in Posner’s Second
Theorem.

Over the last 50 years, a lot of work has been done on centralizing and commuting mappings. A number
of authors have extended these results by considering mapping which are only assumed to be centralizing
on an appropriate subset of the ring. In the year 1973, Awtar [19] considered centralizing derivations on
Lie and Jordan ideals. In the Jordan case, he proved that if a prime ring of characteristic not two has a
nontrivial derivation which is centralizing on a Jordan ideal, then the ideal must be central. More precisely,
he obtained the following results:

Theorem 3.1.2 ([19], Theorem 1). Let R be a prime ring of characteristic different from 2 and 3. Let d
be a nonzero derivation of R, and U a Lie ideal of R with [u, d(u)] ∈ Z(R), for all u ∈ U . Then U ⊂ Z(R).

Theorem 3.1.3 ([19], Theorem 2). Let R be a prime ring of characteristic 2, and let d be a nonzero
derivation of R. Let U a Lie (Jordan) ideal and a subring of R. Suppose that [u, d(u)] ∈ Z(R), for all u ∈ U .
Then R is commutative.

It is to remark that in the hypotheses of Theorem 3.1.3, if we just assume that U is only a Lie (Jordan)
ideal or a subring of R, then U may not be commutative. This is shown by the following examples due to
Awtar [19].

Example 3.1.1. Let R be a prime ring of all 2× 2 matrices over a noncommutative prime ring. Consider

U =

{(
x 0
0 y

)
∈ R

}
. It is clear that U is a subring, but not a Lie ideal of R. Define a mapping d:

R −→ R as follows:

d

((
x y
z w

))
=

(
0 −y
z 0

)
.

Then, it is easy to verify that d is a nonzero derivation of R with [u, d(u)] ∈ Z(R), for all u ∈ U . But U is
not commutative.

Example 3.1.2. Consider the prime ring R of all 2× 2 matrices over GF (2).

Let U =

{(
x y
z x

)
| x, y, z ∈ R

}
. It is clear that U is a Lie ideal, but not a subring of R. Let us define a

map d: R −→ R as follows: d

((
x y
z w

))
=

(
w − z x− w
x− w y − z

)
. Then, it is clear that d is a nonzero

derivation of R such that [u, d(u)] ∈ Z(R), for all u ∈ U . However, U is not commutative.

In 1976, Mayne [174] obtained the analogous result for an automorphism which states as follows:

Theorem 3.1.3 ([174], Theorem). If R is a prime ring with a nontrivial centralizing automorphism, then
R is a commutative integral domain.

In the year 1982, Mayne [176] extended the above results and established that the underlying auto-
morphism or derivation needs only to be centralizing and invariant on a nonzero ideal in order to ensure
the commutativity of a prime ring. It was also shown that if the prime ring is of characteristic different
from two, then the mapping needs only to be centralizing and invariant on a nonzero Jordan ideal. Later,
in the year 1984, Mayne [175] pointed out that the ideal invariant assumption is unnecessary in the above
theorem and he proved that the existence of a nontrivial automorphism or derivation which is centralizing
on a nonzero ideal in a prime ring R implies that the ring R must be commutative. Then Mayne using the
fact that every nonzero quadratic Jordan ideal contains a nonzero (associative) ideal [178], find that the
mapping needs only be centralizing on a nonzero quadratic Jordan ideal. In the derivation case this extends
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Theorem 3 of Awtar [19] to prime rings of arbitrary characteristic. In 1969, McCrimmon [178] showed that
in the automorphism case the results of Mayne (Theorem 2 of [175]) can not be extended to semiprime rings.
Recently, Vukman [223] extended Posner’s Second Theorem by showing that if d is a derivation of prime
ring of characteristic not 2 such that [[d(x), x], x] = 0, for all x ∈ R, then d = 0 or R is commutative. In
fact, in the spirits of Posner’s theorem, he merely showed that d is commuting. In 1992, the result proved
in [175] was further generalized for automorphism or derivation centralizing on a nontrivial Lie ideal.

Theorem 3.1.4 ([174], Theorem). Let R be a prime ring of characteristic different from two and T be
an automorphism of R which is centralizing and nontrivial on a Lie ideal U of R. Then U is contained in
Z(R).

In 1993 Bres̆ar [46] proved that same concrete additive mappings (such as derivation, endomorphism,
etc.) can not be centralizing on certain subsets of noncommutative prime (and some other) rings. In the
same paper, he also described the structure of an arbitrary additive mapping which is centralizing on a
prime ring and proved the following result:

Theorem 3.1.5 ([46], Theorem A). Let R be a prime ring. Suppose an additive mapping F of R into
itself is centralizing on R. If either R has a characteristic different from two or F is commuting on R, then
F is of the form F (x) = λx+ ζ(x), x ∈ R, where λ is an element from the extended centroid C of R and ζ
is an additive mapping of R into C.

The proof of Theorem 3.1.5 depend on the identity d(x) = ag(x) + h(x)b, for all x ∈ R (see [46],
Theorem 2.1) and a, b are some fixed element of R, which gives a description of derivations d, g and h of
prime ring R. Bres̆ar in [46] initiated the study of a more general concept than centralizing mapping i.e.,
he consider the situation when the mappings F and G of a ring R satisfy F (s)s − sG(s) ∈ Z(R), for all s
in some subset S of R. In fact he proved the following theorem:

Theorem 3.1.6 ([46], Theorem B). Let R be a prime ring and U be a nonzero left ideal of R. Suppose
derivations d and g of R satisfy d(u)u− ug(u) ∈ Z(R), for all u ∈ U . If d �= 0 then R is commutative.

This has been inspired by the following observation. Let f be a generalized inner derivation of R, i.e.,
f(x) = ax + xb, for some a, b ∈ R. Note that the condition that f is centralizing on subset S of R can be
written in the form [a, s]s − s[s, b] ∈ Z(R), for all s ∈ S. Thus, introducing inner derivation d and g by
d(x) = [a, x] and g(x) = [x, b], we obtain the same condition as in Theorem 3.1.6, i.e., d(s)s− sg(s) ∈ Z(R),
for all s ∈ S. Generalized inner derivations are extensively studied on operator algebras. Therefore, it might
be interesting to investigate these mappings from an algebraical piont of view also.

Numerous conditions concerning additive maps which are more general than f being centralizing, in
particular commuting, but usually implying the same conclusion, have been studied by many algebraists. It
would occupy too much space to discuss at greater length all of them, so we just refer the reader to some
references viz; Awtar [18], [19], [20], Bell [31], Bell & Argaç [32], Bell & Martindale [34], Bres̆ar [46], [47],
[48], [51], [52], Bres̆ar & Vukman [61], Hirano et al. [120], Hongan [123], Lanski [154], Luh [165], Mayne
[173], [174], [176], [175], McCrimmon [178], Vukman [223] and Wong [224], where further reference can be
found, for a state-of-art account and comprehensive bibliography.

3.2. Herstein’s Problem

In 1950’s, Herstein initiated the study of the relationship between the associative and the Jordan and Lie
structure of associative rings. We refer the reader to ([112], [114], [115]), where one can find further references
and more detailed explanations concerning the motivation and the background of these researches.

A Jordan derivation d of a ring R is an additive mapping d: R −→ R such that d(a2) = d(a)a+ ad(a),
for every a ∈ R. Every derivation is obviously a Jordan derivation and the converse is in general not true.

Example 3.2.1. Let R be a 2-torsion-free ring and a ∈ R such that xax = 0 for all x ∈ R, but xay �= 0,
for some (x �= y) ∈ R. Define a map d: R −→ R as follows: d(x) = ax. Then, it can be verified that d is a
Jordan derivation but not a derivation.



On derivations in rings and their applications 85

One can verify that a Jordan derivation in associative ring R is a derivation on the Jordan ring under
the induced Jordan multiplication. Note that the definition of Jordan derivation presented in the work of
Herstein is not as the given above. In fact, Herstein constructed, starting from the ring R, a new ring, namely
the Jordan ring R, defining the product in this one as being a◦b = ab+ba for any a, b ∈ R. Clearly, this new
product is well-defined and it can be easily verified that (R,+, ◦) is a ring. So, an additive mapping d, from
the Jordan ring into itself, is said by Herstein to be a Jordan derivation, if d(a ◦ b) = d(a) ◦ b+ a ◦ d(b), for
every a, b ∈ R. However, in the year 1957, Herstein proved a classical result in this direction which becomes
a jumping point for many workers later. The result to which we refere is namely:

Theorem 3.2.1 ([111], Theorem 3.1). If R is a prime ring of characteristic different from 2, then every
Jordan derivation of R is a derivation.

In the year 1988, Bres̆ar & Vukman [58] presented a brief (alternative) proof of this classical result. If
one checks the proof given in Theorem 3.2.1 one sees that the assumption that the characteristic of R be
different from 2 enters only at two points; in proving d(aba) = d(a)ba+ ad(b)a+ abd(a), for all a, b ∈ R and
at the very end of the argument just given. If we redefine a Jordan derivation by d(a2) = d(a)a + ad(a)
and d(aba) = d(a)ba + ad(b)a + abd(a), then in the ring of characteristic not 2 we have imposed no extra
restriction yet in characteristic 2 it allows us to conclude:

Theorem 3.2.2 ([58], Theorem 3.4). If R is a prime ring and d is a Jordan derivation (as newly redefined)
of R, then d is a derivation except if R is both commutative (and so an integral domain) and of characteristic
2.

Later on Bres̆ar [49] extended the result to 2-torsion-free semiprime rings. In a subsequent paper, Bres̆ar
gave another proof of this result using Jordan triple derivations. An additive mapping d: R→ R is said to
be a Jordan triple derivation if d(aba) = d(a)ba+ ad(b)a+ abd(a), for every a, b ∈ R. He proved that every
Jordan triple derivation of a 2-torsion-free semiprime ring is a derivation ([50], Theorem 4.3). It turns out
that every Jordan derivation of a 2-torsion-free ring is a Jordan triple derivation ([116], Lemma 3.5). This
gives another proof of the result of Herstein for 2-torsion-free semiprime rings. Further, Awtar extended
the Herstein’s theorem to Lie ideals ([18], Theorem). He proved that if U is a Lie ideal of a prime ring R
of characteristic different of 2 such that u2 ∈ U , for every u ∈ U , and d: R → R is an additive mapping
such that d |U is a Jordan derivation of U into R, then d |U is a derivation of U into R. In 2000, Ashraf &
Rehman [14] proved that, if R is a 2-torsion-free prime ring and if U is a Lie ideal of R such that u2 ∈ U
for all u ∈ U (square closed) and d: R→ R is an additive map satisfying d(u2) = 2ud(u) for all u ∈ U , then
d(uv) = ud(v) + vd(u), for all u, v ∈ U . An additive mapping d: R → R is called a Jordan left derivation
if it satisfies the above property that is d(x2) = 2xd(x) for all x ∈ R. In 1990, Bres̆ar & Vukman [60] have
proved that the existence of a nonzero Jordan left derivation on a prime ring R of char(R) �= 2, 3 forces R
to be commutative. Later in 1992, Deng [83] improved the above result, proving that if R is a prime ring
of characteristic �= 2, X is a nonzero left R-module that is faithful and prime, and if there exists a nonzero
Jordan left derivation d: R→ X , then R is commutative.

3.3. (θ, φ)-Derivations

Jacobson in his classical book “Structure of Rings” [132] has given a passing reference of (s1, s2)-derivation
which was latter more commonly referred as (σ, τ)-derivation or (α, β)-derivation by some authors and
(θ, φ)-derivation by others like Argaç et al. [7], Bres̆ar & Vukman [59], Kaya [141], Yenigül et al [231], to
mention a few only. Let θ, φ be endomorphisms of R. An additive mapping d: R −→ R is called a (θ, φ)-
derivation (resp. Jordan (θ, φ)-derivation) on R if d(xy) = d(x)θ(x) + φ(x)d(y) holds for all x, y ∈ R (resp.
d(x2) = d(x)θ(x) + φ(x)d(x) holds for all x ∈ R).

A mapping a �→ θ(a)b − bφ(a), where b is a fixed element in R is a (θ, φ)-derivation. Such a (θ, φ)-
derivation is said to be inner. A (θ, 1)-derivation, where 1 is the identity map on R is called simply a
θ-derivation. Of course, 1-derivation is a derivation. An additive mapping δ: R −→ R is called a left
(θ, φ)-derivation (resp. left Jordan (θ, φ)-derivation) if δ(xy) = θ(x)δ(y) + φ(y)δ(x), for all x, y ∈ R (resp.
δ(x2) = θ(x)δ(x) + φ(x)d(x), for all x ∈ R).
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Leroy & Matczuk [164] generalized Herstein’s [111] result to Jordan θ-derivations, where θ is an auto-
morphism ([164], Theorem 2.6). Further, in the year 1991 Bres̆ar & Vukman [59] extended Herstein’s [111]
result to Jordan (θ, φ)-derivations and proved the following:

Theorem 3.3.1. Let R be any ring and R′ be a noncommutative ring. Let θ and φ be homomorphisms
of R into R′. Let X be a 2-torsion-free R′-bimodule. Suppose that either θ is onto and xR′a = 0 with
x ∈ X, a ∈ R′ implies that x = 0 or a = 0 or that θ is onto and aR′x = 0 with x ∈ X, a ∈ R′ implies that
x = 0 or a = 0. In this case every Jordan (θ, φ)-derivation d: R −→ X is a (θ, φ)-derivation.

Theorem 3.3.2. Let R be a commutative prime ring (i.e., a commutative integral domain) of characteristic
different from two. If θ and φ are any endomorphisms of R, then every Jordan (θ, φ)-derivation d of R is
a (θ, φ)-derivation. Moreover, if θ �= φ, then there exists an element λ in the field of fractions F of R such
that d(a) = λ(φ(a)− θ(a)), for all a ∈ R.

If R is a ring with involution 2, then every additive mapping E: R → R which satisfies E(x2) =
E(x)x + xE(x) for all x ∈ R is called a Jordan 2-derivation. Following [233] these mappings are closely
connected with a question of representability of quadratic forms by bilinear forms. In Theorem 2.1 of [62],
Bres̆ar & Zalar obtained a representation of Jordan 2-derivations in terms of left and right centralizers on
the algebra of compact operators on a Hilbert space. In [233], Zalar proved that any left (resp. right)
Jordan centralizer on a 2-torsion-free semiprime ring is a left (resp. right) centralizer. Cortes & Haetinger
[77] proved this question changing the semiprimality condition on R. The main result of this paper is the
following: Let R be a 2-torsion-free ring which has a commutator right (resp. left) nonzero divisor and let
G: R → R be a left (resp. right) Jordan σ-centralizer mapping of R, where σ is an automorphism of R.
Then G is a left (resp. right) σ-centralizer mapping of R.

In 2001, Ashraf et al. [15] considered the following problem: Let R be a prime ring, char(R) �= 2, and U
a Lie ideal of R such that u2 ∈ U for all u ∈ U . They showed that if d is an additive mapping of R into itself
satisfying d(u2) = 2ud(u), for all u ∈ U , then either U ⊆ Z(R) or d(U) = 0. In 2005, Ashraf [8] proved, with
the same assumption on R, θ, ϕ as above, that if R admits a nonzero left Jordan (θ, ϕ)-derivation, then R is
commutative. Further, as an application of this result it was shown that every left Jordan (θ, ϕ)-derivation
on R is a left (θ, ϕ)-derivation on R. Finally, in case of an arbitrary prime ring it was proved that if R
admits a left (θ, ϕ)-derivation which acts also as a homomorphism (resp. anti-homomorphism) on a nonzero
ideal of R, then d = 0 on R.

Remark 3.3.1. Since every ideal in a ring R is a Lie ideal of R, conclusion of the above theorem holds
even if U is assumed to be an ideal of R. Though the assumption that u2 ∈ U , for all u ∈ U seems close to
assuming that U is an ideal of the ring, but there exist Lie ideals with this property which are not ideals.

For example, let R =

{(
x y
0 z

)
| x, y, z ∈ Z

}
. Then it can be easily seen that U =

{(
x y
0 x

)
| x, y ∈ Z

}

is a Lie ideal of R satisfying u2 ∈ U , for all u ∈ U . However, U is not an ideal of R.

Here is a related open problem that awaits solution:

Open Problem 3.3.1. Let R be a 2-torsion-free prime ring and U be a nonzero Lie ideal of R. If R admits
a left Jordan derivation δ such that d(u2) = 2ud(u), for all u ∈ U , then either U ⊆ Z(R) or d(U) = 0.

Over the recent years, a number of authors have extended Herstein’s theorems for semiprime rings, Lie
ideals, superalgebras, local rings, and rings containing some special conditions. Moreover, these problems
have been extended to many kinds of derivations viz.,

• Left derivations: ([2], [8], [14], [15], [60], [77], [232]);

• Jordan derivations: ([18], [19], [29], [49], [50], [60], [177]);

• Generalized derivations: ([2], [9], [13], [16], [134], [183], [184], [185]);

• Triple derivations: ([49], [133], [182], [183]);
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• Higher derivations: ([90], [91], [104], [133], [146], [186], [229]);

• Super derivations: ([94], [97], [179]), where further references can be found.

3.4. Generalized Derivations

During the last few decades there has been a great deal of work concerning generalized derivation in context
of algebras on certain normed spaces (for reference see [127], where further references can be found). By a
generalized derivation on an algebra A, one usually means a map of the form x �→ ax + xb, where a and
b are fixed elements in A. We prefer to call such maps generalized inner derivations for the reason they
present a generalization of the concept of inner derivations (i.e., the map of the form x �→ ax− xb). In the
theory of operator algebras, they are considered as an important class of the so-called elementary operators,

that is, operators where x �→
n∑

i=1
aixbi. Now in a ring R, let F be a generalized inner derivation given by

F (x) = ax+ xb. Notice that F (xy) = F (x)y + xIb(y) where Ib(y) = yb− by is the inner derivation defined
by b ∈ R. Motivated by this observation in the year 1991, Bres̆ar [53] introduced the concept of generalized
derivation in rings as follows:

Definition 3.4.1. Let S be a non-empty subset of R. An additive mapping F : R −→ R is said to be a
generalized derivation on S if there exists a derivation d: R −→ R such that F (xy) = F (x)y + xd(y) holds
for all x, y ∈ S.

Recently, Hvala [127] initiated the algebraic study of generalized derivation, a function more general than
derivation and extended some results concerning derivations to generalized derivations. In fact, the concept
of generalized derivation covers both concept of derivation as well as that of generalized inner derivation.
Moreover, generalized derivations with d = 0 covers the concept of left multipliers, that is, an additive map
f satisfying f(xy) = f(x)y, for all x, y ∈ R. This has widely been studied in functional analysis and several
interesting results are obtained (see, for example; Are & Mathiew [4], Sinclair [208], and Wendel [224], where
further references can be found).

Let S be an algebra over a commutative ring R andM an S/R-bimodule. IfM and N are S/R-bimodules,
a homomorphism f : M −→ N means a R-module and a two sided S-module map. A R-module map d:
S −→ M is called a derivation or inner derivation if d(st) = d(s)t + sd(t) or if d(s) = ms − sm for some
m ∈ M , respectively (s, t ∈ S). We denote the set of derivations (resp. inner derivations) from S to M
by Derk(S,M) (resp. Innk(S,M)). Derk(S,M) is an R-module and Innk(S,M) is an R-submodule of
Derk(S,M). An R-module map f : S −→ M is called a generalized derivation if there exists a derivation
d: S −→ M such that f(st) = f(s)t + sd(t), for all s, t ∈ S and for m,n ∈ M , a map fm,n: S −→ M such
that s �→ ms + sn ∈ M is called a generalized inner derivation. For an R-module map f : S −→ M and
an element m ∈ M , a pair (f,m) is called a generalized derivation if f(st) = f (s)t + sf(t) + smt, for any
s, t ∈ S. And by fm,n(st) = fm,n(s)t + sfn,m(t) + s(−m − n)t is called generalized inner derivation and is
denoted by (fm,n,−m − n). Two generalized derivations (f,m) and (g, n) are equal if f = g and m = n.
Under some conditions, m is uniquely determined by f . We also denote the set of generalized derivations
(resp. generalized inner derivations) from S to M by gDerk(S,M) (resp. gInnk(S,M)). In 1999, Nakajima
[185] gave some elementary properties of generalized derivations defined by Bres̆ar [53], and determined
functorial relations between gDerk(S,M) and Derk(S,M). Using this result, he gave the universal mapping
property of generalized derivations in the above sense. Some more related results can be looked in Komatsu
& Nakajima [145], Nakajima [186] and Nakajima & Sapanci [187], where further reference can be found).

In the year 2001, Lee [158] extended the definition of generalized derivation as follows: by a generalized
derivation we mean an additive map F : 6 −→ U such that F (xy) = F (x)y+xd(y) for all x, y ∈ 6, where 6 is
a dense right ideal of R and d is a derivation from 6 into U , right Utumi quotient ring. He proved that every
generalized derivation can be uniquely extended to a generalized derivation of U . In fact, there exists a ∈ U
and a derivation d of U such that F (x) = ax + d(x) for all x ∈ U ([158], Theorem 3). Therefore we may
assume without loss of generality that a generalized derivation of R is a map U −→ U . In [143], Kharchenko
described identities with derivations and his results are powerful tool for reducing a differential identity to a
generalized polynomial identity. Thus, to study identities with generalized derivations, it seems reasonable
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to find a corresponding theorem for identies with generalized derivations. In [160], Lee & Shinu proved
that if f(Xi

Γj ) is an identity for R, where the Γj’s are distinct regular words in generalized derivations,
then f(Zij) is a generalized polynomial identity (GPI) for U . They also obtained some results concerning
identities with generalized derivations. In particular, they generalized Theorem 1 and 2 of [127] to prime
rings without the characteristic assumption. Further, they prove an analogous theorem for prime rings with
involution.

During the last decade, there has been ongoing interest concerning the relationship between the com-
mutativity of a ring and the existence of certain specific types of derivations of R. Recently, many authors
viz [32], [35], [45] and [124] have obtained commutativity of prime and semiprime rings with derivations
satisfying certain polynomial constraints. In the year 2001, Ashraf & Nadeem [12] established that a prime
ring R with a nonzero ideal I must be commutative if it admits a derivation d satisfying d(xy)+xy ∈ Z(R)
or d(xy) − xy ∈ Z(R) for all x, y ∈ I. Motivated by these observations, Ali in [2] explore the commu-
tativity of a ring R satisfying any one of the properties: (i). F (xy) − xy ∈ Z(R), (ii). F (xy) + xy ∈
Z(R), (iii). F (xy) − yx ∈ Z(R), (iv). F (xy) + yx ∈ Z(R), (v). F (x)F (y) − xy ∈ Z(R) and
(vi). F (x)F (y) + xy ∈ Z(R), for all x, y ∈ I.

The following example demonstrates that R to be prime is essential in the
hypotheses of the above results.

Example 3.4.1. Consider S as any ring. Let R=

{(
a b
0 0

)
| a, b ∈ S

}
and I=

{(
0 b
0 0

)
| b ∈ S

}
be a Lie

ideal of R. Define F : R −→ R by F (x) = 2e11x− xe11. Then F is a generalized derivation with associated
derivation d given by d(x) = e11x−xe11. It can be easily seen that R satisfies the properties: (i). F (xy)−xy ∈
Z(R), (ii). F (xy) + xy ∈ Z(R), (iii). F (xy) − yx ∈ Z(R) and (iv). F (xy) + yx ∈ Z(R) for all x, y ∈ I.
However, I is not central.

Bergen et al. [40] proved that if R is a semiprime ring with unity and d �= 0 is a derivation of R such
that for every x ∈ R, d(x) is zero or invertible in R, then R must be either a division ring D or M2(D),
the ring of 2 × 2 matrices over a division ring D. Later, Bergen & Carini [38] extended this result to the
case of Lie ideals. More precisely, they prove the following: Let R be a semiprime ring with unity, U a
noncentral Lie ideal of R such that D(U) �= 0, and d(x) is either zero or invertible for every x ∈ U . Then R
is either a division ring D or M2(D), for some division ring D. Since a noncentral Lie ideal of a simple ring
R contains all the commutators [x, y] with x, y ∈ R except if R is of characteristic 2 and is 4-dimensional
over its center, it is natural to check the case when d(f(X1· · ·,Xk)) is either zero or invertible for Xi ∈ R,
where f(X1· · ·,Xk) is a multilinear polynomial. Indeed, Lee [157] obtained the same conclusion as above
by assuming that R is a semiprime ring and f (X1· · ·,Xk) is not central-valued on R. On the other hand,
Bergen [36] proved a result concerning a derivation with invertible or nilpotent values. It is shown that, if
R is a ring without nonzero nil one-sided ideal, and d is a nonzero derivation such that d(x) is invertible or
nilpotent for all x ∈ R, then R is either a division ring or the ring of 2×2 matrices over a division ring. A full
generalization in this vein was proven by Lee & Wong [161]. They showed that if d is a nonzero derivation
and f(X1· · ·,Xk) is a multilinear polynomial such that d(f (X1· · ·,Xk)) is either nilpotent or invertible for
all Xi in some nonzero ideal of prime ring R, then R is either a division ring or the ring of 2 × 2 matrices
over division ring, provided that R contains no nonzero nil one-sided ideals and f(X1· · ·, Xk) is a multilinear
polynomial not central-valued on R.

Recently, Komatsu & Nakajima [145] proved the following: Let R be a semiprime ring with unity and
g be a generalized derivation of R. If F (x) is zero or invertible for every x ∈ R, and ker(F ) contains no
nonzero right ideals, then R must be either a division ring D or M2(D) for some division ring D. Very
recently, Lin & Liu [163] extended the above mentioned result in the case generalized derivations. For more
related results see for example ([10], [11], [53], [127], [138], [160], [186], [197], [206]).

3.5. Generalized Jordan Derivations

Let S be a non-empty subset of R. An additive mapping F : R −→ R is said to be a generalized Jordan
derivation on S if there exists a derivation d: R −→ R such that F (x2) = F (x)x + xd(x), holds for all
x, y ∈ S.
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Clearly every generalized derivation on R is a generalized Jordan derivation. But the converse statement
does not hold in general. It is shown in [13] that if R is a ring with a commutator which is not a divisor
of zero, then every generalized Jordan derivation on a ring is a generalized derivation. In the year 2002,
Ashraf et al. [16] obtained the conditions under which every generalized Jordan derivation on a ring is a
generalized derivation. In fact, the result which we refer to states as follows:

Theorem 3.5.1. Let R be a 2-torsion-free prime ring and U a nonzero Lie ideal of R such that u2 ∈ U for
all u ∈ U . If F is an additive mapping of R into itself satisfying F (u2) = F (u)u+ud(u), for all u ∈ U , then
F (uv) = F (u)v + ud(v), for all u, v ∈ U .

Corollary 3.5.1. Let R be a 2-torsion-free prime ring and F : R −→ R be a Jordan generalized derivation.
Then F is a generalized derivation on R.

The following example due to Ashraf et al. [9] demonstrates that R to be prime is essential in the hy-
pothesis of the above result.

Example 3.5.1. Let S be a ring such that the square of each element in S is zero, but the product of

some elements in S is nonzero. Next, let R =

{(
x y
0 0

)
| x, y ∈ S

}
. Define a map F : R −→ R such

that F

(
x y
0 0

)
=

(
0 x
0 0

)
. Then with d = 0 and U = R, it can be easily seen that F (r2) = F (r)r =

F (r)s = 0 for all r, s ∈ R, but F (rs) �= 0 for some r, s ∈ R.

The above theorem is still open for arbitrary Lie ideal.

In 2003, Jing & Lu ([134], Theorem 2.5) showed that every generalized Jordan derivation on a 2-
torsion-free prime ring is a generalized derivation. An additive mapping f : R −→ R is said to be
a generalized Jordan triple derivation if there exists a Jordan triple derivation δ: R −→ R satisfying
f (aba) = f(a)ba+ aδ(b)a+ abδ(a) for all a, b ∈ R. Further, they obtained some more general results:

Theorem 3.5.2. Let R be a 2-torsion-free prime ring, then every generalized Jordan triple derivation on
R is a generalized derivation.

Theorem 3.5.3. Let Mn( lC) denote the algebra of all n × n complex matrices and B be an arbitrary
algebra over the complex field lC. Suppose that δ: Mn( lC) −→ B is a linear mapping such that δ(P ) =
δ(P )P +Pτ(P ) holds for all idempotent P in Mn( lC), where τ : Mn( lC) −→ B is a linear mapping satisfying
τ(P ) = τ(P )P+Pτ(P ), for any idempotent P inMn( lC), then δ is a generalized Jordan derivation. Moreover,
δ is a generalized derivation.

In same paper [134], Jing & Lu proved some more related results and posed two questions which are open
problems till date.

• Open Problem 3.5.1: If R is a 2-torsion-free semiprime ring, then every generalized Jordan
derivation on R is a generalized derivation R.

• Open Problem 3.5.2: If R is a 2-torsion-free semiprime ring, then every generalized Jordan triple
derivation on R is a generalized derivation.

Inspired by the definition of (θ, φ)-derivation, the notion of generalized (θ, φ)-derivation was extended by
Ashraf et al. [9] as follows:

Definition 3.5.1. Let S be a non-empty subset of R. An additive mapping F : R −→ R is called a general-
ized (θ, φ)-derivation ( resp. generalized Jordan (θ, φ)-derivation) on S if there exists a (θ, φ)-derivation d:
R −→ R such that F (xy) = F (x)θ(y) + φ(x)d(y) holds for all x, y ∈ S (resp. F (x2) = F (x)θ(x) + φ(x)d(x)
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holds for all x ∈ S).

Remark 3.5.1. Every generalized (1, 1)-derivation (resp. generalized Jordan (1, 1)-derivation) on R is
generalized derivation (resp. generalized Jordan derivation) on R, where 1 is the identity mapping on R.

Clearly, every generalized derivation on a ring R is a generalized Jordan derivation on R. But the con-
verse of this statement need not be true in general. The following example due Ali [2] justifies this fact:

Example 3.5.1. Let R be a noncommutative ring and a, b ∈ R such that xax = 0 and x2a = 0, for all
x ∈ R but xay �= 0, for some x and y, (x �= y) ∈ R. Define maps F : R −→ R as follows: F (x) = xa + bx.
Then there exists an inner derivation da: R −→ R such that da = [a, x]. It is readily verified that F is a
generalized Jordan derivation but not a generalized derivation.

Very recently, in the year 2004, Ashraf et al. [9] proved the following results on Lie ideals:

Theorem 3.5.3. Let R be a 2-torsion-free prime ring and U a noncommutative Lie ideal of R such that
u2 ∈ U , for all u ∈ U . Suppose that θ, φ are endomorphisms of R such that θ is one-one, onto and d is a
(θ, φ)-derivation of R. If F : R −→ R is a generalized Jordan (θ, φ)-derivation on U , then F is a generalized
(θ, φ)-derivation on U .

Theorem 3.5.4. Let R be a 2-torsion-free prime ring and U a nonzero commutator Lie ideal of R such that
u2 ∈ U , for all u ∈ U . Suppose that θ is an automorphism of R and d is a (θ, θ)-derivation. If F : R −→ R
is a generalized Jordan (θ, θ)-derivation on U , then F is a generalized (θ, θ)-derivation on U .

As a consequence of above, we have

Corollary 3.5.2. Let R be a 2-torsion-free prime ring and F : R −→ R a generalized Jordan derivation on
R. Then F is a generalized derivation on R.

If the underlying ring R is arbitrary, then the following result was obtained in [9]:

Theorem 3.5.5. Let U be a Lie ideal of a 2-torsion-free ring such that u2 ∈ U , for all u ∈ U . Suppose that
θ, φ are endomorphisms of such that θ is one-one and onto. Suppose further that U has a commutator which
is not a zero-divisor. If F : R −→ R is a generalized Jordan (θ, φ)-derivation on U , then F is a generalized
(θ, φ)-derivation on U .

Corollary 3.5.3. Let R be a 2-torsion-free ring and let F : R −→ R a generalized Jordan derivation on R.
If R has a commutator which is not a zero-divisor, then F is a generalized derivation on R.

Remark 3.5.2. Since every ideal in a ring R is a Lie ideal of R, the conclusion of the above theorems hold
when U is assumed to be an ideal of R. Though the assumption that u2 ∈ U , for all u ∈ U seems close to
assuming that U is an ideal of the ring, there exist Lie ideals with this property which are not ideals. For
example, consider an any ring R and U is the additive subgroup of R generated by the idempotents of R.
If e is an idempotent in R, and x ∈ R then it is easy to see that, u = e+ ex− exe and v = e+ xe− exe are
idempotents. Hence, ex− xe = u− v ∈ U . Thus, U is a Lie ideal of R.

To conclude this section, let us mention few problems concerning such possible extensions of the above
theorems:

Open Problem 3.5.3. Let R be a 2-torsion-free prime ring and U a Lie ideal of R. Suppose that θ, φ are
endomorphisms of R such that θ is one-one and onto. If F : R −→ R is a generalized Jordan (θ, φ)-derivation
on U , then F is a generalized (θ, φ)-derivation on U .

Open Problem 3.5.4. Let R be a 2-torsion-free semiprime ring and U a Lie ideal of R. Suppose that
θ, φ are endomorphisms of R such that θ is one-one and onto. If F : R −→ R is a generalized Jordan triple
(θ, φ)-derivation on U , then F is a generalized (θ, φ)-derivation on U .
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A more precise description of the generalized derivations and Jordan generalized derivations take up a
lot of space, so we feel that it is better to resist the temptation to express this subject in greater details and
instead refer to [13], [16], [127], and to some of the most recent articles [9], [134], [145], [183], [184] for the
advanced theory.

3.6. Lie Derivations and Lie Rings

For almost 30 years, the study of Lie isomorphisms and Lie derivations was carried on mainly by Martindale
III and his students. In 1964 Martindale, generalizing an unpublished result of Kaplansky (obtained in the
case of a matrix ring over a field), described Lie derivations of primitive rings of characteristic not 2 with
nontrivial idempotents [168]. In subsequent papers of several authors, the analogous problem was considered
either in the context of prime rings with involution [212] or in the context of von Neumann algebras under
a similar assumption.

In the year 1961, Herstein [112] in his AMS hour Talk, titled “Lie and Jordan Structure in Simple,
Associative Rings”, posed a number of problems on Lie (Jordan) isomorphisms and derivations. In [28],
Beidar & Chebotar considered two of them:

• Problem 3.6.1: Describe the Lie derivations of prime rings ([112], Problem 3);

• Problem 3.6.2: Given a prime ring A, describe the Lie derivations of [A,A] and [A,A]/Z([A,A]),
where Z(R) denotes the center of a ring R ([112], Problem 4).

In 1993, Bres̆ar [48] solved Problem 3.6.1 under the assumption that the prime ring in question does not
satisfy St4, the standard polynomial identity of degree 4. It was the first time that functional identities1

were applied to obtain the description of Lie isomorphisms and Lie derivations. Since then the method of
functional identities has been further developed (see [27] for a historical account) and has been successfully
applied to such problems in several papers. In 1997, Banning & Mathieu [23] extended to semiprime rings
the description of Lie derivations obtained by Bres̆ar in the prime case.

Beidar & Chebotar [28] considered F a commutative ring with 1, A a prime F -algebra with Martindale
extended centroid C and with central closure AC and R a noncentral Lie ideal of the algebra A generating
A. Further, they considered R = R/Z(R) the factor Lie algebra and δ: R→ R a Lie derivation, supposing
that char(A) �= 2 and that A does not satisfy St14, the standard identity of degree 14. They showed that
R ∩ C = Z(R) and that there exists a derivation of algebras D: A → AC such that xD + C = (x+ C)δ ∈
(R+ C)/C = R for all x ∈ R. This result solves Problem 3.6.2.

Roughly speaking, the above mentioned descriptions say that (if some requirements are satisfied) a Lie
derivation of a ring R has the form δ + τ , where δ is an ordinary derivation from R to an enlargement R′

of R and τ is an additive map from R to the center of R′. Unfortunately R′ may be too large. In fact, the
enlargement R′ is usually too large to be useful in the study of the analytical properties of Lie derivations
on general Banach algebras.

In [220], Villena considered D a Lie derivation on an unital complex Banach algebra. Then for every
primitive ideal P of A, except for a finite set of them which have finite codimension greater than one, there
exists a derivation d from A/P to itself and a linear functional τ on A such that QPD(a) = d(a+P )+τ(a), for
all a ∈ A (where QP denotes the quotient map from A onto A/P ). Moreover, the preceding decomposition
holds for all primitive ideals in the case where D is continuous. It is important to note that the properties
of ordinary derivations on primitive Banach algebras will be (almost) inherited (modulo the center and the
radical) by Lie derivations on unital complex Banach algebras.

On the other hand, Jordan & Jordan [135] studied how the ideal structure of the Lie ring of derivations
of an associative ring R, denoted by D(R), is determined by the ideal structure of R. If R is a simple (resp.
semisimple) finite-dimensional Z(R)-algebra and δ(z) = 0 for all δ ∈ D(R), then every derivation of R is
inner and D(R) is known to be a simple (resp. semisimple) Lie algebra (see [122], [131]). Jordan’s interest
was centred in extending these results to the case where R is a prime or semiprime ring.

1For more details on functional identities, see ([27], [30], [54]).
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Prime and semiprime ideals of Lie rings have been studied by Brown &McCoy, in 1958, and by Kawamoto,
in 1974. Let now R be a commutative ring with identity and δ be a derivation of R. Then the set, Rδ, of all
derivations of R of the form rδ: x→ rδ(x), r ∈ R, is a Lie subring of the Lie ring D(R) of derivations of R.
In [135], Jordan & Jordan studied the structure of D(R) and found that Rδ played an analogous role to that
played by Lie ring I(S) of inner derivations of a noncommutative ring S in the study of D(S). Furthermore,
it was shown in [135] that the properties of Rδ closely resemble the known properties of I(S). In particular,
it was shown that the following results hold in the case where R is 2-torsion-free: (i). If R is prime or If R is
δ-prime noetherian, then Rδ is a prime Lie ring; (ii). If R is δ-simple noetherian, then Rδ is a simple Lie ring.
In [136], the authors continued the study of the structure of the Lie ring Rδ and of certain of its Lie subrings.

3.7. Nil, Nilpotent, and Composition of Derivations

The notion of nil derivations is a generalization of the notion of nilpotent derivations. The latter, because
of its close relation with automorphisms and the existence of a Jordan decomposition into semisimple and
nilpotent parts for a large family of derivations (it is a generalization of that of algebraic derivations), has
received considerable attention recently (see [71]). Based on Chung [71], for a prime ring of characterisitc
zero, a relation between a nil derivation being inner with the existence of nontrivial fixed points of its
corresponding automorphism was established. From this, the criterion on ∂ being “inner” and induced by a
nil element was derived. As an application, the result that a nilpotent derivation is induced by a nilpotent
element in the endomorphism ring End(IR, IR), where IR is certain ideal of R was deduced. This is a
generalization of some well-known results due to Kharchenko and others. This problem was not yet studied
for higher derivations.

Now, let us consider R be a ring and d a derivation of R. We say that d is locally nilpotent if for any
α ∈ R there exists n ∈ IN such that dn(α) = 0. Following Ferrero, Lequain & Nowicki [93], locally nilpotent
derivations play an important role in commutative algebra and algebraic geometry, and several problems
may be formulated using locally nilpotent derivations. In particular, they play an important role in the
Jacobian conjecture. It is well-known (by the works of Nousiainen, Nowicki, Sweedler, and Wright) that the
Jacobian problem is equivalent to the problem of local nilpotence of some lC-derivations in the polynomial
ring lC[x1, . . . , xn]. The problem is still open even for the 2-variable case lC[x, y]. If d = ∂

∂x
and δ = ∂

∂y
are

the partial derivatives in lC[x, y], then every lC-derivation ∆ of lC[x, y] has the form ∆ = ad + bδ, where
a, b ∈ lC[x, y] are uniquely determined. The derivations d and δ are locally nilpotent and they commute.
It now appears to be of interest to get necessary and sufficient conditions on a and b for ∆ to be locally
nilpotent. In [93] the authors found them for a commutative, reduced,

∫
-torsion-free ring R with an identity

element and where d and δ are two locally nilpotent derivations which commute, and for b ∈ R such that
δ(b) = d(b) = 0. They gave a partial answer that includes the cases b = 0 and b = 1. The condition is that
d(a) = 0, where ∆ is a derivation ad+ bδ with a ∈ R.

In the same year, 1992, Lanski [155] combined the 1978’s results and ideas of Kharchenko [143], showing
that certain algebraic derivations of prime rings are inner, with those of 1983 of Martindale & Miers [170]
which showed that nilpotent inner derivations are obtained from nilpotent elements of index of nilpotence
roughly half that the index of the derivation. More specifically, Lanski considered a derivation d which
is nilpotent on certain subsets of a prime ring R: namely, on Lie ideals, right ideals and when R has an
involution, on the set of symmetric or skew-symmetric elements of R. Using an earlier own work [150], he
showed that d must be inner in the Martindale quotient ring of R, and then using the ideas in [152] to see
that d can be given by a nilpotent element whose index of nilpotence depends on that of d, the subset in
question, and the characteristic of R.

On the other hand, in [110] Herstein proved that if R is a prime ring and d is an inner derivation of R
such that d(x)n = 0 for all x ∈ R and n a fixed integer, then d = 0. As we wrote earlier, in [97] Giambruno
& Herstein extended this result to arbitrary derivations in semiprime rings. In [65] Carini & Giambruno
proved that if R is a prime ring with a derivation d such that d(x)n(x) = 0 for all x ∈ U , a Lie ideal of R,
then d(U) = 0 when R has no nonzero nil right ideals, char(R) �= 2 and the same conclusion holds when
n(x) = n fixed and R is a 2-torsion-free semiprime ring. Using the ideals in [65] and the methods in [89],
Lanski [152] removed both the bound on the indices of nilpotence and the characteristic assumptions on R.
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In [46], Bres̆ar gave a generalization of the result due to Giambruno & Herstein [97] in another direction.
Explicitly, he proved the theorem: Let R be a semiprime ring with a derivation d, a ∈ R. If ad(x)n = 0 for
all x ∈ R, where n is a fixed integer, then ad(R) = 0 when R is an (n − 1)!-torsion-free ring. Lee & Lin
[159] were motivated by Bres̆ar’s result and by Lanski’s paper [155]. They proved Bres̆ar’s result without
the assumption of (n− 1)!-torsion-free on R. In fact, they studied the Lie ideal case given in [155] and then
obtained Bres̆ar’s result as the corollary to their main theorem. A good account of this subject could be
found in [149].

In the year 2002, Chuang & Lee [69] considered a prime GPI-ring R with extended centroid C. They
proved that if C is a finite field, then there exist nonzero derivations δ1, . . . , δn ofR satisfying δ1(x)δ2(x) . . . δn(x)
0 for all x ∈ R. This answer a problem posed by Bres̆ar, Chebotar & S̆emrl [55]. Moreover, the authors
generalized their theorem to the case of generalized derivations with assumption on Lie ideals.

4. Some Applications

The theory of derivations and automorphisms of an associative rings is a direct descendant of the develop-
ment of classical Galois theory (cf. Suzuki [211], Taelman [216] and Van der Put & Singer [217] for details)
and the theory of invariants. The theory of derivations and automorphisms plays an important role not
only in ring theory, but also in functional analysis; linear differential equations, concerning the question
of innerness and outerness, for instance, the classical Noether-Skolem theorem yields the solution of the
problem for finite dimensional central simple algebras (see [113]). An extensive and deep theory has been
developed especially for derivations of C∗-algebras, commutative Banach algebras and Galois theory of lin-
ear differential equations (see; e.g., Bonsall & Duncan [43], Murphy [182] - a more recent condensed survey,
Frank [96], Pedersen [195] and Sakai [199]). Especially in analysis it is customary to treat derivations of one
algebra into a bigger one (into a bimodule). To explain more precisely, we have the following:

4.1. Some Nowicki’s Results Concerning Derivations Closely Connected with the Ring of
Constants

Nowicki [191] works with k-derivations of the polynomial ring k[X] = k[x1, . . . , xn] over a field k of charac-
teristic zero. The object of his principle interest is k[X]d, the ring of constants of a k-derivation d of k[X ],
that is, k[X ]d = {f ∈ k[X ]; d(f) = 0}.
Assume that f1, . . . , fn are polynomials belonging to k[X ]. There exists then a unique k-derivation d of
k[X] such that d(x1) = f1, . . . , d(xn) = fn. The derivation d is defined by

d(h) = f1
∂h

∂x1
+ . . .+ fn

∂h

∂xn
, for h ∈ k[X ]. (1)

Now, consider a system of polynomial ordinary differential equations

dxi(t)

dt
= fi(x1(t), . . . , xn(t)), 1 ≤ i ≤ n. (2)

If k is a subfield of the complex numbers lC, then it is evident what the system means. When k is arbitrary
then it also has a sense. This system has a solution in k[[t]], the ring of formal power series over k in the
variable t (see ([191], Section 1.6)).
Let k(X) = k(x1, . . . , xn) be the quotient field of k[X]. An element h of k[X ] \ k (resp. of k(X) \ k) is said
to be a polynomial (resp. rational first integral of the system (2)) if the following identity holds

f1
∂h

∂x1
+ . . .+ fn

∂h

∂xn
= 0. (3)

Thus, the set of all the polynomial first integrals of (3) coincides with the set k[X]d \ k where d is the
k-derivation defined by (1). Moreover, the set of all the rational first integrals of (2) coincides with the set
k(X)d \ k, where k(X)d = {h ∈ k(X); d(h) = 0} and where d is the unique extension of the k-derivation (2)
to k(X).
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In various areas of applied mathematics (as well as in the theoretical physics and chemistry) there occur
autonomous systems of ordinary differential equations of the form (3). There arises the following question:
“do there exist first integrals of a certain type, for example, polynomial or rational first integrals?” This
problem has been studied intensively for a long time; see for example ([122], [193], [202], [210]) where many
references on this subject can be found. The problem is known to be difficult even for n = 2.

Computers are frequently used in solving this problem. There are computer programs which make it
possible to find all the polynomial first integrals up to a given highest degree r but they do not provide any
information beyond r.

In this section, we use the vocabulary of differential algebra ([139], [146]). In terms of derivations the
above problem consists in the finding of methods leading to the statment whether the ring of the form
k[X ]d (or k(X)d), where d is a given k-derivation of k[X ], is nontrivial i.e., different than k). A certain
result containing some necessary and sufficient conditions (even for n = 2) on polynomials f1, . . . , fn would
be desirable and remarkable for the derivation defined by the formula (1) to possess a nontrivial ring of
constants.

There exist other natural problems concerning the discussed question. Assume that d is a k-derivation
of k[X ] such that k[X]d �= k. Then there arises the following question: Is the ring k[X ]d finitely generated
over k? This question is a special case of the fourteenth problem of Hilbert ([126], [188]). Let us stress that
there exist k-derivations of k[X ] for which the ring of constants is not finitely generated (see [191], Section
4.2). How to decide whether a given k-derivation of k[X ] has a finitely generated ring of constants?

Suppose that we already have one such derivation which has a finitely generated ring of constants. How
can one find its finite (possibly smallest) generating set? Can the minimal number of generators be limited
in advance? What can be said about this number?

Evidently, not every k-subalgebra of k[X] is a ring of constants with respect to a certain k-derivation (or a
family of k-derivations) of k[X]. For example, k[x21, . . . , x

2
n] is a such subalgebra. Therefore, a question arises

which subalgebras are the rings of constants. Does there exist an algebraic description of such subalgebras?
Let D be a family of k-derivations of k[X]. Consider the ring of constants

k[X ]D =
⋂

d∈D

k[X]d = {w ∈ k[X]; d(w) = 0, for all d ∈ D}.

Does there exist a k-derivation δ of k[X] such that k[X]D = k[X]δ? Similar questions can be asked for
all the subfields of the field k[X ]. All the above questions will constitute a group dealt with in [191]. A.
Nowicki also presented other issues related to the constant rings in k[X]. In particular, we presented:

• methods leadings to the proof that some polynomial derivations do not possess a nontrivial polynomial
(often even rational) constant as well as methods for the finding of a finite set of generators, illustrated
by numerous examples;

• an algebraic description of all the subrings of k[X ] which are rings of constants of derivations. Moreover,
applications of the description to the above mentioned problems of the finiteness and the minimal
number of generators.

Later, in 2004, Ollagnier & Nowicki [193] considered the following problem: Let d1: k[X] → k[X] and
d2: k[Y ] → k[Y ] be k-derivations, where k[X] = k[x1, . . . , xn] and k[Y ] = k]y1, . . . , ym] are polynomial
algebras over a field k of characteristic zero. Denoting by d1 ⊕ d2 the unique k-derivation of k[X,Y ] such
that d |k[X]= d1 and d |k[Y ]= d2, they proved that if d1 and d2 are positively homogeneous and if d1 has no
nontrivial Darboux polynomials, then every Darboux polynomial of d1⊕d2 belongs to k[Y ] and is a Darboux
polynomial of d2. Moreover, the authors proved a similar fact for the algebra of constants of d1 ⊕ d2 and
presented several applications of their results.

4.2. Derivations in Skew Polynomial Rings

Let R be a commutative ring with identity and d a derivation of R. Consider the set S of all polynomials
on one variable, say x, over R and define in S addition in the usual way and multiplication by the rule
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xr = rx + d(r) for all r ∈ R. Then it is well-known that S becomes a ring denoted by R[x, d], and it
is called a skew polynomial ring (cf. Cohn [74] for details). For derivations d1, d2, d3, ..., dn of R, one can
also construct a skew polynomial ring in n variables of R, Rn = R[x1, x2, ..., xn; d1, d2, d3, ..., dn] such that
xir = rxi + di(r) and xixj = xjxi for any r ∈ R. The properties of these skew polynomial rings have been
discussed by many authors (see for example; Cozzen [78], Hamanchi & Nakajima [105], Jordan [137] and
Voskoglou [221], [222]. In [221], Voskoglou has given the properties of the skew polynomial ring over a ring
R of prime characteristic which are connected with the D-simplicity of R with respect to a set of derivations
D of R.

Let k be a field of characteristic zero, F = k((Y )) the local field of Laurent series in one indeterminate
Y , and ∂Y the usual derivation of F . In 1992, Dumas & Vidal [86] described completely the k-derivations
of K = F ((X, ∂Y )). As an application, they studied the structure of the higher derivations in skew rings
of characterisitc zero. This subject could be depened, since that Dumas & Vidal constructed a new ring
K[[X,D]], called the Cohen ring, following Vidal [219].

Deformations of a polynomial algebra, such as the Weyl algebra or functions on quantum affine space, may
be expressed by formulas involving derivations of the polynomial algebra. These formulae are power series in
an indeterminate with coefficients in the universal enveloping algebra of the Lie algebra of derivations. There
are generalizations of such deformations to other types of algebras, such as functions of a manifold or orbifold,
that are of current interest. In [228], Witherspoon gave a new generalization of the formulas themselves
and applied them to crossed products of polynomial algebras with groups of linear automorphisms. These
group crossed products are of interest in geometry due to their relationship with corresponding orbifolds.
Particular deformations of such crossed products, called graded Hecke algebras (firstly defined by Drinfel),
have been studied by many authors, for example for crossed products with real reflection groups. For these
crossed product algebras, the universal enveloping algebra of the Lie algebra of derivations does not capture
all the known deformations. Instead, she derives a deformation formula from the action of a bialgebra or
Hopf algebra under some hypotheses, recovering more of these known deformations as well as some new
ones.

In the year 2003, Taelman [216] observe that the Dieudonne determinant induces a non-negative degree
function on the ring of matrices over a skew polynomial ring. Then, he apply this degree function to calculate
the dimension of the solution space of linear matrix differential equations in the following way: Let F be a
differential field of characteristic 0. This means F is equipped with an additive map (called derivation i.e.,
d(ab) = d(a)b + ad(b), for all a, b ∈ F ). Let C ⊂ F be a field of constant, that is the kernel of derivation.
Assume that the derivation is nontrivial i.e., C �= F . Examples are F = C(x) and F = C((x)) with the
usual derivation. Now, we consider the skew polynomial ring R = F [∂, 1′] with center C. It acts F -linear
on differential field extension of F by ∂(a) = d(a). A homogeneous matrix differential equation of the form

A0y +A1y
′ +A2y

′′ + · · ·+Ady
d = 0

where y denotes a vector in Fn and the Ai are matrices in M(n, F ) can be written as Ay = 0 with
A = σAi∂

i ∈ M(n, F ). Conversely, every A corresponds to such a differential equation. As in the proof of
Theorem 1.1 of [216], we associate with A the R-module M := Rn/RnA = R(s) ⊕Mtors. Take F ⊂ l to be
the Picard-Vessiot extension of Mtors or alternatively, take l to be a universal differential field extension of
F . When s = 0, all solutions of the differential equation exist over l. The contravariant solution space V
of M is defined to be the C-vector space V := HomR(M, l). It is finite-dimentional if and only if s = 0,
and in that case it is dual to the C-space of solutions in ln of the given differential equation. Therefore, he
obtained the following relationship:

dimCV = dimFM = deg detA.

Finally, he remarked that the completely analogous results hold for difference and q-difference equations.

In 2005, Cortes [76] studied generalizations of McCoy’s theorem in skew polynomial rings. He obtained
that the bijection between the set of right annihilator in a ring R and the set of a right annihilator in R[x; σ],
where σ is an automorphism of R, is equivalent to R be skew Armendariz ring. Moreover, Cortes studied
the relationship between Baerness, right Goldie property and right p.p.-property of R and R[x;σ] using the
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concept of a skew Armendariz ring. Further, he studied the properties of quasi-skew Armendariz rings.

4.3. Algebraic, Integral, and p-Integral Derivations

Following Lanski [150], the first general result on algebraic derivations was obtained in 1957 by Amitsur [3],
who proved that an algebraic derivation of a simple ring of characteristic zero must be inner. An extension
of this result to prime rings was proved in 1978 by Kharchenko [143] in a celebrated paper, using his work
on differential identities of prime rings.

Later on 1985, Lanski [153] extended the work of Kharchenko and studied differential identities of ideals
in prime rings, and of the set of (skew) symmetric elements in ideals of prime rings with involution. As a
result of this work, he showed that a derivation of a prime ring R is algebraic if its restriction to an ideal of R
is algebraic, and also must be inner if the characteristic of R is zero. Furthermore, when R has an involution,
then any derivation of R, algebraic when restricted to the (skew) symmetric elements of an ideal of R, must
be inner when the characteristic of R is zero, and algebraic if the characteristic of R is positive. In this
last result, the question of whether the derivation must be algebraic in characteristic zero was unanswered.
He proved that it must be algebraic. In his paper [150], Lanski considered derivations which are algebraic
when considered as endomorphisms of certain subsets of prime rings. He proved the results using the theory
developed in [153] to extend and strengthen to Lie ideals the results there on ideals. Specifically, he showed
that if a derivation of a prime ring R satisfies a polynomial when restricted to a noncommutative Lie ideal
of R, then the derivation satisfies the same polynomial, as an endomorphism of R. This generalizes, to Lie
ideals, a result of Chung & Luh [72] on nilpotent derivations on ideals of R.

There is an interesting problem the study of the algebraic derivations d defined in a prime ring R (with
unity), and they respectively extensions d to the left Martindale quotient ring of R, denoted by Q. There
are several papers in this line, from where we choose ([86], [142], [143], [147], [164]).

It is well-known that if R is a semiprime ring and d: R → R is a derivation, then d can be uniquely
extended to a derivation d: Q → Q (i.e., such that d |R= d). When R is a prime ring, Leroy & Matczuk
[164] in 1985, and later in 1992 by Ouarit on when R is semiprime [194], different types of algebraicity were
related. It was proved that the following conditions are equivalent: d is R-algebraic; d is R-algebraic; d
is Q-algebraic; d is Q-algebraic; d is C-algebraic (where C indicates the extended centroid of R); d is
C-algebraic. Also it is a well-known 1978’s Kharchenko result [143] that if d is algebraic over a prime ring
R, then d is X-inner, provided that char(R) = 0 or char(R) = p is greater than the degree of algebraicity
of d. Further, Ferrero & Haetinger ([91], [104]) extended this result to higher derivations.

Later, in 1987, Nowicki [190] published a work on integral derivations: If p is a prime number and k ⊂ R
are commutative rings of characteristic p, then we say that a k-derivation d of R is p-integral over a d-subring
A ofR if there exists a finite set {a0, . . . , an−1} of elements ofA such that dp

n

+an−1d
pn−1+. . .+a1d

p+a0d = 0.
The author described the p-integral k-derivations of R by the Lie p-subalgebras of Derk(R) (d(k) = 0). He
proved in ([190], Proposition 2.2) that if R is noetherian and Derk(R) is finitely generated as an R-module
then every k-derivation of R is p-integral over R. In particular, if k is noetherian and R is either the ring
k[x1, . . . , xn] of polynomials or the ring k[[x1, . . . , xn]] of formal power series over k, then every k-derivation
of R is p-integral over R. The main result of the paper ([190], Theorem 4.1) shows that, in the cases of
polynomials or power series, every such k-derivation d is p-integral over the ring of constants, even if k is
non-noetherian, and that the minimal polynomial for d is of the degree pm, where m ≤ n (the number of
variables).

In 1991, Ferrero & Nowicki [93] studied locally integral derivations and endomorphims of commutative
rings. A derivation d of a ring R is said to be locally integral if, for every a ∈ R, there exists m =
m(a) ∈ IN such that dm(a) is contained in the ideal of R generated by a, d(a), . . ., dm−1(a). A locally
integral endomorphism of R is defined similarly. The authors presented conditions for a derivation to be
locally integral, as well as they included several examples of K-derivations and K-endomorphisms of finitely
generated algebras and power series rings, where K is a commutative ring with an identity and R is a
commutative K-algebra.

It is well-known, by results of Berman and Sweedler, that the actions both of finite groups and finite
dimensional Lie algebras on algebras have common generalizations. Namely, these are examples of actions



On derivations in rings and their applications 97

of Hopf algebras. Thus we can look at connections between behavior of automorphisms and derivations
via Hopf algebras. On the other hand, if we have a finite dimensional real or complex algebra A, then
the group of all automorphisms of A forms a Lie group and its Lie algebra is equal to the Lie algebra of
all derivations of A. Thus, there is a very nice correspondence between derivations and automorphisms
of A given by exponential and logarithm maps. Still in 1987, Matczuk [171] presented an analog of these
maps for algebraic derivations and automorphisms. He also gave some applications of this construction to
investigation of algebraic automorphisms of prime algebras.

4.4. Derivations on Lie Ideals

In the early 1950’s, Herstein initiated a study of the Jordan and Lie ideals of R in case that R was a simple
associative ring (either without or with an involution). In the ensuring years his work has been generalized
in various directions, on the one hand, to the setting of prime and semiprime rings, and, on the other hand,
to invariance conditions other than given by ideals.

In 1986, Martindale & Miers [169] wrote the Herstein’s Lie Theory revisited. Part of their motivation
was to obtain the Lie ideal theory for semiprime rings with involution by a somewhat different approach
from the self contained, elementary, very clever methods embodied in the original style of Herstein. And
they did it.

Beidar, Bres̆ar & Fong ([24], [26]), in 2001, continuated a project initiated by Bres̆ar & S̆emrl [57] in
1999, where the main idea was to connect the concept of dense action on modules with the concept of
outerness of derivations and automorphisms. In particular, one can view their results as generalizations of
the Chevalley-Jacobson density theorem. This celebrated theorem is one of the important tools of rings
theory and has already been generalizated in various directions, as the reader can see in [24]. In [26], the
authors considered a Lie ideal of a ring acting on simple modules via multiplication. Their goal were to
extend to this context results obtained in [24]. They confined theirselves with the case of automorphisms.
As an application they generalized results of Drazin on primitive rings with pivotal monomial to primitive
rings whose noncentral Lie ideal has a pivotal monomial with automorphisms. The authors noted that while
Martindale’s results on prime rings with generalized polynomial identity were extended to prime rings with
generalized polynomial identities involving derivations and automorphisms, the corresponding program for
results of Amitsur and Drazin on primitive rings with (generalized) pivotal monomials has not been done.
In this paper they made the first step in this direction.

In 1981, Bergen, Herstein & Kerr [40] considered the relationship between the derivations and Lie ideals
of a prime ring. They also looked at the action of derivations on Lie ideals; the results they obtained
extended some that had been proved earlier only for the action of derivations on the ring itself. Let R be
a ring and d �= 0 a derivation of R. If U is a Lie ideal of R, they were concerned about the size of d(U).
How does one measure this size? One way is to look at the centralizers of d(U) in R; the bigger d(U), the
smaller this centralizer should be. This explains the interest in the centralizers of d(U). The result obtained
in [40] generalized the principle theorem of [109]. They also measured the size of d(U) by looking at how
large d(U), the subring generated by d(U), turns out to be, generalizing results of [108]. Furthermore, a
well-known and often used result states that if d is a derivation of R, which is semiprime and 2-torsion-free,
such that d2 = 0 then d = 0. If R is prime, char(R) �= 2, and d2(I) = 0 for a nonzero ideal I of R, it also
follows that d = 0. What can be say if d2(U) = 0 for some noncentral Lie ideal of R? For inner derivations
this was studied and answered in [114]. For prime rings and for any derivation d �= 0 Bergen, Herstein &
Kerr answered the question of when d2(U) = 0 completely in Theorem 1 of [40].

Usually, the theory of prime rings operates with Lie ideals that do not lie at the center of the ring. For an
effective operation with semiprime rings, a stronger concept is desirable. Specifically, we will say that a Lie
ideal is essentially noncentral if its intersection with any nonzero associate ideal does not lie at the center of
the ring. Note that if R is a prime ring and 2R �= 0, then R is a ring without 2-torsion. On the other hand,
if R is a prime ring, 2R �= 0 and U is a its Lie ideal not lying at the center, then U is essentially noncentral.
In [17], Avraamova considered R a semiprime ring without 2-torsion and U its essentially noncentral Lie
ideal. If on U the polynomial identity of degree n is satisfied, then he proved that R satisfies identity of
degree 2n. Furthermore, he extended to semiprime rings the first and the second Posner’s theorems.
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4.5. Derivations Having Values Satisfying Certain Properties

There are another line of investigating in the literature concerning derivations having values satisfying certain
properties.

Bergen, Herstein & Lanski [40], in 1983, studied a question which, although somewhat special, has the
virtue that its answer can be given in a very precise, definitive, and succinct way. They showed that the
structure of a ring is very tightly determined by the imposition of a special behavior on one of its derivations.
That is, they classified the semiprime ring R possessing a nonzero derivation d such that d(x) is either 0
or invertible for all x ∈ R. They proved that R is either a division ring or the ring of 2 × 2 matrices over
a division ring. Later, in 1988, Bergen and Carini [39] obtained the same conclusion assuming that d(x) is
0 or invertible merely for all x in some noncentral Lie ideal of R. In 1993, Lee [157] extended this result
by studying the more general situation when d(f(x1, . . . , xt)) is either 0 or invertible for all x1, . . . , xt in R,
where f(X1, . . . ,Xt) is a multilinear polynomial not central-valued on R.

As to derivations having nilpotent values, Felzenszwalb and Lanski [89] proved that, if R is a prime ring
with no nonzero nil one-sided ideals and d is a derivation such that d(x) is nilpotent for all x in some nonzero
ideal of R, then d = 0. The extensions of this theorem to Lie ideals were obtained by Carini and Giambruno
[65] in the case of char(R) �= 2, and by Lanski [152] in the case of arbitrary characteristic. In the year 1996,
Wong [226] proved a full generalization of this result. In fact, in [226] it is shown that if d(f(x1, . . . , xt)) is
nilpotent for all x1, . . . , xt in some nonzero ideal of R, where f (X1, . . . , Xt) is a multinilear polynomial not
central-valued on R, then d = 0.

On the other hand, Bergen [37] proved a result concerning a derivation with invertible or nilpotent values.
It was shown that, if R is a ring with no nonzero nil one-sided ideals and d is a nonzero derivation on R such
that d(x) is invertible or nilpotent for all x in R, then R is a division ring or the ring of 2× 2 matrices over
a division ring. In 2000, Lee and Wong [161], the authors considered the situation when d(f(x1, . . . , xt))
is invertible or nilpotent for all x1, . . . , xt in some nonzero ideal of a prime ring, where f(X1, . . . , Xt) is a
multilinear polynomial no central-valued on R.
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[7] Argaç, N.; Kaya, A. and Kisir, A. : (σ, τ)-derivations in prime rings, Math. J. Okayama Univ. 29 (1987)
173-177.

[8] Ashraf, M. : On left (θ, ϕ)-derivations of prime rings, Arch. Math. (Brno) 41 (2005) 157-166.



On derivations in rings and their applications 99

[9] Ashraf, M.; Ali, A. and Ali, S. : On Lie ideals and generalized (θ, ϕ)-derivations in prime rings, Comm. Algebra
32 (8) (2004) 2977-2985.

[10] Ashraf, M.; Ali, A. and Rekha, R. : On generalized derivations of prime rings, South-East Asian Bull. Math.
29 (2005) 669-675.

[11] Ashraf, M. and Al-Shammakh, S.M. : On generalized (θ, φ)-derivations in rings, Internat. J. Math. Game
Theory and Algebra, 12 (4) (2002) 295-300.

[12] Ashraf, M. and Nadeem, R. : On derivations and commutativity in prime rings, East-West J. Math. 3 (1)
(2001) 87-91.

[13] Ashraf, M. and Rehman, N. : On Jordan generalized derivations in rings, Math. J. Okayama 42 (2000) 7-9.

[14] Ashraf, M. and Rehman, N. : On Lie ideals and Jordan left derivations of prime rings, Arch. Math. (Brno) 36
(2000) 201-206.

[15] Ashraf, M.; Rehman, N. and Ali, S. : On Jordan left derivations of Lie ideals in prime rings, South-East Asian
Bull. Math. 25 (2001) 379-382.

[16] Ashraf, M.; Rehman, N. and Ali, S. : On Lie ideals and Jordan generalized derivations of prime rings, Indian
J. Pure & Appl. Math. 34 (2) (2002) 291-294.

[17] Avraamova, O.D. : Lie ideals and differentiations of semiprime rings, Vestnik Moskovskogo Universiteta Matem-
atika 44 (4) (1989) 71-73.

[18] Awtar, R. : Lie ideals and Jordan derivations of prime rings, Proc. Amer. Math. Soc. 90 (1) (1984) 9-14.

[19] Awtar, R. : Lie ideals and Jordan structures in prime rings with derivations, Proc. Amer. Math. Soc. 41
(1973) 67-74.

[20] Awtar, R. : On a theorem of Posner, Proc. Cambridge Phil. Soc. 73 (1973) 25-27.

[21] Ayad, M. and Ryckelynck, P. : On the kernel of some derivations of K(x1, . . . , xn), Comm. Algebra 30 (5)
(2002) 2505-2510.

[22] Baclawski, K. : Automorphisms and derivations of incidence algebras, Proc. Amer. Math. Soc. 36 (1972)
63-74.

[23] Banning, R. and Mathieu, M. : Commutativity preserving mappings on semiprime rings, Comm. Algebra 25
(1997) 247-265.

[24] Beidar, K.I. and Bres̆ar, M. : Extended Jacobson density theorem for rings with derivations and automorphisms,
Israel J. Math. 122 (2001) 317-346.

[25] Beidar, K.I.; Bres̆ar, M. and Chebotar, M.A. : Generalized functional identities with (anti)-automorphisms and
derivations on prime rings I, J. Algebra 215 (1999) 644-665.

[26] Beidar, K.I.; Bres̆ar, M. and Fong, Y. : Extended Jacobson density theorem for Lie ideals of rings with auto-
morphisms, Publ. Math. Debrecen 58 (3) (2001) 325-335.

[27] Beidar, K.I. and Chebotar, M.A. : On functional identities and d-free subsets of rings I, Comm. Algebra 28
(2000) 3925-3951.

[28] Beidar, K.I. and Chebotar, M.A. : On Lie derivations of Lie ideals of prime algebras, Israel J. Math. 123 (2001)
131-148.

[29] Beidar, K.I.; Fong, Y. and Wang, S.K. : Posner and Herstein theorems for derivations of 3-prime near-rings,
Comm. Algebra 24 (1996) 1581-1589.

[30] Beidar, K.I. ; Martindale III, W.S. and Mikhalev, A.V. : Rings with generalized identities, Marcel Dekker, 1996.

[31] Bell, H.E. : On the commutativity of prime rings with derivation, Quaestiones Mathematicae 22 (1999) 329-335.
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